Proyecciones Journal of Mathematics
Vol. 29, ${ }^{o}$ 1, pp. 9-15, May 2010.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172010000100002

SOLVABILITY OF COMMUTATIVE RIGHT-NILALGEBRAS SATISFYING $(\mathrm{b}(\mathrm{aa})) \mathrm{a}=\mathrm{b}((\mathrm{aa}) \mathrm{a})^{*}$

IVÁN CORREA
IRVIN ROY HENTZEL and
ALICIA LABRA
UNIVERSIDAD DE CHILE, CHILE
Received: July 2009. Accepted : December 2010

Abstract

We study commutative right-nilalgebras of right-nilindex four satisfying the identity $(b(a a)) a=b((a a) a)$. Our main result is that these algebras are solvable and not necessarily nilpotent. Our results require characteristic $\neq 2,3,5$.

2000 Mathematics Subject Classification : 17 A30.
Key Words : Polynomial identity: Nilpotency; Solvability; Rightnilalgebra.

[^0]
1. Introduction

Let A be a (possibly infinite dimensional) commutative right-nilalgebra of right-nilindex four over a field of characteristic $\neq 2,3,5$ satisfying the identity

$$
\begin{equation*}
(b(a a)) a=b((a a) a) \tag{1}
\end{equation*}
$$

Right-nilindex four means that A satisfies the identity

$$
\begin{equation*}
((a a) a) a=0 \tag{2}
\end{equation*}
$$

Identity (1) appeared as an omitted special case in Hentzel and Labra[1]. In that paper they studied commutative algebras satisfying the polynomial identity

$$
(b(a a)) a+t b((a a) a)=0
$$

for $t \neq 1,-1$. It is immediate that every commutative algebra that satisfies this identity satisfies $(t+1)((a a) a) a=0$. When $t \neq-1$ the algebra automatically satisfies (2). When $t=-1$ we get identity (1). We impose identity (2) because it is not a consequence of (1).

2. Preliminary Results

Linearizing completely (1) we get:

$$
\begin{aligned}
0=g(a, b, c, d)= & +(a(b c)) d-a((b c) d) \\
& +(a(c d)) b-a((c d) b) \\
& +(a(d b)) c-a((d b) c)
\end{aligned}
$$

Linearizing completely (2) we get:

$$
\begin{aligned}
0=f(a, b, c, d)= & +((a b) c) d+((a b) d) c \\
& +((a c) b) d+((a c) d) b \\
& +((a d) b) c+((a d) c) b \\
& +((b c) a) d+((b c) d) a \\
& +((b d) a) c+((b d) c) a \\
& +((c d) a) b+((c d) b) a
\end{aligned}
$$

Proposition 1. Let A be a commutative algebra (possibly infinite dimensional) over a field of characteristic $\neq 2,3$. Then A satisfies identities (1) and (2) if and only if A satisfies the identity

$$
\begin{equation*}
((b a) a) a+b((a a) a)=0 \tag{3}
\end{equation*}
$$

Proof. We first assume that A satisfies the identities (1) and (2). From $0=f(b, a, a, a)=6((b a) a) a+3(b(a a)) a+3 b((a a) a)$ we get:

$$
\begin{equation*}
2((b a) a) a+(b(a a)) a+b((a a) a)=0 . \tag{4}
\end{equation*}
$$

Using (1) and characteristic $\neq 2$, we get (3).
Now assume that A satisfies identity (3). We replace b by a in (3) and use characteristic $\neq 2$ to obtain identity (2). Linearizing (2) we get (4). Subtracting two times identity (3) from identity (4) gives identity (1). This proves the Proposition.

3. Main Section

Lemma 2. Let A be a commutative algebra (possibly infinite dimensional) over a field of characteristic $\neq 2,3$ satisfying identities (1) and (2). Then every subalgebra generated by a single element a of A is nilpotent of index at most 5. The only monomials that are not necessarily zero are: $a, a a,(a a) a$ and $(a a)(a a)$.

Proof. Let a be an element of A. We will prove that all the (non associative) monomials that have degree ≥ 5 are zero. The proof proceeds by induction using degree 5 as the start.

The degree 5 monomials are: $m_{1}=(((a a) a) a) a, m_{2}=((a a)(a a)) a$, and $m_{3}=((a a) a)(a a)$.
Monomial m_{1} is zero from (2). Using (1), (3) and (2): $m_{2}=((a a)(a a)) a=$ $(a a)((a a) a)=-(((a a) a) a) a=0$. Using commutativity, (3), and (2): $m_{3}=$ $((a a) a)(a a)=(a a)((a a) a)=-(((a a) a) a) a=0$.

The degree 6 monomials which are not immediately zero by (2) and induction are: $m_{4}=((a a)(a a))(a a)$ and $m_{5}=((a a) a)((a a) a)$.
Using (3) and (2): $m_{5}=((a a) a)((a a) a)=-((((a a) a) a) a) a=0$. The identity $f(a, a, a a, a a)$ establishes a dependence relation between $m_{4}=$ $((a a)(a a))(a a)$ and other monomials of degree 6. Since these other degree 6 monomials are zero, m_{4} is zero as well.

The only degree 7 monomial which is not zero by induction and (2) is $m_{6}=((a a)(a a))((a a) a)$.
Using (3) and induction: $m_{6}=((a a)(a a))((a a) a)=-((((a a)(a a)) a) a) a=$ 0.

The only degree 8 monomial which is not zero by induction and (2) is $m_{7}=((a a)(a a))((a a)(a a))$.
The identity $f(a, a, a a,(a a)(a a))$ establishes a dependence relation between $m_{7}=((a a)(a a))((a a)(a a))$ and other monomials of degree 8. Since all the other monomials are zero, m_{7} is zero as well.

Monomials of degree higher than 8 are zero by induction because one of the factors will have degree greater than 4 .

Lemma 3. If A is commutative algebra that satisfies (1) and (2), then $48((a a) a)((b b) b)=0$ for all $a, b \in A$.

Proof. Let us consider the following monomials:

$$
\begin{array}{ll}
b_{1}=((((a a) a) b) b) b & b_{14}=((((a b) a) b) a) b \\
\left.b_{2}=(((a a) a b)) b\right) b & b_{15}=((((a b) a) b) b) a \\
b_{3}=(((a a) a)(b b)) b & b_{16}=((((a b) b) a) a) b \\
b_{4}=((((a a) b) a) b) b & b_{17}=(((a b) b)(a a)) b \\
b_{5}=(((a a) b)(a b)) b & b_{18}=((((a b) b) a) b) a \\
b_{6}=((a a) b)((a b) b) & b_{19}=((((b b) a) a) a) b \\
b_{7}=((((a a) b) b) a) b & b_{20}=(((b b) a)(a a)) b \\
b_{8}=(((a a)(b b)) a) b & b_{21}=((((b b) a) a) b) a \\
\left.b_{9}=(((a a) b) b) b\right) a & b_{22}=((((b b) a) b) a) a \\
b_{10}=(((a a)(b b)) b) a & b_{23}=((((b b) b) a) a) a \\
b_{11}=(((a a) b)(b b)) a & b_{24}=(((b b) b)(a a)) a \\
b_{12}=((a a) b)((b b) a) & b_{25}=((a a) a)((b b) b) \\
b_{13}=((((a b) a) a) b) b . &
\end{array}
$$

Straightforward calculations show that the following linear combination of identities f and g produces the result that $48((a a) a)((b b) b)=0$:

$$
\begin{aligned}
& +27 f((a a) a, b, b, b)=162 b_{1}+81 b_{3}+81 b_{25} \\
& +30 f((a a) b, a, b, b)=60 b_{4}+60 b_{5}+60 b_{6}+60 b_{7}+60 b_{9}+30 b_{11}+30 b_{12} \\
& +7 f((b b) b, a, a, a)=42 b_{23}+21 b_{24}+21 b_{25} \\
& -30 f(a a, a, b, b) b=-60 b_{1}-60 b_{2}-60 b_{4}-60 b_{7}-30 b_{8}-60 b_{17}-30 b_{20} \\
& -15 f(a a, b, b, b) a=-90 b_{9}-45 b_{10}-45 b_{24} \\
& -11 f(b b, a, a, a) b=-33 b_{3}-33 b_{8}-66 b_{19} \\
& -16(f(a, a, a, b) b) b=-48 b_{1}-48 b_{4}-96 b_{13} \\
& -6(f(a, a, b, b) a) b=-12 b_{7}-24 b_{14}-24 b_{16}-12 b_{19} \\
& +18(f(a, a, b, b) b) a=36 b_{9}+72 b_{15}+72 b_{18}+36 b_{21} \\
& +2 g((a a) a, b, b, b)=6 b_{3}-6 b_{25}
\end{aligned}
$$

$$
\begin{array}{ll}
-9 g((a a) b, a, b, b) & =-18 b_{5}+18 b_{6}-9 b_{11}+9 b_{12} \\
+16 g((b b) b, a, a, a) & =48 b_{24}-48 b_{25} \\
-6 g(b,(a a) b, a, b) & =6 b_{5}-6 b_{6}+6 b_{7}-6 b_{9} \\
-72 g(b,(a b) b, a, a) & =-72 b_{6}+144 b_{16}+72 b_{17}-144 b_{18} \\
-39 g(b,(b b) a, a, a) & =-39 b_{12}+78 b_{19}+39 b_{20}-78 b_{21} \\
+6 g(a a, a, b, b) b & =12 b_{2}+6 b_{8}-12 b_{17}-6 b_{20} \\
-3 g(a, a a, b, b) b & =-6 b_{4}+6 b_{7}+3 b_{8}-3 b_{20} \\
-54 g(a, a, a, b b) b & =-54 b_{3}+54 b_{8} \\
-24 g(b, a a, b, b) a & =24 b_{10}-24 b_{24} \\
-21 g(b, a, a, b b) a & =21 b_{10}-21 b_{11}+42 b_{21}-42 b_{22} \\
-48 g(b, a b, a, a) b & =48 b_{2}-48 b_{5}+96 b_{13}-96 b_{14} \\
+14(g(a, b, b, b) a) a & =42 b_{22}-42 b_{23} \\
+18(g(b, a, a, a) b) b & =-54 b_{1}+54 b_{4} \\
-60(g(b, a, a, b) a) b & =120 b_{14}-120 b_{16} \\
+36(g(b, a, a, b) b) a & =-72 b_{15}+72 b_{18}
\end{array}
$$

This proves the Lemma.
Theorem 4. Let A be a commutative algebra over a field of characteristic $\neq 2,3$ that satisfies identities (1) and (2). Let W be the linear subspace of A generated by the elements of the form $J(a, b, c)$, where $J(a, b, c)=$ $(a b) c+(b c) a+(c a) b$, with a, b, c in A. Then W is an ideal of A with $W^{2}=0$.

Proof. From Lemma 3 and characteristic $\neq 2,3$, we get that $((a a) a)((b b) b)$ is an identity in A. Linearizing this identity we get that $J(a, b, c) \cdot J(d, e, f)=$ 0 for any elements a, b, c, d, e, f in A. This proves that $W^{2}=0$.

On the other hand, we see that for every a and b in A, the product $b((a a) a)$ is in $J(A, A, A) \subset W$. This proof follows below.

$$
\begin{aligned}
& J(b, a a, a)-J(b a, a, a) \\
= & (b(a a)) a+((a a) a) b+(a b)(a a)-((b a) a) a-(a a)(b a)-(a(b a)) a \\
= & (b(a a)) a+b((a a) a)+(b a)(a a)-((b a) a) a-(b a)(a a)-((b a) a) a \\
= & 4 b((a a) a) \operatorname{using}(1) \text { and }(3)
\end{aligned}
$$

Hence, $b((a a) a)$ is in W for every a and b in A, which proves Theorem 4. Theorem 5. Let A be a (possibly infinite dimensional) commutative algebra over a field of characteristic $\neq 2,3,5$ satisfying identities (1) and (2). Then A is solvable.

Proof. Using Theorem 5 we get that the quotient A / W is an algebra that satisfies the polynomial identity $J(a, b, c)=0$. In particular, A / W
satisfies the identity $a^{3}=0$. It is known that every commutative algebra that satisfies this identity is a Jordan algebra. Hence, A / W is a Jordan nilalgebra of nilindex three. From Zelmanov and Skosyrskii[5], we get that A / W is solvable. Since $W^{2}=0$, we have that A / W and W are solvable. Therefore, from Schafer[3] (Proposition 2.2, p.18), we get that A is solvable, which proves Theorem 5. The proof of Zelmanov and Skosyrskii[5] uses characteristic $\neq 2,3,5$.

We remark that algebras with the hypotheses of Theorem 5 are not necessarily nilpotent. In fact, the algebra A constructed by Zhevlakov in [4] (Example 1, p.82), is a commutative algebra that satisfies the polynomial identity $a^{3}=0$ and is solvable with $A^{2} A^{2}=0$ but is not nilpotent. It is easy to prove that A satisfies identity (1).

We wish to remark that the computer algebra system ALBERT[2] indicates that any commutative algebra A satisfying the identity $(x x) x=0$ will also satisfy: $(((A A)(A A))((A A)(A A))) A=0$. This indicates that $((A A)(A A))((A A)(A A))$ annihilates the whole algebra and that A is solvable of index ≤ 5.

This implies that a commutative algebra satisfying identities (1) and (2) will be be solvable of index ≤ 6. ALBERT shows that for these algebras $(((A A)(A A))((A A)(A A))) A$ need not be zero. This shows that they are not all solvable of index ≤ 4. This does not rule out the possibility that they might all be solvable of index ≤ 5. This work with ALBERT indicates that the assumption of characteristic $\neq 5$ may be unnecessary.

Acknowledgements

The authors wish to thank the referee for suggestions and comments that improved the presentation of the paper.

References

[1] I. R. Hentzel, A. Labra, Generalized Jordan algebras, Linear Alg. and its Applications 422, pp. 326-330, (2007).
[2] D. P. Jacobs, D. Lee, S. V. Muddana, A. J. Offut, K. Prabhu, T. Whiteley, Albert's User Guide. Department of Computers Science, Clemson University, (1993).
[3] R. D. Schafer, An introduction to Nonassociative Algebras, Academic Press, New York - San Francisco - London, (1966).
[4] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Rings that are nearly associative, Academic Press, New York - San Diego San Francisco, (1982).
[5] E. I. Zelmanov, V. G. Skosyrskii, Special Jordan nil algebras of bounded index, Algebra and Logik 22 (6), pp. 626-635, (1983).

Iván Correa

Departamento de Matemática
Universidad Metropolitana de Ciencias de la Educación
J. P. Alessandri 774 - Santiago - Chile
e-mail: ivan.correa@umce.cl

Roy Hentzel
Department of Mathematics
Iowa State University
Ames - Iowa 50011-2064
e-mail: hentzel@iastate.edu
and

Alicia Labra
Departamento de Matemáticas
Facultad de Ciencias
Universidad de Chile, Casilla 653, Santiago - Chile
e-mail: alimat@uchile.cl

[^0]: *Supported by FONDECYT 1060229, FIBAS 20/09 and FONDECYT 1070243

