On Contra βθ-Continuous Functions


  • Miguel Caldas Cueva Universidade Federal Fluminense.




β-θ-closed, βθ-continuous, Contra βθ-continuous.


In this paper, we introduce and investigate the notion of contra βθ-continuous functions by utilizing β-θ-closed sets. We obtain fundamental properties of contra βθ-continuous functions and discuss the relationships between contra βθ-continuity and other related functions.

Author Biography

Miguel Caldas Cueva, Universidade Federal Fluminense.

Departamento de Matematica Aplicada,   Rua Mario Santos Braga, s/n24020-140,  Niteroi, RJ.


[1] M. E. Abd. El-Monsef, S. N. EL-Deeb and R. A. Mahmoud, β-open and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12, pp. 77-90, (1983).

[2] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38, pp. 24-32, (1986).

[3] M. Caldas and S. Jafari, Some properties of Contra-β-continuous functions, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 22, pp. 19-28, (2001).

[4] M. Caldas, On θ-β-generalized closed sets and θ-β-generalized continuity in topolological spaces, J. Adv. Math. Studies, 4, pp. 13-24, (2011).

[5] M. Caldas, Weakly sp-θ-closed functions and semipre-Hausdorff spaces, Creative Math. Inform., 20(2), pp. 112-123, (2011).

[6] M. Caldas, Functions with strongly β-θ-closed graphs, J. Adv. Studies Topology, 3, pp. 1-6, (2012).

[7] M. Caldas, On characterizations of weak θ-β-openness, Antartica J. Math., 9(3), pp. 195-203, (2012).

[8] M. Caldas: Other characterizations of β-θ-Ro topological spaces. (To appear).

[9] J. Dontchev,Contra-continuous functions and strongly s-closed spaces, Internat. J. Math. & Math. Sci., 19, pp. 303-310, (1996).

[10] J. Dontchev and T. Noiri, Contra-semicontinuous functions, Math. Pannonica 10, pp. 159-168, (1999).

[11] E. Ekici and T. Noiri, Contra δ-precontinuous functions (submitted).

[12] S. Jafari and T. Noiri, Contra-α-continuous functions between topological spaces, Iran. Int. J. Sci. 2, pp. 153-167, (2001).

[13] S. Jafari and T. Noiri, On contra precontinuous functions, Bull. Malaysian Math. Sci. Soc., 25, pp.115-128, (2002).

[14] S. Jafari and T. Noiri, Contra-super-continuous functions, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 42, pp. 27-34, (1999).

[15] M. Mrsevic, On pairwise R0 and pairwiseR1 bitopological spaces, Bull. Math. Soc. Sci. Math RS Roumano, (N.S.) 30 (78), pp. 141-148, (1986).

[16] R. A. Mahmoud and M. E. Abd El-Monsef, β-irresolute and β-topological invariant, Proc. Pakistan. Acad. Sci., 27, 285-296, (1990).

[17] T. Noiri, Weak and strong forms of β-irresolute functions, Acta Math. Hungar., 99, pp. 315-328, (2003).

[18] T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces, 1971 General Topology and its Relation to Modern Analysis and Algebra. III, (Proc. Conf. Kanpur, 1968), Academia, Prague, pp. 301-306, (1971).

[19] R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math., 50 (1974), 169-85.

How to Cite

M. Caldas Cueva, “On Contra βθ-Continuous Functions”, Proyecciones (Antofagasta, On line), vol. 32, no. 4, pp. 333-346, 1.