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Abstract

Given two strictly upper triangular matrices X, Y € Crixm, we
study the range Wy (X) = {trnXn='Y* : n € N}, where N is the
group of unit upper triangular matrices in Cpxm. We prove that it
is either a point or the whole complex plane. We characterize when it
18 a point.

We also obtain some convexity result for a similar range, where
N is replaced by any ball of C* (k = m(m — 1)/2) embedded in N,
m < 4.
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1. Introduction

Let C,,xm be the space of all m x m complex matrices. The classical
numerical range of A € Cy,x, is defined as

W(A) :={z*Az : 2"z =1, x € C™} C C.

The celebrated Toeplitz-Hausdorff theorem [9] asserts that W (A) is a com-
pact convex subset of C. There are numerous generalizations [5, 1, 4, 8,
7,10, 11, 12, 14] and our references are far from complete. One important
view is to deem the numerical range as the image of an orbit under the
linear functional [2] determined by A, that is,

W(A) = {tr Azz™ : 2 € C™, ¥z = 1}.
The set
{zz* 12 € C™, 2*x =1} =O(En) :={UEnLWU*: U € U(m)}

is viewed as an orbit of the matrix Ej; := diag(1,0,...,0) under the con-
jugation action of U(m), where U(m) denotes the unitary group in Cp,xm.
In general, if C' € Cp,xm, then denote by

o) ={UCcu*:U eU(m)}

the orbit of C' under the conjugation action of U(n). The C-numerical
range of A [13, 3] is defined to be the set

We(A) :={tr AY : Y € O(C)}.
If C = diag(1,...,1,0,...,0), (k 1’s), it becomes Halmos’s k-numerical
range [7] of A

k
Wi(A) = {Z xiAzj:x1,...,2 € C™ are orthonormal }.
j=1

If C = diag(c1,...,cm) (¢’s are real), the C-numerical range of A becomes
Westwick’s c-numerical range [14] of A

W.(A) = {Z cjrjArj i x1,..., 2y € C™  are orthonormal }.
j=1
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Westwick’s theorem [14] asserts that the c-numerical range of A is convex.
The orbital point of view leads to several generalizations of the numerical
range. Moreover the convexity result has been successfully extended in
the context of compact Lie groups [11] and most real classical semisimple
Lie algebras [8, 4, 12]. Usually the groups involved in the relevant orbital
generalizations are compact (for example U(m) is compact in the setting
of the c-numerical range).

In this note we consider the group of m x m unit upper triangular matri-
ces which is non-semisimple and noncompact. By a unit upper triangular
matrix, we mean an upper triangular with diagonal entries all ones. Let N
be the group of unit upper triangular matrices in Cy,xm- It is a unipotent
(noncompact) Lie group whose Lie algebra n is the set of strictly upper
triangular matrices in Cp,xm. Given X € n, denote by

OX):={nXnt:neN}cn
the orbit of X under the conjugation action of the group N. Let X,Y € n.
The numerical range of the pair (X,Y) is defined as
Wy (X) := {trnXn Y* :n € N}.

It may be interpreted as the image of the orbit O(X) under the linear
functional determined by Y. In Section 2 we prove that Wy (X) is either a
point (not necessarily the origin) or C. In Section 3, given r > 0, ¢;; € C,
1 <4< j < m, we consider a compact subset of V:

Ny = {’I’L = (’I’LU) EN: Z ]nij — Cij‘Q = ’1“2}.
1<i<j<m

In other words, the ball of radius r (with respect to the 2-norm) centered
at ¢ of C* is embedded as N1 C N, where s = m(m — 1)/2. We consider
the restricted range:

Wi(X) = {trnXn Y*:n € N }.

When m = 2,3,4 we prove that Wi (X) is a convex set. When m > 4
convexity of Wi (X) is unknown.

2. The shape of Wy (X)

Theorem 1. Let X,Y € n. When m = 2, Wy (X) = {trnXn~'Y* :n €
N1} is a singleton set {zgy} if

x=(03) v=(0 1)
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When m > 2, Wy (X) is either a point or the whole complex plane C.
If Wy (X) is a point, then the point is >y <; <, TiDie. More precisely,
Wy (X) = C if and only if one of the following is true.

(i) xjxYie # 0 for some 4, j, k and ¢ such that

(a) 1<i<j<k<{f<m,or
(b) 1<i=j<k<f{—1<m-—1,or
(c)2<i+l<j<k={<m.

(ii) z;rge =0forall 1 <i< j <k <{<m,but there exist 4, ¢ such that

i <l—1, 20 1Y # 0 and x; 0 1Yi¢ # TptYo—1, for all £ <t <m, or
Tip1,0¥ie 7 0 and ;41 ¢Yie 7# Teilriv1 for all 1 <t <.

Proof.  The case m = 2 is trivial. Suppose m > 2. Let n = (n;;) € N.
Clearly M := n~! is upper triangular. Because of the upper triangular
form of n, X, Y, M, we have

trnXnlY* = Z nij$jk:Mk£gi£'
1<i<j<k<t<m

Notice that the (k,¢) entry of M is

1 if k=1,
0 ifk>1
Mhk+1  Mkk+2  Mkk43 00 Mkl—1 T
M — 1 Nh+1k+2  Tht+1,k+3 *°° Mkt11-1 Th+1]
(=1)"" det Nkt2k43 ©° Mh42]-1 Nki2l
0 0 0 1 np—1,1
if k<l

Notice that My is a polynomial in the variables ng, k < s <t < /.
Moreover the exponent of each ng in the expression (2.1) of My, is either
0 or 1.

Evidently trnXn~'Y* is a polynomial of nij, 1 <4 < j < m. Since ny;
does not appear in the polynomial My, for i < j < k < £, the exponent of
any n;; (1 < j) in tr nXn~1Y* is either 0 or 1. We use ny, ..., n, to denote
those n;; (i < j) which appear in the polynomial trnXn=1Y*. Let

fo(ni,na, ...,n,) == trnXn Y™
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1. If fo is a constant polynomial. Then {trnXn~Y* :n € N} is a
point.

2. Otherwise, we can rewrite fy as

f()(nl, ...,nr) = nlfl(ng, ...,nT) + fg(ng, ...,nr),

where fi is either a nonconstant polynomial in ns, ns..., n, or a nonzero
constant number c. In either case we can choose complex numbers
€2, ...y ¢ for ng, ...,m, such that fi(c,...,c;) # 0. By the fundamen-
tal theorem of algebra {fo(ni,c2,....,c;) : ny € C} = C. Hence
Wy (X)=C.

So Wy (X) is either a point or C.

We are going to show that Wy (X) = C if either (i) or (ii) holds. Sup-
pose (i)(a) is true, that is, there exists xjk,Uioe, 7 0 for some 1 < ip <
jo < ko < £y < m. Define

n(s) = (nzj) =Im+ SEio,jo + SEk:o,EO eEN, se€ C,

and FEj; is the matrix with 1 as the (4,7) entry and zeros elsewhere. So
M :=n(s)"t = I, — sE;y j, — $Eky.0,- Then

0,J0

f(s) :==trn(s)Xn(s)"ly* = Z nij &k M Yie
1<i<j<k<t<m

is a quadratic polynomial in s, and the leading term of f(s) is 7 jo @ jo ko Moo Uigto =
—joko Yiolo $2. Therefore

C={f(s):seC}CcWy(X)cCC.
We now insert a lemma.

Lemma 2. Suppose (i)(a) is not true.

1. If there exist 1 < i9 < ko < ¢p < m such that x; r,Yipe, 7 0, then
TikoYit, = 0 for all ¢ # .

2. If there exist 1 < ig < jo < fop < m such that xj s Yipe, 7 0, then
Tjorlioe = 0 for all £ # L.
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Proof. (1) If there exists i1 # ig such that 1 < iy < ko and @, k,¥i, ¢, 7 O,
then we have the following two cases.

(a) if 49 < 71, then i1 ko Yiolo = 0 with 1 <1y < i1 < ko < 4o,
(b) if ig > i1, then TiokoUireo 7 0 with 1 <4y <ig < kg < {p.

Both are under case (i)(a). The proof of (2) is analogous. O

Suppose (i)(b) is true. Let ig, jo, ko and ¢y be such that 1 <ig = jp <
ko <l —1<m—1and Tk Tipty = TiokoVioto 7 0. Let n(s) := (ny) € N
be defined as follows:

(2.1) ngg1=s, k=ko,...,00—1, mny =0 for all other i < j.

Set
g(s) :==trn(s)Xn(s)"lY* = Z ik Mpeie,
1<i<j<h<t<m

where M :=n(s)~! and

(—1)FF =k i kg < k<o,
My =4 1iftk =1,
0 for all other &, 1.

Notice that deg g(s) = lo — ko. Only My,r, = (—1)Z0+k08€0_k0 of M has
the highest degree. Moreover n;; in nijxjkosef)*kofl?j@go,l = N5 T ko Mg 00— 1Yi 001
(i <j <ko<lo—1)0r niwjry+15° 0 i = 1452 ke 11 Mio+1.00 Uit
(1 <j <ko+ 1<) cannot be s, by (2.1). So the leading term of g(s) is

— lo—Fk ko+4 — lo—k
> ”ijxjko.%/zo} g0k — (—p)kotfol %" xikoyifo] s707R.
1<i<j<ko 1<i<kg

(_1)/€0+40

(2.2)
If (i)(a) is not true, then by Lemma 2(1), (2.2) becomes

(_1)k0+é0$10k0giofosg()iko‘
Therefore {g(s) : s € C} = C and hence Wy (X) = C.

If (i)(c) is true, then there exist 2 < ip+ 1 < jo < ¢o < m such that
TjotoTiots 7 0. Let n(s) := (niy;) = Lm + sEiy ;5 € N, s € C. Then
M := n(s)™t = I, — sE;, j,- We may assume that (i)(a) is not true.
Then x;y,ioe = 0 for all £ # £y by Lemma 2(2). Thus the only possible
nonconstant term in the polynomial

h(s) :=trn(s)Xn(s)'Y* = > 1§ %k MyeGie
1<i<j<kh<t<m
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is

Z Nigjo Ljot MeeYipe+ Z Niiiig MiojoYijo = TjotoYioloS— Z TiigYijoS-
Jjo<t<m 1<i<ig 1<i<g
Since 9 + 1 < jo, if there exists 4,75, # 0 for some ¢ < 7, then this
becomes case (i)(b) and Wy (X) = C. Otherwise z;;,%j, = 0 for all 1 <
i < g, then the leading term of h(s) is @y, Uioe, 5 With nonzero coefficient.
Therefore {h(s) : s € C} = C and hence Wy (X) = C.

Suppose condition (ii) holds. Then there exist 1 <ip <l —1<m—1
such that (1) iy r0—1Yigte 7 0 and xiq ¢o—1Tigty 7 TeotYeo—1,¢ for all t > Lo,
or (2) Tig41.60Tiote 7 0 and g1 0, Yigto 7 TtioYt,io+1 for all 1 <t < ip. We
may assume that condition (i) does not hold.

(1) Define n(s) := (nij) = Im +sEy—-14, € N, s € C. So M := n(s)~! =
Iy, — sEyy—1,4,. Let

-1 _
u(s) :=trn(s)Xn(s)""Y* = Z il MpeGie-
1<i<j<k<t<m
Then
w(s) = > na@ige1Mu—100it T Y To—1.00TeotMeelo—1,0
1<i<lo—1 lo<t<m
+ Y nameMudi
1<i<l<m
= —Tigbo—1YiglyS Z TeotYeo—1,S + Z TieYie-
Lo<t<m 1<i<t<m

The last equality is due to Lemma 2(1) which implies x; ¢,—17i¢, = 0
for all i # ig. Therefore, if x47g,—1, = 0 for all ¢t > £y, then

u(8) = —Tig 00—-1igtoS + Z TitYie-
1<i<t<m

Otherwise by Lemma 2(2) there is only one ¢, say tg, such that
TootYeo—1,6 7 0. Hence

U(S) = (l‘gotogfo—l,to - l‘io,fo—lgio@o)s + Z J:ifgifa
1<i<l<m

where i ¢o—1Tioty 7 TeotoUto—1,t0 Py (ii). In both cases, the polyno-
mial u(s) is linear. Thus Wy (X) = C.
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(2) If there exist @jy410,Pigr, 7 0 With 1 < ip < lp—1 < m — 1 and
Tig+100Yioty 7= TtioYtio+1 for all 1 <t < 4.
Define n(s) := (nij) = Im + sEiio+1 € N, s € C. Then M :=
n(s)™! = L, — sEi jo+1. Let

v(s) := trn(s)Xn(s) 1Y,

By Lemma 2(2), 2;,+1,¥i,¢ = 0 for all £ # £y. Thus

v(s)

= Digt1<t<m Mio,io+1Tig+1,6MeeTigt + 21 <icin Mii%iig Mig io+1Tiig+1
+ 21 <i<t<m TieMuYie
= Tig+1,00YioloS — D2o1<t<io LtioUtio+15 + 2o1<i<i<m Titit-

Therefore, if x4, ¥t ig+1 = 0 for all t < ¢, then

0(8) = Tig+1,60iolo S + Z TieYie-
1<i<l<m

Otherwise by Lemma 2(1), there is only one ¢, denoted by tg, such
that x4i,Yt,io+1 # 0. Hence

v(8) = (Tig+1,60Tioto — TtoioUte,io+1)S + Z ZieYie,
1<i<t<m

where o110, Yigto 7 TtoioUto,io+1 Dy (ii). In both cases, the polyno-
mial v(s) is linear. Therefore Wy (X) = C.

So either (i) or (ii) implies Wy (X) = C.
Suppose (i) and(ii) are not true. Then the only nonzero terms among

ZTikYie, 1 <
0 for some

i <j<k<Ll<m,are (1) z; 17 With T 0 1Yie = Talr—1,¢ 7#
t > ¢, and (2) xiq1,0i¢ With i1 0Yie = 4iGeip1 # 0 for some

t < 4. Indeed for each case t is unique by Lemma 2. Thus

trnXn 1Y*
= > nij @ik Mpeie
1<i<j<k<t<m
= > niiTie—1Mo—10Yie + > N4i41%i+1,6MeeTie
1<i<l—1<m—1 1<i<f—1<m—1
+ Z N e Morie (since (i) does not hold)

1<i<l<m
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= Z —Ng—1,0Ti—-1Yie + Z i i+ 1Ti41,Yie
1<i<l—1<m—1 1<i<f—1<m—1
+ Z Tieie (since My_10= —ng—1,)
1<i<t<m
= > [—no—1,0Ti0—1Ti0 + Mo—1,0TerTo—1,4])
1<i<t—1<t—1<m—1
+ Z TieYie (since (ii) does not hold)
1<i<t<m
= Z Titlie-
1<i<l<m

Therefore Wy (X) = {321 <;<o<im TitTie}-
O

3. Convexity of Wy (X)
Given ¢;; € C, 1 <i<j<m,r>0,let

Ny :={n:=(n;) € N: Z [nij — cigl® =r*} C N.

1<i<j<m

85

In other words, NV; is the embedding in N of the ball in C* (s = m(m —
1)/2) of radius r centered at ¢ = (c12, ..., Cln, €23y« -+, Cony -« -y cn_lﬂ)T. We

define the range:
Wi(X) == {trnXn"'Y*:n € N1} € Wy(X).

Theorem 1. 1. When m = 2, Wi-(X) is the singleton set {xy} if

=(05) = (04)

2. When m = 3, for any r > 0, ¢1 := c12,¢2 := c13,¢3 := o3 € C, 1 <
i < j <m, Wi(X) is the circular disc in C centered at S5, z;7; +

x3y2c1 — wr1Y2cs with radius r|ys|v/|z1]2 + |z3]?, if

0 Tr1 X2 0 Y1 Y2
X=10 0 z3 |, Y=[0 0 y3 | €En
0 0 O 0 0 O
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Proof. The first statement is trivial. When m = 3, let

1 ni no 3
n=1] 0 1 n3 | €N, such that Z|ni —¢j 2,2
0 0 1 j=1

By direct computation

3
trnXn lY* = Z x;Y; + T3Yan1 — T1Y2n3
i=1
3
= Z T;Y; + T3Y2c1 — T1Y2c3 + T3Y2(n1 — c1) — 2172(n3 — c3).
i=1

The locus of z3g2(n1 — ¢1) — x172(ng — c3), as n runs through Ny, is

L = {r(|z372|e® cos 0 + |x172]e®2sind) : 0,&1,& € [0, 7]}

It is the circular disc centered at the origin with radius r+/|z372|% + |[r172]2.
O

To establish the 4 x 4 case, we need the following result of Gutiérrez
and Medrano [6] which generalizes the Toeplitz-Hausdorft’s theorem.

Theorem 2. [6] Let A € Cpxm with m > 2. Given «,3,¢ € C™, and
r > 0. The set

(FAz+ a2+ 2"B:2€C™, (2 —¢)*(z — ¢) =}
is a compact convex set in C.

Theorem 3. When m =4, forany r > 0,¢;; € C, 1 <i<j<m, Wi (X)
is a compact convex subset of C. In general it is not necessary a circular
disk.

Proof. Let
1 ny ng ng
. 0 1 ng nNs
n = 0 0 1 ng € Nl.
0 0 0 1
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Let
0 1 x9 x3 0 v1 y2 u3
0 0 x4 x5 0 0 wya uys
X = =
00 0 a6 | Y=o 0 0 g |™
0 0 0 O 0 0 0 O
By direct computation
I —n1 ning —ng —ningne + nins + nane — n3
n,1 _ 0 1 —MNy ngane — Ny
0 0 1 —MNg
0 0 1
Hence
nXn—1
0 21 22+ x4m1 —X1N4 X3 — T4NING + T1MyNg + TsN1 + TgNa — TIN5 — TaNg
0 O T4 T + TeNga — TaNg
0 0 0 T
0 0 0 0
Then
6
trnXn~'Y* = @i — wagjzning + x1ysnans + (T4l + T5y3)n1 + w6ijzne
i=1
(3.1) +(26Ys5 — T1Y2)n4 — 117305 — (T2Y3 + TaY5)N6-
Set
z 1= (n1,n2,n3, N4, M5, 6)"
Set A := (ai;), where a1 = —4¥3, as6 = 173, and a;; = 0 otherwise.
Set
Q= (07 07 07 07 07 —(l'ggg + 1174335))*7
and

B := (2492 + 7573, T6Y3, 0, T6¥s5 — T172, —7173,0)" .
Note that trnXn~ 1Y* = 2* Az 4+ o*z + 2*3. Now

W%(X) ={z"Az+ a2+ 2"z € C, (z—0)*(z—c)= 7«2}.

By Theorem 2, it is convex.
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Choose 4 x 4 strictly upper triangular matrices X,Y such that x1 =
x6 =0 and —x473 = 2492 + 5y3 = — (2273 + x47Y5) = 1. Set ¢ = 0. So

6
Wy (X) =Y @@ + S,
=1

where S = {& + &+ && : &,& € C, |6]2 + |&]? < 1}. The set S is
symmetric about the z-axis. By direct computation SN R = [-1,v2+ 3].
The set S is not a circular disk by considering the point v/2i — % € S given

by & =& =i/V2. O
If one replaces the expression in Theorem 2 by the form 27 Az + a2z +
2T B (clearly (3.1) is of this form), we may not have a convex set.

Example 4. Let f(u) =u?+2u+1,uec C. If
A =diag(1,0,...,0) € Cruxm, «@=(2,0,...,00F,8=1(0,...,007 e C™,

the set W= {zTAz +alz2+218+1:2€ C™ 22 =1} = {f(u) 1 u €
C, u*u = 1} is not convex.

Proof. Let u = (cosf+isinf), and —m < § < 7. Then the elements of
W are of the form

f(u) = cos20 4+ 2cosf + 1 + i(sin 260 + 2sin6).

Clearly W is symmetric about the z-axis. By choosing § = —27/3 and
27 /3 respectively, we have P = —1/2 +iy/3/2, Py = —1/2 —i\/3/2 € W.
The midpoint —1/2 of P; and P» is not contained in W. Therefore W is
not convex. O
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