On certain isotopic maps of central loops


  • Jhon Olusola Adeniran University of Agriculture.
  • Yacub Tunde Oyebo Lagos Statet University.
  • Daabo Mohamed University for Development Studies.




Central loop, Isotopism, Autotopism, Bryant-Schneider group.


It is shown that the Holomorph of a C-loop is a C-loop if each element of the automorphism group of the loops is left nuclear. Condition under which an element of the Bryant-Schneider group of a C-loop will form an automorphism is established. It is proved that elements of the Bryant-Schneider group of a C-loop can be expressed a product ofpseudo-automorphisms and right translations ofelements of the nucleus of the loop. The Bryant-Schneider group of a C-loop is also shown to be a kind of generalized holomorph of the loop.


[1] J. O. Adeniran, On Some Maps of Conjugacy Closed Loops., An. Stiin¸. Univ. ”AL. I. Cuza”. t Iasi. Mat. 50(2004), pp.267-272, (2004).

[2] Bryant, B.F. & Schneider, H. Principal loop-isotopes of quasigroups, Can. Jour. Math., 18, pp. 120-125, (1966).

[3] R. H. Bruck,Contribution to the Theory of Loops.,Trans. Amer. Math. Soc., 55, pp. 245-354, (1946).

[4] R. H. Bruck, A Survey of Binary Systems., Springer-Verlag, Berlin-Gottinge-Heidelberg., (1966).

[5] O. Chein, A short note on supernuclear (central) elements of inverse property loops, Arch. Math., 33, pp. 131—132, (1979).

[6] V. O. Chiboka, The Study of Properties and Construction of Certain Finite Order G-loops., Ph. D. Thesis (1990), Obafemi Awolowo University, Ile-Ife, Nigeria., 127pp.

[7] V. O. Chiboka and A.R.T. Solarin, Holomorphs of Conjugacy Closed Loops., Scientific Annals of ”AL.I.CUZA”., 38, pp. 277-283, (1991).

[8] V. O. Chiboka and A.R.T. Solarin, Autotopism Characterization of G-Loops., An. Stiin¸. Univ. ”AL.I.Cuza”. t Iasi. Mat., 39, pp. 19-26, (1993).

[9] F. Fenyves, Extra Loops I, Publ. Math. Debrecen, 15, pp. 235—238, (1968).

[10] F. Fenyves, Extra Loops II, Publ. Math. Debrecen, 16, pp. 187—192, (1969).

[11] T. G. Jaiyeola, An Isotopic Study of C-loops., M. Sc. Dissertation (2005), University of agriculture, Abeokuta, Nigeria.

[12] M. K. Kinyon, J. D. Phillips and P. Vojtechovsky , C-loops : Extensions and construction, J. Alg. & its Appl. (to appear).

[13] M. K. Kinyon, and K. Kunen, The Structure of Extra Loops., 6(, pp. 1-20, (2007).

[14] K. Kunen, Quasigroups, Loops and Associative Laws., J. Alg. 185, pp. 194-204, (1996).

[15] K. Kunen, Moufang Quasigroups., J. Alg. 183, pp. 231-234, (1996).

[16] H.O. Pflugfelder, Quasigroups and Loops: Introduction., Sigma Series in Pure Math. 7, Heldermann Verlag, Berlin, 147, (1990).

[17] H.O. Pflugfelder, Historical notes on Lopp Theory., Comment. Math. Carolinae., 4, 2, pp. 359-370, (2000).

[18] J. D. Phillips and P. Vojtechovsky, The varieties of loops of BolMoufang type, Alg. Univ., 53(3), pp. 115-137, (2005).

[19] J. D. Phillips and P. Vojtechovsky, The varieties of quasigroups of Bol-Moufang type : An equational reasoning approach J. Alg., 293, pp. 17-33, (2005).

[20] J. D. Phillips and P. Vojtechovsky, C-loops ; An Introduction, Publ. Math. Debrecen, 68(1-2), pp. 115-137, (2006).

[21] Robinson, D.A. The Bryant-Schneider group of a loop, Ann. de la Soc. Sci. de Bruxelles, 94, pp. 69-81, (1980).

[22] V.S. Ramamurthi and A.R.T. Solarin, On Finite RC-loops., Publ. Math. Debrecen., 35, pp. 261-264, (1988).

[23] D.A Robinson, Holomorphy Theory of Extra Loops., Publ. Math. Debrecen., 18, pp. 59-64, (1971).

[24] D.A Robinson, A Special Embedding of Bol-Loops in Groups., Acta Math. Hungaricae., 18, pp. 95-113, (1977).

[25] A. R. T. Solarin, On the identities of Bol-Moufang type, Koungpook Math. J., 28(1), pp. 51—62, (1998).



How to Cite

J. O. Adeniran, Y. T. Oyebo, and D. Mohamed, “On certain isotopic maps of central loops”, Proyecciones (Antofagasta, On line), vol. 30, no. 3, pp. 303-318, Dec. 2011.




Most read articles by the same author(s)