Computing the maximal signless Laplacian index among graphs of prescribed order and diameter
DOI:
https://doi.org/10.4067/S0716-09172015000400006Keywords:
Signless Laplacian index, Diameter, Bug, H-join.Abstract
A bug Bugp,r1r2 is a graph obtained from a complete graph Kp by deleting an edge uv and attaching the paths Priand Pr2 by one of their end vertices at u and v, respectively. Let Q(G) be the signless Laplacian matrix of a graph G and q1(G) be the spectral radius of Q(G). It is known that the bug

References
[1] D. M. Cardoso, M. A. A. de Freitas, E. Martins., M. Robbiano, Spectra of graphs obtained by a generalization of the join graph operation, Discrete Mathematics 313, pp. 733-741, (2013).
[2] D. M. Cardoso, E. Martins., M. Robbiano, O. Rojo, Eigenvalues of a H-generalized operation constrained by vertex subsets, Linear Algebra Appl. 438, pp. 3278-3290, (2013).
[3] H. Liu, M. Lu, A conjecture on the diameter and signless Laplacian index of graphs, Linear Algebra Appl. 450, pp. 158-174, (2014).
[4] D. Cvetkovi´c, P. Rowlinson, S.K. Simi´c, Eigenvalue bounds for the signless Laplacian, Publications de L’Institute Math´ematique, Nouvelle série, tome 81 (95), pp. 11-27, (2007).
[5] P. Hansen, C. Lucas, Bounds and conjectures for the signless Laplacian index of graphs, Linear Algebra Appl. 432, pp. 3319-3336, (2010).
[6] Miao-Lin Ye, Yi-Zheng Fan, Hai Feng Wang, Maximizing signless Laplacian or adjacency spectral radius of graphs subject to fixed connectivity, Linear Algebra Appl. 433, pp. 1180-1186, (2010).
[7] G. Yu, On the maximal signless Laplacian spectral radius of graphs with given matching number, Proc. Japan Acad. Ser. A 84, pp. 163- 166, (2008).
[2] D. M. Cardoso, E. Martins., M. Robbiano, O. Rojo, Eigenvalues of a H-generalized operation constrained by vertex subsets, Linear Algebra Appl. 438, pp. 3278-3290, (2013).
[3] H. Liu, M. Lu, A conjecture on the diameter and signless Laplacian index of graphs, Linear Algebra Appl. 450, pp. 158-174, (2014).
[4] D. Cvetkovi´c, P. Rowlinson, S.K. Simi´c, Eigenvalue bounds for the signless Laplacian, Publications de L’Institute Math´ematique, Nouvelle série, tome 81 (95), pp. 11-27, (2007).
[5] P. Hansen, C. Lucas, Bounds and conjectures for the signless Laplacian index of graphs, Linear Algebra Appl. 432, pp. 3319-3336, (2010).
[6] Miao-Lin Ye, Yi-Zheng Fan, Hai Feng Wang, Maximizing signless Laplacian or adjacency spectral radius of graphs subject to fixed connectivity, Linear Algebra Appl. 433, pp. 1180-1186, (2010).
[7] G. Yu, On the maximal signless Laplacian spectral radius of graphs with given matching number, Proc. Japan Acad. Ser. A 84, pp. 163- 166, (2008).
How to Cite
[1]
N. Abreu, E. Lenes, and Óscar Rojo, “Computing the maximal signless Laplacian index among graphs of prescribed order and diameter”, Proyecciones (Antofagasta, On line), vol. 34, no. 4, pp. 379-390, 1.
Issue
Section
Artículos
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.