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Universidad Católica del Norte
Antofagasta - Chile

Abstract

This work is related to the inverse problem in vibration produced
in a special type of mechanical structure known as periodic structure.
This problem consist in determining the stiffness and mass parameter
of the structure from the natural frequencies and vibrations modes.
The problem concern with the inverse eigenvalue problem for a spe-
cially structured Jacobi matrix which contains the desired parameters.
Sufficient conditions to be applied to the data to obtain a real system
are derived and a numerical procedure is develop. Some numerical
examples are presented
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1. Introduction

Many problems in physics and engineering can be classified as direct or
inverse problems. The classical direct problems in these fields, are related
to the analysis and description of the behaviour of a system through its
properties such as density, mass, elastics constants, conductivity, damages,
strength, etc. On the other hands inverse problems are related with the
estimation or determination of the properties of a system, by means of their
dynamical behaviour. We are interested mainly on the particular class of
inverse eigenvalue problems associated with matrices. In this context, an
inverse eigenvalue problem (IEP) concerns the reconstruction of a matrix
from prescribed spectral data. Some important references are de Boor and
Golub [8], Boley and Golub[5] , and Chu and Golub[7]. This work is
concerned on (IEP) with applications to mechanical engineering, where
the work pioneered by Gantmacher and Krein[9] was the basis for many
further investigations. For example [10],[19],[15],[16],[17] and [18].

The study of infinitesimal free vibrations of elastic systems is of great
interest in classical vibration theory. A model which has generated much
interest in the literature as a prototype for vibrating structures, is a thin
rod of length L with longitudinal vibration governed by the equation

∂

∂x

µ
EA

∂u(x, t)

∂x

¶
= ρA

∂2u(x, t)

∂t2
, 0 < x < L, t > 0,(1.1)

with fixed-free end conditions u(0) = 0 = u0(L). Here, A ≡ A(x), E ≡
E(x) and ρ ≡ ρ(x) are the cross-section area, Young’s modulus and mass
density per unit length, respectively. It is well known that for free vibration
of frequency ω, the longitudinal displacement u(x, t) can be written as
u(x, t) = u(x) sin(ωt), where u ≡ u(x) satisfies

d

dx

µ
EA

du

dx

¶
+ λρAu = 0, 0 < x < L, λ = ω2.(1.2)

For convenience, we will assume that the rod is uniform with fixed-free end
conditions, i.e., attached left-hand and free right-hand end.

To discretize equation (1.2), we consider the partition P = {xi <
xi+1, i = 0, 1, . . . , n − 1} of the domain Ω = (0, L) where h ≡ 1

n =
xi+1 − xi, 0 ≤ i ≤ n − 1. Setting Ei ≡ E(xi), ρi ≡ ρ(xi), Ai ≡ A(xi),
ui ≡ u(xi) and using a finite difference scheme, equation (1.2) can be re-
duced to
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− kiui−1 + (ki + ki+1)ui − ki+1ui+1 − λmiui = 0, 1 ≤ i ≤ n,(1.3)

where ki =
EiAi

h
and mi = ρiAih. The boundary conditions u0 = 0 =

un+1 − un imply that equations in (1.3) can be written as

(K − λM)u = 0,(1.4)

where u = (u1, u2, . . . , un)
T , M is a diagonal matrix and K a symmet-

ric tridiagonal matrix. In equation (1.4), λ and u are known as natural
frequency and vibration mode respectively.

It is well known that the discrete model of the rod, represented by
equation (1.4), is a spring-mass system consisting of masses mi connected
on-line by linear springs of stiffness ki. We denote this system by the
pair (M,K). There are various inverse eigenvalue methods to reconstruct
the system (M,K) from spectral data. For example, if we are given the
total mass, the spectra (λi)

n
1 and (µi)

n−1
1 of the system (M,K) with fixed-

free and fixed-fixed end conditions, respectively, satisfying the interlacing
property λi < µi < λi+1, 1 ≤ i ≤ n − 1. Then, the reconstruction can be
develop in the next way: first, the equation(1.4) is reduced to the standart
form

(J − λI)v = 0,(1.5)

where J =M−1/2KM−1/2, v =M−1/2u and then the matrix J must be
reconstructed from the given data. The matrix J is a Jacobi matrix which
we define here to be a positive definite tridiagonal matrix with negative
off-diagonal terms. Algorithms for reconstruct the matrix J from (λi)

n
1

and (µi)
n−1
1 can be found in [5], [8], [12]. These algorithms are based on

methods which reduce a real symmetrical matrix to the tridiagonal form,
as Householder, Givens and Lanczos.

Even for a simple elastic system, we see that inverse problems can have
practical and valuable applications in mechanics, structural projects, and
updating problems. Information on problems of higher dimensional can be
found in [2],[3], [13] and [14].

In Section 2, equations governing the movement for periodic structure
are presented. They are based on the Lagrangeś generalized equations and
his matrix form is derived. In Section 3 we derive a numerical procedure
to the reconstuction of a prototype for periodic structure. It’s based on



94 Raúl D. Jiménez

the Lanczos algorithm for the reconstruction of a tridiagonal matrix from
spectral data. The algorithm requires the natural frequencies associated to
periodic structures with different end conditions and his respectively total
masses. Numerical examples are presented. Section 4 will be concerned
with the generalization of the boundary conditions given in Section 3. From
a practical point of view, the measurement of the natural frequencies may be
very expensive. For this reason, in Section 5 we present a procedure for the
reconstruction of a periodic structure which requires two eigenpars. Some
necessary conditions are stablish and numerical examples are presented.

2. Movement Equations for Periodic Structure

The structures which we will study in this work are called periodic struc-
tures, which are defined by a series of modules which have nominally equal
characteristics of stiffness, mass and load capacity and are all intercon-
nected. Periodic structures are found in different branches of engineering.
In mechanical engineering the blades of a turbine make up a structure, with
ciclyc periodicity, lightly interconnected by the rotor which they are embed-
ded. In aerospace engineering we have space platforms and radio antennas.
Also, we found applications in marine, electrical and civil engineering.

Various studies have been made on this type of structure. These studies
are essentialy directed to an analysis of the direct problem, that is the
study of the dynamics of a periodic structure whose physical parameters
are known.

Bansal[1], studied the propagation of waves in some periodic struc-
tures, and also in some irregular structures. Bendiksen[4], studied the phe-
nomenon of the localization of the different types of vibration in structures
spaced along their length. Brasil and Mazzilli [6] studied the localization
of the different modes of vibration in periodic latticed girders in bridges.

On reviewing literature dealing with the inverse and direct problems, it
is inmediately apparent that in comparison to the abundant literature on
the direct problem, very little work has been done on the inverse problem
for this type of structure.

The following is our theoretical framework for the dynamics of a peri-
odic structure. The configuration of the system may be defined completely
by a minimal number n, degree of freedom, of variable depending on time
qi(t), (i = 1, 2, . . . , n) called generalized equations. Without loss of gener-
ality we can assume that kinetic energy of the system may be written as
T = T2 + T1 + T0 , where
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T2 =
1

2

nX
i=1

nX
j=1

mij ·
·
qi ·

·
qj(2.1)

is a quadratic function of the generalized velocity
·
qi (t)

T1 =
nX
i=1

Gi·
·
qi(2.2)

is linear in the generalized velocity and T0 is indepent of them. In gen-
eral, the coefficients mij and Gi and the T0 function depend no linearly
on generalized coordinates and time. T0 has a behaviour like a potential
energy, to give rise to the centrifuga forces and T1 produces Coriolis forces,
whose terms are called giroscopics. Both forces are related to body rotatory
movement. We define the Rayleigh function

F = 1

2

nX
i=1

nX
j=1

dij
·
qi
·
qj +

nX
i=1

nX
j=1

hij
·
qi qj(2.3)

In this function, the first group terms are the dumping viscous forces
where dij are the dumping coefficients, which are constant and symmetric
and the second group are the circulatory forces with skew-symmetric coef-
ficients hij = −hji. The remaining forces applied to the system are denoted
by Qi.To obtain the movement equation, we use the Lagrange’s general-
ized equations. For a system with n degree of freedom q1, q2, . . . , qn, the
equations are

d

dt

µ
∂L
∂qi

¶
− ∂L

∂qi
+

∂F
∂qi

= Qi, i = 1, ..., n(2.4)

where the Lagrangian calL is given by the difference between the potential
and kinetic energy, L = T − V .

Without loss of generality we assume small displacement around equi-
librium point. A simple coordinate transformation may transfer the origin
of the state space to agree with the equilibrium point. Then we consider

movement around the equilibrium point given by qi(t) =
·
qi (t) = 0.

In any way, the equilibrium implies Qi = 0, that is, null generalized
applied forces so that,

∂V

∂qi
= 0, i = 1, . . . , n.(2.5)
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The hypothesis of small movements leads to the linearization of the
movement equation. Then, the mass or inercia coefficients mij de T2, being
symmetric, are given by

mij =

⎡⎣ ∂2T2

∂
·
qi ∂

·
qj

⎤⎦
q=

·
q=0

i, j = 1, 2, . . . , n(2.6)

By the other hand, the coefficients of T1 turns

Gi =
nX
i=1

gij qi j = 1, 2, . . . , n(2.7)

where

gij=

"
∂Gi

∂qi

#
q=0

i, j = 1, 2, . . . , n(2.8)

are constant coefficients and can be placed in the skew-symmetric giroscop-
ics coefficients form

gij =g
ij − gji=g

ij
i, j = 1, 2, . . . , n.(2.9)

Lastly, we give a develop in Taylor Series for the deformation energy
U , around the equilibrium point:

U(q1, q2, . . . , qn) = U(q01, q02, . . . , q0n)+
nX
i=1

∂U

∂qi
qi+

1

2

nX
i=1

nX
j=1

∂2U

∂qi∂qj
qiqj+. . .

(2.10)
Since U(q1, q2, . . . , qn) is constant and the second term is null, deleting

higher terms we can approximate

U(q01, q02, . . . , q0n) ≈
1

2

nX
i=1

nX
j=1

kijT qiqj ,(2.11)

where

kijT =
∂2U

∂qi∂qj
(2.12)

are the symmetric stiffness tangent coefficients depending on the general-
ized coordinates. In matrix form, the system of equations for linearizated
movement around a equilibrium configuration is
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M
·
u (t) + (G+D)

·
u (t) + (K +H)

·
u (t) = Q(t)(2.13)

where M is the mass matrix, G is the Cariolis or gyroscopic matrix (Skew-
symmetric), D is the dumping matrix (symmetric),K is the stiffness matrix
(symmetric) and H is the circulatory matrix (Skew symmetric).

3. Reconstruction of a Prototype of Periodic Structure from
Spectral Data

A prototype for periodic structure, much used by investigators such as
Brasil and Mazzilli [6], consists of a row of gateways, each one formed by
two columns of stiffness ki , embedded in their bases. At the top of each is
a rod , with mass mi, supported by the gateway. This type of structure is
known in mechanical engineering as a shear building. The rod represents a
pavement, with its mass weight concentrated at the ends of each column.
The interconnection of the structure is represented by a series of springs of
stiffness k . A prototype of this structure is showed in Figure 1

FIGURA 1

We will restrict our attention to conservatives no-giroscopic system .
Moreover, we consider free vibrations undumped which permit some sim-
plifications. In the absence of applied forces, giroscopics, viscouses dumped
and circulatories, that is , Q,G,D and H nulls, the governing equation is
reduced to

M
··
q +Kq = 0.(3.1)

The inverse problem for this case consist on determining the stiffness
and mass parameters from the dynamical behaviour. To establish a proce-

Marisol M
figura1
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dure for the determination of the stiffness and mass parameters we consider
(3.1) for the ith-portic:

mi
..
qi= kiqi−1 − (2k + ki)qi + kqi+1, 1 ≤ i ≤ n− 1(3.2)

where q0 = qn+1 = 0.
If we assume harmonic solutions of frequency w , q = zsen(wt), we have

··
qi= −λzisen(wt), λ = −w2. The number λ is knowed by natural frequency
and q is called vibration mode. Substituting in the last equations set, we
have

kzi−1 − (2k + ki)zi + kzi+1 = λmizi, 1 ≤ i ≤ n(3.3)

with z0 = zn+1 = 0. In the matrix form,

Kz = λMz(3.4)

where

K=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−(2k + k1) k
k −(2k + k2) k

k −(2k + k3)
. . .

. . .
. . . k
k −(2k + kn)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

M = diag {m1,m2, . . . ,mn} , and z = (z1, z2, . . . , zn)
T . The general-

ized eigenvalue equation (3.4) may be reduced to

(J − λI)x = 0(3.5)

where x =M1/2z and J =M−1/2KM−1/2. The J matrix is defined by

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(2k+k1)
m1

k√
m1m2

k√
m1m2

−(2k+k2)
m2

k√
m2m3

k√
m2m3

−(2k+k3)
m3

. . .

. . .
. . . k√

mn−1mn

k√
mn−1mn

−(2k+kn)
mn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.6)

It is well known [8],[12] that a unique Jacobi matrix J can be recon-
structed from his spectrum (λi)

n
1 and the spectrum (µi)

n−1
1 of its principal
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submatrix J̄ if the spectra interlace strictly λi < µi < λi+1, 1 ≤ i ≤ n− 1
and the Lanczos method can be applied in a suitable way to obtain the
matrices K and M.

The inverse problem for periodic structures is concerned with finding a
matrix par (M,K) such that equation (3.4) has given eigenvalues (λi)

n
1 .

Let consider the auxiliar periodic system (M̄, K̄) with eigenvalues (µi)
n−1
1

having the last portic fixed. The prototype of this structure is showed in
Figure 2:

FIGURA 2

We must to reconstruct 2n+1 parameters (ki,mi)
n
1 with the interconec-

tion stiffness k, and we have 2n− 1 data corresponding to the eigenvalues
(λi)

n
1 and (µi)

n−1
1 . The unknown parameters can be determined uniquely,

for example, if the total masses mT =
Pn

i=1mi and m̄T =
Pn−1

i=1 m̄i are
given.

If α1, α2, α3, . . . , αn and β1,β2, β3, . . . , βn−1 are the diagonal and
off-diagonal terms, we have the relations

αi =
2k + ki
mi

i = 1, . . . , n(3.7)

βi =
−k

√
mimi+1

i = 1, . . . , n− 1.(3.8)

Let θi defined by

Marisol M
figura2
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θi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−1Y
j = i+ 1
j odd

β2j

n−2Y
j = 2
j even

β2j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
mn i even

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−2Y
j = 2
j even

β2j

n−1Y
j = i
j odd

β2j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
/ mn i odd

i = 1, 2, . . . , n(3.9)

which may be calculated setting mn = mT −mT .

From the equation
nX
i=1

mi = mT , it follows that

θ1k
2 + θ2 + θ3k

2 + . . .+ θn−1k
2 +mn = mT(3.10)

and the k parameter can be calculated from k2 =

mT−
n−2P
i=2

i even

θi

n−1P
i=1
i odd

θ

(3.10)

From the equations (3.9) and (3.10) we can obtain the relation

mi =

(
θi i even
θik

2 i odd
i = 1, 2, . . . , n− 1(3.11)

Hence, a procedure for the reconstruction of the (ki,mi)
n
1 and k param-

eters can be summarized as follows :

Algorithm 1. Reconstruction for periodic structure
Input: The spectra (λi)

n
1 and the total mass mT of periodic system

(M,K) . The spectra (µi)
n−1
1 and the total mass m̄T of the auxiliar system

(M̄, K̄).
Output: The (ki,mi)

n
1 and k parameters of the periodic system (M,K)

Compute
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1. J = M−1/2KM−1/2 from (λi)
n
1 and (µi)

n−1
1 , by using Lanczos

Algorithm

2. mn = mT− m̄T

3. θi from (3.9), for i = 1, 2, . . . , n

4. k from (3.10)

5. mi from (3.11), for i = 1, 2, . . . , n

6. ki from (3.7), for i = 1, 2, . . . , n

3.1. Example 1

Let n = 15 and k = 10 and the mass parameter are all equal to 5.
i kexact λi µi kapprox log(ek) mapprox log(em)

1 0.4 0.16583 0.17679 0.39999 −11.40851 4.99999 −14.92302
2 0.5 0.39298 0.42992 0.50000 −11.89679 5.00000 −15.24923
3 0.2 0.76532 0.84865 0.19999 −10.13392 4.99999 −14.92302
4 0.5 1.26991 1.41795 0.50000 −12.29289 5.00000 −15.24923
5 0.8 1.86872 2.11357 0.79998 −10.93819 4.99999 −14.61493
6 0.1 2.56020 2.84169 0.09999 −9.22920 4.99999 −15.24923
7 0.9 3.29587 3.68465 0.89999 −11.55415 4.99999 −15.37059
8 0.8 4.08251 4.52047 0.30000 −13.04529 4.99999 −15.94238
9 0.2 4.85680 5.31421 0.20000 −10.11928 5.00000 −15.73653
10 0.8 5.62153 6.11440 0.80001 −11.18423 5.00000 −15.24923
11 0.1 6.31497 6.77213 0.10000 −10.52989 4.99999 −16.20189
12 0.3 6.92755 7.32214 0.30000 −11.49684 5.00000 −17.64735
13 0.5 7.41867 7.73908 0.50000 −11.30631 5.00000 −17.41829
14 0.9 7.78527 8.00368 0.90000 −12.77611 5.00000 −17.18463
15 0.2 8.01379 ∗ 0.20000 −12.28987 ∗ ∗

where kexact are the exact stiffness, kapprox are the approximates stiffness,

ek =
|kexact − kapprox|

|kexact|
, and em =

|mexact −mapprox|
|mexact|

.

From (3.9), it’s clear that θi parameters are positives while mn > 0.
Moreover, from (3.11), we have mi > 0, for i = 1, 2, . . . , n − 1. For the
stiffness parameters , from (3.7) we have that a necessary and sufficient
conditions for ki > 0 is αi > 2k/mi.
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4. Reconstruction from arbitrary fixed portic

In Section 3, we reconstruct the mass and stiffness parameters from the
frequencies corresponding to sinusoidal forcing at an end. In [11], the re-
construction of a vibratory system from its frequency response at an interior
point was presented. For this purpose, the author considers the reconstruc-
tion of a n× n Jacobi matrix partitioned as

J=

⎡⎢⎣ B bm
bm am+1 bm+1

bm+1 C

⎤⎥⎦
where B ∈ Rmxm, C ∈ Rpxp and p = n − m − 1. The J matrix may be
reconstructed from the sets (λi)

n
1 , (µi)

m
1 and (νi)

p
1 corresponding to the

eigenvalues of J, B, and C respectively. Within themselves these sets of
eigenvalues must be distinct, being two cases:

(a) all the (µi)
m
1 and (νi)

p
1 are distinct; if they are arranged in ascending

order and relabelled (µ̃i)
n
1 , they will satisfy λi < µ̃i < λi+1, 1 ≤ i ≤ n− 1.

(b) one or more pairs µj , νk are identical; now µj = νk = λl where
l = j + k. There can be more than one such pair.

We apply the above reconstruction to the Jacobi matrix (3.6). This
means that the auxiliar periodic system correspond to the original system
with the (r+1)-th portic fixed, which may be considered like a unconnected
composed by a fixed-fixed portic system with masses (mi)

r
1 and a fixed-free

portic system with masses (mi)
n
r+2. Let (µi)

r
1 the natural frequencies of the

fixed-fixed system associated to the eigenvalue problem

Krz
(r) = µMrz

(r)(4.1)

or, equivalently
(Jr − µIr)x

(r) = 0(4.2)

where Jr =M
−1
2

r KrM
−1
2

r , x(r) =M
1
2
r z(k).

If (νi)
p
1, p = n−r+1 are the natural frequencies of the fixed-free system,

then the eigenvalue equation is

Kpz
(p) = νMpz

(p)(4.3)

(Jp − νIp)x
(p) = 0(4.4)

where Jp =M
−1
2

p KpM
−1
2

p , x(p) =M
1
2
p z(p). The mass and stiffness matrix

are
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K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Kr
... ker

... °
· · · · · · · · · · · · · · ·
keTr

... −(2k + kr+1)
... keeT1

· · · · · · · · · · · · · · ·
°

... kee1 ... Kp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

with er = (0, 0, . . . , 1)
T ∈ <r, ee1 = (1, 0, . . . , 0)T ∈ <p and

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mr
...

−→°
... °

· · · · · · · · · · · · · · ·
−→°

... mr+1
...
−→°

· · · · · · · · · · · · · · ·
°

...
−→°

... Mp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

The Jacobi matrix is

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Jr
... brer

... °
· · · · · · · · · · · · · · ·
bre

T
r

... ar+1
... br+1eeT1

· · · · · · · · · · · · · · ·
°

... br+1ee1 ... Jp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
which may be reconstructed from the spectra (λi)

n
1 , (γi)r1, (νi)

p
1, p =

n− r + 1, satisfying the above mentioned conditions (a) or (b). The above
reconstruction is a generalization from that in Section 3. These reconstruc-
tions may be used to solve some detection problems in simples peridiodic
structures as soon as the isolation of discrete systems. It consist in isolating
the natural frequencies which lies in some resonance band.
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5. Reconstruction from two eigenpairs

The above reconstruction requires the measurements of 2n − 1 natural
frequencies, n for the fixed-free system and n− 1 for the fixed-fixed con-
figuration. These, and particularly the fixed-fixed frequencies, are difficult
to measure, specially if n is large. For this reason we seek some other way of
reconstructing a periodic structure from limited low frequency modal data.
The eigenvalue equation (3.4) can be rewritten so that the (zi)

n
1 appears in

the matrices and the (ki,mi)
n
1 in the vectores. Let Θk = [k1, k2,...,kn]

T ,

Θm = [m1,m2, . . . ,mn]
T , z = [z1,z2,...,zn]

T , z∗ =
h
z∗1,z

∗
2,...,z

∗
n

iT
and E be

the matrix

E=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 . . . 0
1 −2 1 . . . 0

0 1 −2 . . .
. . .

...
. . .

. . . 1
0 0 . . . 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .Thus, equation (3.4) is rewritten

kEz− IzΘk − λz Θm = 0(5.1)

Let consider the two eigenpairs (λ, z), (λ∗, z∗). Equation (5.1) yields

kEz− IzΘk − λz Θm = kEz∗ − Iz∗Θk − λz∗ Θm(5.2)

where I is the identity matrix. This implies for the last equation of (5.2),

kzn−1 − 2kzn − knzn − λmnzn = kz∗n−1 − 2kz∗n − knz
∗
n − λ∗mnz

∗
n = 0.(5.3)

Let ai = k(zi−1 − 2zi) and a∗i = k(z∗i−1 − 2z∗i ), for i = 1, 2, . . . , n. Then
from, (5.3) we obtain the two equalities

an − knzn = λmnzn(5.4)

a∗n − knz
∗
n = λ∗mnz

∗
n(5.5)

which, from the first one, we have for the mn

mn =
an
λzn
− kn

λ
.(5.6)

Substituting mn into the second equation of (5.3), we get

a∗n − knz
∗
n = λ∗mnz

∗
n = λ∗

µ
an
λzn
− kn

λ

¶
z∗n =

λ∗

λ

µ
anz

∗
n

zn
− knz

∗
n

¶
(5.7)
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and then obtain the next formulae to kn

kn =
λ∗z∗nan − λzna

∗
n

zn(λ∗z∗n − λz∗n)
(5.8)

Then, from equation (5.3) we can write in matrix form,"
zi λzi
z∗i λ∗z∗i

# "
ki
mi

#
=

"
ai + kzi+1
a∗i + kz∗i+1

#
i = 1, 2, . . . , n(5.9)

We find that the solution is unique if the determinants of the left-hand side
matrix of equation (5.7) are non-zero for i = 1, . . . , n − 1: i.e., λ∗z∗i zi −
λziz

∗
i 6= 0, i = 1, . . . , n − 1.We summarized the determination of the

stiffness and mass parameters in the

Algorithm 2. Reconstruction for periodic structure from two eigenpairs
Input: The eigenpairs (λ, z), (λ∗, z∗) of periodic system (M,K) . The

k parameter.
Output: The (ki,mi)

n
1 parameters of the periodic system (M,K)

Compute

1. an = k(zn−1 − 2zn) and a∗n = k(z∗n−1 − 2z∗n)

2. kn from (5.8)

3. mn from (5.6)

4. (ki,mi)
n−1
1 from (5.9)

The conditions to obtain a realistic system from this procedure may
be found in terms of the spectral information. The next proposition is a
sufficient condition to reconstruct a positive parameter kn. This condition
is given in terms of the eigenvalues and the elements of the respective
eigenvector.

Proposition 1. Let (λ, z), (λ∗, z∗) eigenpairs of the periodic system (M,K)
with stiffness conectivity k . Let an = k(zn−1−2zn) and a∗n = k(z∗n−1−2z∗n).
If one of the following conditions is satisfied

1.
λ∗z∗n
zn

>
a∗n
an

and zn > 0 and λ∗z∗n > λz∗n
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2.
λ∗z∗n
λzn

>
a∗n
an

and zn < 0 and λ∗z∗n < λz∗n

3.
λ∗z∗n
λzn

<
a∗n
an

and zn > 0 and λ∗z∗n < λz∗n

4.
λ∗z∗n
λzn

<
a∗n
an

and zn < 0 and λ∗z∗n > λz∗n

Then the nth stiffness kn is positive.

In order to get conditions for mi > 0 and ki > 0, for i = 1, 2, . . . , n− 1,
let us ξi = ai + kzi+1, and ξ∗i = a∗i + kz∗i+1 for i = 1, 2, . . . , n − 1. The

solution of systems equations (5.9) can be wrritten ki =
δi
τi

and mi =
δ∗i
τi

where δi =

¯̄̄̄
¯ ξi λzi
ξ∗i λ∗z∗i

¯̄̄̄
¯ , δ∗i =

¯̄̄̄
¯ zi ξi
z∗i ξ∗i

¯̄̄̄
¯ and τi =

¯̄̄̄
¯ zi λzi
z∗i λ∗z∗i

¯̄̄̄
¯ . Having

introduced this preliminary notation, we are able to establish the next
proposition:

Proposition 2. Let (λ, z), (λ∗, z∗) eigenpairs of the periodic system (M,K)
with stiffness conectivity k . Then, for mi and ki we have

1. ki > 0 if one of the following conditions is satisfied

1. δi > 0 and τi > 0

2. δi < 0 and τi < 0

2. mi > 0 if one of the following conditions is satisfied

1. δ∗i > 0 and τi > 0

2. δ∗i < 0 and τi < 0

6. Example 2

1. k = 1
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i stiffness error mass error

1 1.1 −11.5891 3.00000 −10.4311
2 2.5 −10.4315 3.00000 −11.0310
3 1.8 −11.0373 3.00000 −11.2537
4 4.3 −11.2519 3.00000 −10.9385
5 3.2 −10.1335 3.00000 −10.8744
6 5.2 −11.8153 3.00000 −11.1423
7 2.4 −11.2564 3.00000 −11.1707
8 1.1 −11.8126 3.00000 −10.4107
9 2.3 −11.0372 3.00000 −11.3701
10 2.1 −10.8454 3.00000 ∗

2. k = 1

i stiffness error mass error

1 1.0000 −9.6338 1.00000 −9.8274
2 1.0000 −10.2313 1.00000 −10.1345
3 1.0000 −10.1239 1.00000 −10.2532
4 1.0000 −9.8978 1.00000 −10.4988
5 1.0000 −10.2340 1.00000 −9.13734
6 1.0000 −10.0243 1.00000 −10.11832
7 1.0000 −9.8462 1.00000 −10.14211
8 1.0000 −9.4235 1.00000 −9.83674
9 1.0000 −10.2356 1.00000 −10.1313
10 1.0000 −10.0438 1.00000 −9.92743
11 1.0000 −10.0273 1.00000 −9.82742
12 1.0000 −10.2298 1.00000 −10.2113
13 1.0000 −9.7163 1.00000 −10.2837
14 1.0000 −10.1129 1.00000 −10.0103
15 1.0000 −9.7754 1.00000 ∗

This paper has been concerned with the reconstruction of the mass
and stiffness parameters for a structure periodic from vibration re-
sponse data. A technique which recover this parameters is detalied,
taking account the practical difficulties which appears in practical
measurements. The technique is based is classical and robust methods
used for inverse eigenvalue problem for Jacobi matrices. Additional
information may be changed instead the total masses mT and mT .
This suggest us to propose a different approach, which consists in a
multidimensional search strategy and apply it to detection problems



108 Raúl D. Jiménez

and isolating of frequencies.
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