
BOUNDEDNESS AND UNIFORM
CONVERGENCE IN B-DUALS

CHARLES SWARTZ
NEW MEXICO STATE UNIVERSITY, U.S.A.

Received : November 2009. Accepted : December 2010

Proyecciones Journal of Mathematics
Vol. 29, No 1, pp. 75-82, May 2010.
Universidad Católica del Norte
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Abstract

Suppose E is a vector valued sequence space with operator valued
β-dual EβY . If the space E satisfies certain gliding hump conditions,
we consider the connection between pointwise bounded subsets A of
EβY and the uniform convergence of the elements of A. For linear
operators our results contain results of Li, Wang and Zhong for the
spaces c0(X) and l

p(X).
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In this paper we consider the connection between boundedness and
uniform convergence for subsets in the β-dual of a vector valued sequence
space. In particular, we consider pointwise bounded subsets in β-duals and
uniform convergence of the pointwise bounded subsets over subsets of the
sequence space. Our results hold for vector valued sequence spaces which
satisfy certain gliding hump properties and contain results of Li, Wang
and Zhong ([LWZ]) for linear operators and the sequence spaces c0(X) and
lp(X) as special cases.

We begin by fixing the notation and terminology. LetX,Y be Hausdorff
topological vector spaces and let E be a vector space of X valued sequences
containing the space c00(X) of all X valued sequences which are eventually
0. The β-dual of E with respect to Y , EβY , is defined to be

EβY = {{Tj} ⊂ L(X,Y ) :
∞X
j=1

Tjxj converges for every x = {xj} ∈ E},

where L(X,Y ) is the space of continuous linear operators from X into Y.
If T = {Tj} ∈ EβY and x = {xj} ∈ E, we write T · x =P∞

j=1 Tjxj .
We now describe 2 gliding hump properties which will be used in the

sequel. An interval in N is a set of the form [m,n] = {j ∈ N : m ≤ j ≤ n},
where m ≤ n, and a sequence of intervals, {Ij}, is increasing if max Ij <
min Ij+1. If I ⊂ N, χI will denote the characteristic function of I and
if x = {xj} is any scalar or vector valued sequence, χIx will denote the
coordinatewise product of χI and x.

Throughout let F be a family of subsets of E.

Definition 1. The spaceE has the signed F gliding hump property (signed
F-GHP) if for every F ∈ F whenever {xj} ⊂ F and {Ij} is an increasing
sequence of intervals, there exist a sequence of signs {sj} and a subsequence
{nj} such that the coordinate sum of the series

P∞
j=1 sjχInjx

nj belongs to
E. If all signs sj can be chosen equal to 1, then E has the F gliding hump
property (F-GHP).

Examples of spaces and families with signed F-GHP are given in [Sw4].
In particular, if F is the family of finite sets, signed F-GHP is just the
signed weak gliding hump property and if F is the family of bounded subsets
of a K-space E, signed F-GHP is the signed strong gliding hump property.
Further examples are given in [Sw4] and another example is given later.

Definition 2. The space E has the infinite gliding hump property (∞-
GHP) if whenever x ∈ E and {Ij} is an increasing sequence of intervals,
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there exist a subsequence {nj} and anj > 0, anj →∞ such that every sub-
sequence of {nj} has a further subsequence {pj} such that the coordinate
sum of the series

P∞
j=1 apjχIpjx belongs to E.

The∞−GHP was introduced in [Sw2] to treat Orlicz-Pettis Theorems
for multiplier convergent series with respect to the strong topology.

Examples of spaces with ∞-GHP are given in Appendices B and C of
[Sw3]. Another example is given later.

We now state a lemma which will be used. The proof is as in the proof
of Lemma 10 of [Sw4] or Lemma 2.15 of [Sw3].

Lemma 3. Let A ⊂ EβY and B ⊂ F . If the series
P∞

j=1 Tjxj do not
converge uniformly for T ∈ A and x ∈ F , then there exist a balanced
neighborhood of 0,V , in Y , {T k} ⊂ A, {xk} ⊂ F and an increasing sequence
of intervals {Ik} such that

P
l∈Ik T

k
l x

k
l /∈ V .

We now prove our major result. If z ∈ X and j ∈ N , let ej ⊗ z be the
sequence with z in the jth coordinate and 0 in the other coordinates.

Theorem 4. Assume E has∞-GHP and F-GHP. If A ⊂ EβY is pointwise
bounded on E (i.e., {T ·x : T ∈ A} is bounded for each x ∈ E) and F ∈ F ,
then the series

P∞
j=1 Tjxj converge uniformly for T ∈ A and x ∈ F .

Proof: Suppose the conclusion fails and let the notation be as in the
lemma so

(∗)
X
l∈Ik

T k
l x

k
l /∈ V.

By F-GHP, there exist signs {sj} and a subsequence {nj} such that
∞X
j=1

X
l∈Inj

sje
l ⊗ x

nj
l = x ∈ E

. To avoid cumbersome notation later assume that nj = j so

(∗∗)
X
l∈Ij

T j
l xl = sj

X
l∈Ij

T j
l x

j
l /∈ V.

Now apply ∞-GHP to x and let the notation be as in Definition 2. Define
a matrix

M = [
X
l∈Inj

(
1

ani
Tni
l )(anjxl)] = [mij ].



78 Charles Swartz

We now use the Antosik-Mikusinski Matrix Theorem ([Sw4]Appendix D,
[Sw1]2.2.4) to show the diagonal of M converges to 0; this will contradict
(**).

First, the columns of M converge to 0 by the pointwise boundedness of
A and the fact that ani → ∞. Next, given any subsequence of {nj} there
exists a further subsequence such that

∞X
j=1

apjχIpjx =
∞X
j=1

apj
X
l∈Ipj

el ⊗ xl = y ∈ E.

Then
∞X
j=1

mipj =
∞X
j=1

X
l∈Ipj

(
1

ani
Tni
l )(apjxl) = (

1

ani
Tni
l ) · y → 0

by pointwise boundedness. By the Antosik-Mikusinski Matrix Theorem the
diagonal of M goes to 0.

The special case of Theorem 4 for spaces with the signed weak gliding
hump property is given in [Sw3] 2.32.

Example 5. Without the ∞-GHP the conclusion of Theorem 4 may fail.
Let E = l∞ so Eβ = l1. Then {ei : i ∈ N} ⊂ l1 is pointwise bounded on
l∞, but if e is the constant sequence {1} the series Pi e

i · e do not converge
uniformly in i.

We next consider conditions which insure pointwise boundedness in β-
duals. For this we need a preliminary observation.

Proposition 6. If A ⊂ EβY is pointwise bounded on E, then {Tjx :
{Tj} ∈ A} is bounded in Y for every x ∈ X and j ∈N.

Proof: Note ej ⊗ x ∈ E for x ∈ X, j ∈ N and T · ej ⊗ x = Tjx.

We now consider the converse of Theorem 4.

Theorem 7. If A ⊂ EβY is such that {Tjx : {Tj} ∈ A} is bounded in
Y for every x ∈ X and j ∈ N and for every x ∈ E the series

P∞
j=1 Tjxj

converge uniformly for T ∈ A, then A is pointwise bounded on E.
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Proof: Let x ∈ E and U be a neighborhood of 0 in Y . Let V be a
balanced neighborhood of 0 in Y such that V + V ⊂ U . There exists N
such that

P∞
j=n Tjxj ∈ V for n ≥ N , T ∈ A. Let {T k} ⊂ A. We show

lim(T k · x)/k = 0. We have lim 1
k

PN
j=1 T

k
j xj = 0 by hypothesis so there

exists k0 such that
1
k

PN
j=1 T

k
j xj ∈ V for k ≥ k0. Therefore, if k ≥ k0, then

1

k

∞X
j=1

T k
j xj =

1

k

NX
j=1

T k
j xj +

1

k

∞X
j=N+1

T k
j xj ∈ V + V ⊂ U

since V is balanced.

From Theorems 4 and 7, we have a characterization of pointwise bounded
sets in EβY .

Corollary 8. Assume E has ∞-GHP and F-GHP and A ⊂ EβY . The
following are equivalent: (1) A is pointwise bounded on E, (2) {Tjx :
{Tj} ∈ A} is bounded in Y for every x ∈ X and j ∈N and for every x ∈ E
the series

P∞
j=1 Tjxj converge uniformly for T ∈ A, (3) {Tjx : {Tj} ∈ A} is

bounded in Y for every x ∈ X and j ∈ N and for every x ∈ E, F ∈ F the
series

P∞
j=1 Tjxj converge uniformly for T ∈ A, x ∈ F .

From the proof of Theorem 7 we also have a sufficient condition for
uniform boundedness in EβY . If B ⊂ E and j ∈ N, we write Bj = {xj :
x = {xj} ∈ B}.

Theorem 9. If A ⊂ EβY , B ⊂ E are such that {Tjx : {Tj} ∈ A, x ∈ Bj} is
bounded in Y for every j ∈ N and the series

P∞
j=1 Tjxj converge uniformly

for T ∈ A, x ∈ B, then A is uniformly bounded on B.

From Theorems 4 and 9 we have a uniform boundedness principle.

Corollary 10. Assume E has ∞-GHP and F-GHP and A ⊂ EβY . The
following are equivalent: (i) A is uniformly bounded on each F ∈ F , (ii)
for each F ∈ F , {Tjx : {Tj} ∈ A, x ∈ Fj} is bounded in Y for every j ∈ N
and the series

P∞
j=1 Tjxj converge uniformly for T ∈ A, x ∈ F .

A similar uniform boundedness principle for spaces satisfying different
gliding hump assumptions has been established in Corollary 21 of [SS].

We now give examples of spaces and families to which the results above
apply. We first consider the family of subsets of a sequence space E with
uniform tails. A sequence space E is a K-space if E has a vector topology
such that the coordinate maps x = {xj}→ xj for E into X are continuous
for each j ∈ N.



80 Charles Swartz

Definition 11. If E is a K-space, a subset F ⊂ E has uniform tails if
whenever {xk} ⊂ F , then there exists {nk} such that limN→∞

P∞
j=N ej ⊗

xnkj = 0 uniformly for k ∈ N, where P∞
j=N ej ⊗ xnkj is the coordinatewise

sum of the series.

Sets with uniform tails were introduced in [Sw4]. It was shown in The-
orem 12 of [Sw4] that in some sense the family of subsets with uniform
tails is optimal for the uniform convergence of a series in a β-dual. It was
shown in [Sw4], Theorem 6, that if E is a complete, quasi-normed K-space,
then the family of subsets F with uniform tails has the F-GHP. It was also
shown in [Sw4], Theorem 7, that if E is a quasi-normed AK-space with a
monotone basis, then the family of precompact subsets of E has uniform
tails. Sets with uniform tails for the special spaces c0(X) and lp(X) were
considered in [LWZ] where uniform convergence in the β-duals of these
spaces is considered.

In order to compare our results to those of [ZLY] where the space c0(X)
is considered, we first consider the family of subsets of c0(X) with uniform
tails. Here c0(X) is the space of all X valued sequences which converge to
0. We describe the topology of c0(X). Let X be the family of all continuous
quasi-norms which generate the topology of X ( the topology of any topo-
logical vector space is always generated by a family of quasi-norms [BM] )
and if p ∈ X , set p(x) = supi p(xi) for x = {xi} ∈ c0(X). Then the family
of quasi-norms {p : p ∈ X} generate the topology of c0(X) under which
c0(X) is a K-space ( actually an AK-space ([Sw3], AppendixC )).

Proposition 12. If F is the family of all subsets of c0(X) with uniform
tails, then c0(X) has F-GHP.

Proof: Let F ⊂ c0(X) have uniform tails, {xj} ⊂ F and {Ij} be an
increasing sequence of intervals. We claim x =

P∞
j=1 χIjx

j ∈ c0(X). Let

p ∈ X and > 0. There exists N such that n ≥ N implies p(
P∞

l=n e
l⊗xjl ) <

for all j. Therefore, p(xjl ) < for j ∈ N, l ≥ N . If min Ij > N , p(xjl ) <
for l ∈ Ij so x ∈ c0(X).

Next, to compare our results with those in [ZLW] for linear operators, we
consider the∞-GHP for c0(X).Recall a spaceX is braked ([Kh]) if for every
{xj} ∈ c0(X) there is a scalar sequence {tj} ∈ c0 and a sequence {zj} ∈
c0(X) such that {xj} = {tjzj} (in the terminology of [Sw3], Appendix B.37,
we would say that c0(X) is c0 factorable).

Proposition 13. If X is braked, then c0(X) has ∞-GHP.
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Proof: Let x ∈ c0(X), x = tz with t ∈ c0 and z ∈ c0(X). Let {Ij} be an
increasing sequence of intervals. Set bj = maxi∈Ij |ti|. If bj = 0 for large j,
then

P∞
j=1 jχIjx ∈ c0(X) so we may assume bnj > 0 for some subsequence

nj . Put anj = 1/bnj , vj = tjank for j ∈ Ink and vj = 0 otherwise. Then
|tjank | ≤ 1 if j ∈ Ink so v = {vj} ∈ l∞ and vz ∈ c0(X). Therefore,

∞X
j=1

ej ⊗ (vz)j =
∞X
k=1

X
j∈Ink

ej ⊗ anktjzj =
∞X
k=1

X
j∈Ink

anke
j ⊗ xj ∈ c0(X).

Since the same argument can be applied to any subsequence, the result
follows.

From Corollaries 8 and 10, we then have

Corollary 14. Assume X is braked and A ⊂ c0(X)
βY . The following are

equivalent: (1) A is pointwise bounded on c0(X), (2) {Tjx : T = {Tj} ∈ A}
is bounded for each x ∈ X, j ∈ N and the series

P∞
j=1 Tjxj converge

uniformly for T ∈ A and x = {xj} belonging to any subset with uniform
tails.

Corollary 14 gives Theorem 3.1 of [ZLY] for the case of linear opera-
tors. It should be pointed out that the results of [ZLY] hold for quasi-
homogeneous operators. We have not considered this class of operators.

Corollary 15. Assume X is braked and A ⊂ c0(X)
βY . The following are

equivalent: (i) A is uniformly bounded on sets with uniform tails, (ii) for
each subset F ⊂ c0(X) with uniform tails {Tjx : T = {Tj} ∈ A,x ∈ Fj}
is bounded for j ∈ N and the series

P∞
j=1 Tjxj converge uniformly for

T ∈ A, x ∈ F .

From Theorems 6 and 7 of [Sw4], we also have

Remark 16. Assume E has ∞-GHP. If E is a complete quasi-normed
K-space [resp., E is a complete quasi-normed AK-space with a monotone
basis], then the 3 conditions of Corollary 8 and the 2 conditions of Corollary
10 are equivalent if F is the family of all subsets with uniform tails [resp.,
the family of all precompact subsets].

It should be pointed out that Zhong, Li and Yang in [ZLY] also ad-
dressed the problem of convergent sequences of quasi-homogeneous oper-
ators on c0(X) and their connection to uniform converence of series. For
linear operators on sequence spaces with gliding hump properties these
questions have been considered in chapters 2 and 11 of [Sw3].
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