An Upper Bound on The Largest Signless Laplacian of an Odd Unicyclic Graph
DOI:
https://doi.org/10.4067/S0716-09172012000100005Keywords:
Laplacian matrix, signless Laplacian matrix, adjacency matrix, spectral radius, generalized Bethe tree, matriz laplaciana, matriz laplaciana sin signo, matriz de adyacencia, radio espectral, árbol de Bethe generalizado.Abstract
We derive an upper bound on the largest signless Laplacian eigenvalue of an odd unicyclic graph. The bound is given in terms of the largest vertex degree and the largest height of the trees obtained removing the edges of the unique cycle in the graph.References
[1] D. Cvetkovic, P. Rowlinson, S. K. Simic, Signless Laplacian of finite graphs, Linear Algebra Appl. 423, pp. 155-171, (2007).
[2] D. Cvetkovic, P. Rowlinson, S. K Simic, Eigenvalue bounds for the signless Laplacian, Publications de L’institute Mathematique, Nouvelle serie tome 81(95), pp. 11-27, (2007).
[3] R. Diestel, Graph Theory, Electronic Editions 2005, Springer-Verlag Hiedlberg, New York.
[4] G. H. Golub and C. F. van Loan, Matrix Computations, 2nd ed., John Hopkins University Press, (1989).
[5] C. S. Oliveira, L. S. de Lima, N. M. M. de Abreu, P. Hansen, Bounds on the index of the signless Laplacian of a graph, Discrete Applied Mathematics 158, pp. 355-360, (2010).
[6] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, (1991).
[7] S. Hu, The largest eigenvalue of unicyclic graphs, Discrete Math. 307, pp. 280-284, (2007).
[8] Y. Ikebe, T. Inagaki, S. Miyamoto, The Monotonicity Theorem, Cauchy’s Interlace Theorem and Courant-Fisher Theorem, American Mathematical Monthly Vol. 94, No. 4, April, pp. 352-354, (1987).
[9] S. Kouachi, Eigenvalues and eigenvectors of tridiagonal matrices, Electronic Journal of Linear Algebra 15, pp. 115-133, (2006).
[10] O. Rojo, New upper bounds on the spectral radius of unicyclic graphs, Linear Algebra Appl. 428, pp. 754-764, (2008).
[11] O. Rojo, Spectra of copies of a generalized Bethe tree atached to any graph, Linear Algebra Appl. 431, pp. 863-882, (2009).
[12] L. N. Trefethen and D. Bau, III Numerical Linear Algebra, Society for Industrial and Applied Mathematics, (1997).
[13] R. Varga, Matrix Iterative Analysis, Theory, Prentice-Hall, Inc., (1965).
[2] D. Cvetkovic, P. Rowlinson, S. K Simic, Eigenvalue bounds for the signless Laplacian, Publications de L’institute Mathematique, Nouvelle serie tome 81(95), pp. 11-27, (2007).
[3] R. Diestel, Graph Theory, Electronic Editions 2005, Springer-Verlag Hiedlberg, New York.
[4] G. H. Golub and C. F. van Loan, Matrix Computations, 2nd ed., John Hopkins University Press, (1989).
[5] C. S. Oliveira, L. S. de Lima, N. M. M. de Abreu, P. Hansen, Bounds on the index of the signless Laplacian of a graph, Discrete Applied Mathematics 158, pp. 355-360, (2010).
[6] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, (1991).
[7] S. Hu, The largest eigenvalue of unicyclic graphs, Discrete Math. 307, pp. 280-284, (2007).
[8] Y. Ikebe, T. Inagaki, S. Miyamoto, The Monotonicity Theorem, Cauchy’s Interlace Theorem and Courant-Fisher Theorem, American Mathematical Monthly Vol. 94, No. 4, April, pp. 352-354, (1987).
[9] S. Kouachi, Eigenvalues and eigenvectors of tridiagonal matrices, Electronic Journal of Linear Algebra 15, pp. 115-133, (2006).
[10] O. Rojo, New upper bounds on the spectral radius of unicyclic graphs, Linear Algebra Appl. 428, pp. 754-764, (2008).
[11] O. Rojo, Spectra of copies of a generalized Bethe tree atached to any graph, Linear Algebra Appl. 431, pp. 863-882, (2009).
[12] L. N. Trefethen and D. Bau, III Numerical Linear Algebra, Society for Industrial and Applied Mathematics, (1997).
[13] R. Varga, Matrix Iterative Analysis, Theory, Prentice-Hall, Inc., (1965).
Published
2012-01-29
How to Cite
[1]
M. Collao, P. Pizarro, and O. Rojo, “An Upper Bound on The Largest Signless Laplacian of an Odd Unicyclic Graph”, Proyecciones (Antofagasta, On line), vol. 31, no. 1, pp. 39-49, Jan. 2012.
Issue
Section
Artículos
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.