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Abstract

The Fisher information matriz for Generalized skew-normal (GSN)
distribution is derived. The expressions for the elements of the ma-
trices require of integrals that are solved numerically using a suitable
software.
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1. Introduction

Consider the generalized skew-normal distribution (GSN) introduced by
Gomez et al. [4], whose pdf is given by
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where z = (z — p)/o, pn € R, 0 >0, A € R, € [0,1), and ¢(.) and ®(.)
denote the pdf and cdf of the standardized normal distribution, respectively.
The main properties and the convenience of this model to fit asymmetric
data are discussed in Gémez et al. [4].

The main objective of this note is to calculate the Fisher information
matrix corresponding to (1.1), which plays an important role in the asymp-
totic variance of the maximum likelihood estimators [5] and is defined in
the following manner: Let X = (X1,...,X,) be a random sample, and let
f(X;0) denote the probability density function for some model of the data,
which has parameter vector @ = (01, ...,6,). Then the Fisher information
matrix I,,(6) of sample size n is given by the p X p symmetric matrix whose
ij-th element is given by the covariance between first partial derivatives of
the log-likelihood,

(L1 flz) =
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An alternative, but equivalent, definition for the Fisher information matrix
is based on the expected values of the second partial derivatives, and is
given by

(1'3) In(a)w =-FE l agzaej
Strictly, this definition corresponds to the expected Fisher information. If
no expectation is taken we obtain a data-dependent quantity that is called
the observed Fisher information.

The rest of this note is organized as follows. The elements of the ex-
pected information matrix for the full location-scale GSN model are derived
in Section 2. Sections 3 analyze the special case of the sub-models skew-
normal and normal. For the normal case, the information matrix is singular,
and a reparametrization obtained by using the iterative approach proposed
by Rotnitzky et al. [7] is used to solve this problem, and a final discussion
is given in Section 4. The technical details are given in an appendix.
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2. Maximum likelihood estimation

This section is related to the asymptotic properties of the MLEs of the
location-scale GSN model. Specifically, the ingredients to compute the ex-
pected information matrix for the full location-scale GSN model are given.
Hence, the study is focused on the asymptotic behavior of the MLEs for
the particular skew-normal and normal models.

2.1. Likelihood score functions

Let Xy,..., X, be a random sample drawn from the GSN(u, o, A, ) distri-
bution. The log- likelihood function for 8 = (u,o, X, 8)" is S0 1(6, X;),
where [(0, X) is the log-likelihood for € based on a single observation X,
that is,

1(6: X) := log (X;0)

:log(

B
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where Z = (X —p)/o, A= {X|X < pu}, A’ is the complement of set A and
I4 is the indicator function of set A. The score function is Y"1 ; Sp(6, X;),
where Sy(0, X) = 01(0, X)/90 is the vector (S, Sy, Sy, S5) " with elements
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where £(Z) = ¢ (£5) /0 (25). 5(2) = 0 (35) /{3 + 1= 92 (35}
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and T(2) = {1- 0 (24)}/ {8+ -52(25)}.

2.2. Fisher information matrix

By definition, the GSN-expected information matrix for 6 can be computed

as (1.3). Thus, the elements Ip,p, = F {—
in the Appendix to be
w(14-5)+4)1B62+4 arctan())

90,00,

—B)?
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] of this matrix are shown
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where b = /2/m and § = A\/v/1+ \2. The factors pg, ng, Kk and vg are
defined in the Appendix.

3. Special Cases

When g8 = 0, with A # 0, (1.1) reduces to the skew-normal (SN) pdf
introduced by Azzalini [1]. For this particular case, the elements of the
Fisher information matrix are

1 A2 b3 (1442 22 b5 (1—62 A
Liw=gr+ 3700, Lio="0 4 Bay, Ly =200 - 2a,

_ _b(44) | A2 A _ 2 X __2
Lig=—=5—="+=(p] — 1) — 2 Kp» Ioo = 5+ <502, Ipn=—%ag,
62(46241)+4) arctan(\ A2 A
I,p = — LU A 22 (5 — ) — 247, Do =ay,
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2
where a;, = FEgyn [Zk {g((;\\?)}

given in the Appendix.

The coefficients pf, 0}, x; and v} are

Note the submatrix corresponding to the parameters u, o y A coincides
with the result obtained by Azzalini [1]. Note also that when A # 0, the
observed information matrix is non-singular, so that it can be used also to
estimate the asymptotic variances of the maximum likelihood estimators.

On the other hand, when = 0 and A = 0, (1) reduces to the normal
model. For this submodel, the Fisher information matrix is

L 0 V2 o_2v2
o2 o\ o\/m
o % 0 0
2 2 _4
05/55 7r4 ™
o Vo3

Note from this matrix that the column corresponding to the parameters
w are A are linearly depended, implying thus that it is a singular. This
irregularity is discussed by Azzalini [1] in the context of the SN model,
and posteriorly it is studied systematically by Chiogna [2]. DiCiccio and
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Monti [3] studying also this singularity in the context of skew-exponential
power distribution, and similar to Chiogna [2], they using the methodology
of Rotnitzky et al. [7] to obtain an appropriated reparametrization from
which is possible to calculate the asymptotic distribution of the maximum
likelihood estimator.

In the present case, this approach will also employed. For this, it is
assumes that the random sample becomes from a N(u*, 0*) model, where
0" = (u*,0%,0,0). Then, from the iterative procedure of Rotnitzky et al.
[7], the following reparametrization is obtained: 0 = 9(9) = (@,0,X,0),
where

f=p+ 0o bA, &:J—%U*b2)\2

Observe that the parameter 8* remains unchanged under the new
parametrization. Finally, from the Theorem 3 in Rotnitzky et al. [7], it
follows that, under Hy : @ = 8%, the random vector

[n1/2(ﬁ — 4 bo*N), n2(E — oF — 1/2b%6F A2), nl/O), nl/%ﬂ

) e 1/3 .
converge in distribution to (Zl,ZQ,Zg/ ,Z4), where (Z1,7Z5,73,Z4) is a
normal random vector with mean zero and covariance matrix

1 0 127 23\ !
o? 0 /273 o\/m
0o 3 0 0
l2-n 5m2—28nw444  8r—20
0 /273 673 32
_2V2 0 87 —20 3
o\ 32

4. A final discussion

In this paper we study the singularity of the Fisher information matrix of
the generalized skew-normal model (GSN). This problem has been studied
in the context of skew-normal model and the same applies to the GSN
model, i.e. the information matrix for the generalized skew-normal model
is singular for § = A = 0. Obtain a nonsingular matrix for the generalized
skew-normal model using the algorithm Rotnitzky et al. [7].
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5. Appendix

The second-order derivatives of [(0; X) are
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021(6;X
o = - [u‘wﬂzgsu g 22 5°(2)] 1a(X)
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and

PU0:X) _ 372 N3(1-5) 3

o5 —‘{ e+ i~ wor 25(2) + e 22 5(2)
+20oF 2252< Lo (ﬁ)ﬁ‘?*mw )T(Z) + T3(2)] I4(X)

~ [d%r — oy ZR(2) + 25y 2P R(Z) + 1w 22 BA(2)] Lu (X).

For the derivation of the Fisher information of (1.1), the following in-
tegrals need to be calculated, which can be done numerically by using the
software R [6]:

. tk¢2()\t) ;
pr = pr(A\,B) = 1+5/o 1_(1_5)1;ﬁ(i)¢<1+5> at,

1+

where k = 0,1,2. Define also, p; = pi(A,0), 7 = (X, 0), k1 = k(X,0) y
vl = vg(A,0).
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