Polar Topologies on sequence spaces in non-archimedean analysis

Authors

  • R. Ameziane Université Sidi Mohamed Ben Abdellah.
  • Abdelkhalek El Amrani Université Sidi Mohamed Ben Abdellah.
  • Mohammed Babahmed Université Moulay Ismaïl.

DOI:

https://doi.org/10.4067/S0716-09172012000200002

Keywords:

Locally K-convex topologies, non archimedean sequence spaces, Schauder basis, separated duality, topologías localmente K-convexas, espacios secuenciales no arquimedeanos, base de Schauder, dualidad separada.

Abstract

The purpose of the present paper is to develop a theory of a duality in sequence spaces over a non-archimedean vector space. We introduce polar topologies in such spaces, and we give basic results characterizing compact, C-compact, complete and AK —complete subsets related to these topologies.

Author Biographies

R. Ameziane, Université Sidi Mohamed Ben Abdellah.

Faculté des Sciences Dhar El Mehraz,
Département de Mathématiques.

Abdelkhalek El Amrani, Université Sidi Mohamed Ben Abdellah.

Faculté des Sciences Dhar El Mehraz,
Département de Mathématiques.

Mohammed Babahmed, Université Moulay Ismaïl.

Faculté des Sciences de Meknes,
Département de Mathématiques.

References

[1] R. Ameziane Hassani, M. Babahmed, Topologies polaires compatibles avec une dualite separante sur un corps value non-Archimedien, Proyecciones Vol. 20, Num. 2, pp. 217-240, (2001).

[2] H.R. Chillingworth, Generalised ”dual” sequence spaces, Ned. Akad. Proc. Ser. A. 61, pp. 307-515, (1958).

[3] A. El amrani, R. Ameziane Hassani and M. Babahmed, Topologies on sequence spaces in non-archimedean analysis, J. of Mathematical Sciences: Advances and Applications Vol. 6, Num. 2, pp. 193-214, (2010).

[4] T. Komura; Y. Komura, sur les espaces parfaits de suites et leurs generalisations, J. Math. Soc. Japon. 15, pp. 319-338, (1963).

[5] G. Kothe, Topological vector spaces, Springer-Verlag Berlin Heidlberg New york, (1969).

[6] G. Kothe, Neubegrundung der theorie der vollkommen Raume, Math. Nach. 4, pp. 70-80, (1951).

[7] G. Kothe; O. Toeplitz, Lineare Raume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, J. reine angew. Math. 171, pp. 193-226, (1934).

[8] G. Matthews, Generalised Rings of infinite matrices, Ned. Akad. Wet. Proc. 61, pp. 298-306 (1958).

[9] A.F.Monna, Analyse non-archimedienne, Springer-Verlag Berlin New York Heidelberg (1970).

[10] H.H. Schaefer, Topological vector spaces, Springer-Verlag Berlin New york Heidlberg, (1971).

[11] W. H. Schikhof, Locally convex spaces over nonspherically complete valued field I, II. Bull. Soc. Math. Belg. S´ er. B. 38, pp. 187-224, (1986).

[12] J. Van Tiel, Espaces localement K-convexes I-III, Indag. Math. 27, pp. 249-289 (1965).

Published

2012-06-18

How to Cite

[1]
R. Ameziane, A. El Amrani, and M. Babahmed, “Polar Topologies on sequence spaces in non-archimedean analysis”, Proyecciones (Antofagasta, On line), vol. 31, no. 2, pp. 103-123, Jun. 2012.

Issue

Section

Artículos

Most read articles by the same author(s)