
Examples of Morse decompositions for
semigroups actions

Carlos J. Braga Barros
Universidade Estadual de Maringá, Brasil
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Abstract

The concepts of Morse decompositions and dynamic Morse decom-
positions are equivalent for flows. In this paper we show that these
concepts are not equivalent for Morse decompositions of semigroup
of homeomorphisms on topological spaces. We give an example of a
dynamic Morse decomposition which is not a Morse decomposition
on compactifications of topological spaces. Other examples of Morse
decompositions are also provided.
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1. Introduction

The main subject of this paper is Morse decomposition for semigroup ac-
tions on topological spaces.

Morse decompositions were introduced by Conley in [5] and [6] to study
the asymptotic behavior of flows on metric spaces. Each component of a
Morse decomposition is called a Morse set. A Morse set for flows have
both attractive and repulsive properties and it was defined by Conley as
intersections of attractors with their complementary repellers. The concept
of Morse decomposition was extended for semiflows on topological spaces
(see e. g. Hirch [8], and Patrão-San Martin [9],[10]). Recently, many ques-
tions on flows or semiflows were solved throughout the theory of semigroup
actions (as references sources we mention [9],[10],[1],[2],[4], [7]and [11]). A
generalization of Morse decomposition for semigroup actions on topological
spaces is presented in [1]. In [3] it is introduced the concept of dynamic
Morse decomposition for semigroups of homeomorphisms (see Definition 2
bellow). Intuitively speaking, a dynamic Morse decomposition is the resi-
dence of limit sets and cycles are not allowed. Conley in [5] had shown that
the concept of Morse decomposition for flows is equivalent to the concept of
dynamic Morse decomposition. In [3] it is shown that a Morse decomposi-
tion for a semigroup of homeomorphisms of a topological space is a dynamic
Morse decomposition. The converse of this result was an open question.
In the present article we give an example (see Example 3.3 bellow) of a
dynamic Morse decomposition which is not a Morse decomposition. The
environment for this example is the one-point compactification of a given
topological space. In the literature, there are few examples of Morse de-
compositions and they are usually presented for flows in the real line. In
this paper we also give examples of Morse decompositions for semigroup of
homeomorphisms on topological spaces which are not flows or semiflows.
The article is organized as follows. In the first section we give the defi-
nitions and results on limit sets and Morse decompositions for semigroup
actions that we use forward. The second and last section is a section of
examples.

2. Morse decompositions

In this section we give the definitions and the main results on Morse decom-
positions for semigroup actions on topological spaces which are treated in
this paper. We refer to [1] and [2] for the theory of Morse decompositions
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for semigroup actions on topological spaces.
We start assuming that X is a topological space and S is a semigroup.

An action of S on X is a mapping µ : S×X → X such that µ (s, µ (t, x)) =
µ (st, x) for all s, t ∈ S and x ∈ X. For each s ∈ S, we define the map
µs : X → X by µs (x) = µ (s, x) for all x ∈ X. Throughout the paper, we
assume that S acts on X as a semigroup of homeomorphisms, i.e., each µs
is a homeomorphism of X.

For subsets Y ⊂ X andA ⊂ S we define the sets AY=
S
s∈A µs (Y )andA

∗Y =S
s∈A µ−1s (Y ) .
Let Y be a subset of X. It is usual to say that

1. Y is forward invariant if SY ⊂ Y ;

2. Y is backward invariant if S∗Y ⊂ Y ;

3. Y isinvariant if it is forward and backward invariant;

4. Y is isolated invariant if it is invariant and there is a neighborhood
V of Y such that, for x ∈ V , Sx ⊂ V and S∗x ⊂ V implies x ∈ Y .

We fix a family F of subsets of S which is a filter basis on the subsets
of S (i.e., /∈ F and given A,B ∈ F there is C ∈ F with C ⊂ A ∩ B).
We also assume that F satisfies the following translation hypothesis:
For all s∈ S and A ∈ F there is B ∈ F with B ⊂ sA ∩As.

The following definition was introduced in [1] Definitions 2.3 and 2.16
and generalizes the definitions of limit sets, attractors and repellers for flows
and semiflows.

1. The ω-limit set of V ⊂ X for the family F is defined as ω (V,F) =T
A∈F cls (AV ) .

2. The ω∗-limit set of V ⊂ X is defined as ω∗ (V,F) = T
A∈F cls (A∗V ) .

3. An F-attractor is a set A ⊂ X which admits a neighborhood V such
that ω (V,F) = A.

4. An F-repeller is a set R ⊂ X which admits a neighborhood U such
that ω∗ (U,F) = R.

5. The complementary repeller of the F-attractor A is the set

A∗ = {x ∈ X : ω (x,F) ∩A = ∅} .
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The next definition (see [2] Definitions 5.1 and 5.2) generalizes the defi-
nitions of Morse decompositions (and finest Morse decomposition) for flows
introduced by Conley in [5] and [6].

Definition 2.1. 1. Let A0 = ∅ ⊂ A1 ⊂ · · · ⊂ An = X be an increasing
sequence of F-attractors. Define Cn−i = Ai+1∩A∗i , for i = 0, ..., n−1.
The collectionM = {C1, ..., Cn} is called an F-Morse decomposi-
tion.

2. Each component Ci is called an F-Morse set.

3. An F-Morse decompositionM = {C1, · · · , Cn} is said to be finer than
a F-Morse decompositionM0 = {C01, · · · , C0m} if for each F-Morse set
C0j there exists an F-Morse set Ci with Ci ⊂ C0j .

4. An F-Morse decomposition is called the finest F-Morse decomposi-
tion if it is finer than all F-Morse decompositions.

Now we include the main properties of F-Morse decompositions which
are going to be used in this paper.

Proposition 2.1. Assume that X is a compact topological space. An F-
Morse decompositionM = {C1, ..., Cn} has the following properties:

1. The components Ci are nonempty, pairwise disjoint, isolated invariant
and compact sets.

2. C1 is an F-repeller and Cn is an F-attractor.

3. For x ∈ X, one has ω∗ (x,F) ⊂ Ci and ω (x,F) ⊂ Cj for some i, j ∈
{1, ..., n}. In particular, ω∗ (x,F) , ω (x,F) ⊂ i = 1n

SCi for all x ∈ X.

4. (No-cycle condition). Suppose there are Cj0 , Cj1 , ..., Cjl and x1, ..., xl ∈
X \ i = 1nSCi with ω∗ (xk,F) ⊂ Cjk−1 and ω (xk,F) ⊂ Cjk , for k =
1, ..., l; then Cj0 6= Cjl .

See [2] Proposition 5.2 and [3] Theorem 1.
Now, we recall the definition of dynamic F-Morse decomposition (see

[3] Definition 6).

Assume that X is a compact topological space. A dynamic F-Morse
decomposition is a collection M = {C1, ..., Cn} of nonempty, pairwise
disjoint, isolated invariant and compact sets such that:
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1. For all x ∈ X, one has ω∗ (x,F) , ω (x,F) ⊂ i = 1n
SCi; and

2. (No-cycle condition) Suppose there are Cj0 , Cj1 , ..., Cjl and x1, ..., xl ∈
X \ i = 1nSCi with ω∗ (xk,F) ⊂ Cjk−1 and ω (xk,F) ⊂ Cjk , for k =
1, ..., l; then Cj0 6= Cjl .

It is known from [3] Theorem 1 that an F-Morse decomposition is a
dynamic F-Morse decomposition. On the other hand, a dynamic F-Morse
decomposition may not satisfy the properties 2 and 3 in Proposition 2.1.
Later, in this paper we give an example of a dynamic F-Morse decomposi-
tion which is not a F-Morse decomposition.

Finally, we discuss F-limit sets on one-point compactifications of topo-
logical spaces. Suppose that X is a locally compact, noncompact Hausdorff
space, and let Y = X ∪ {∞} be the one-point compactification of X. We
recall that the basic open neighborhoods of ∞ are the sets of the form
{∞}∪ (X \K), where K is a compact set in X. It is well known that open
sets in X are also open in Y . We observe that, for a subset N ⊂ X, one
has clsY (N) ∩X = clsX (N).

Let µ : S × X → X be an action of the semigroup S on X. This
action can be extended to Y , as follows. For each s ∈ S, we define the map
µ̄s : Y → Y as

µ̄s (y) =

(
µs (y) , for y ∈ X
∞, for y =∞ .(2.1)

The map µ̄s is a homeomorphism of Y such that its restriction to X
coincides with µs.

The F-limit sets on the compactification Y of a subset V is denoted by
ω̄ (V,F) and ω̄∗ (V,F). For a subset V in the topological space X, we have
ω̄ (V,F) ∩X =

T
A∈F clsY (AV ) ∩X =

T
A∈F clsX (AV ) = ω (V,F) .

Analogously, ω̄∗ (V,F) ∩X = ω∗ (V,F) .

3. Examples

In this section we give some examples of F-Morse decompositions for semi-
group of homeomorphisms of topological spaces.

We start with an elementary non trivial example.

Example 3.1. Consider the set X = {1, 2, 3, 4, 5} with the topology

T = {, {5} , {1, 2} , {3, 4} , {1, 2, 5} , {3, 4, 5} , {1, 2, 3, 4} ,X} .
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Take the one-to-one function φ : X → X defined by φ(1) = 2, φ(2) =
1, φ(3) = 4, φ(4) = 3, φ(5) = 5.

It is easy to verify that φ is continuous and φ2 = idX . Consider the
transformation group S = {idX , φ}. As usual S acts onX by µ(γ, x) = γ(x)
for γ ∈ S. Fix the family F = {S} to compute the F-Morse decomposition.
It is immediate that the family F is a filter basis on the subsets of S and
satisfies the translation hypothesis. We also have

ω ({5} ,F) = cls (S{5}) = {5} and ω ({1, 2, 5} ,F) = cls (S {1, 2, 5}) =
{1, 2, 5} .

Hence, {5} and {1, 2, 5} are F-attractors. The F-Morse decomposition
associated to the increasing sequence ⊂ {5} ⊂ {1, 2, 5} ⊂ Xis the ordered
collectionM = {{5} , {1, 2} , {3, 4}}.

Now, we give an example of a F-Morse decomposition where the topo-
logical space X is the one-point compactification of the real line. It is
interesting that in this example the action is not defined by a flow.

Example 3.2. Let S = R+∗ be the multiplicative group of positive real
numbers, an take the action µ : S×R→ R of S on R where µ (s, x) = sx is
the product of s and x. Note that each map µs is a homeomorphism of R.
We observe that zero is a fixed point and the open intervals (−∞, 0) and
(0,+∞) are invariant subsets for the action of S. We will give an example
of F-Morse decomposition for the family F = {(a,+∞) ⊂ S : a > 0}. Let
X = R ∪ {∞} be the one-point compactification of R. The picture below
illustrates the trajectories of this action.

We observe that {∞} is an F-attractor and {0} is its complementary re-
peller. Thus,M = {{0} , {∞}} is an F-Morse decomposition associated to
the increasing sequence of F-attractors {} ⊂ {∞} ⊂ X.

Marisol M
fig1
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In the following, we give an example of a dynamic F-Morse decompo-
sition which is not an F-Morse decomposition.

Example 3.3. Let S = R+∗ be the multiplicative group of positive real
numbers, an take the action µ1 : S × [0,+∞) → [0,+∞) of S on the
interval [0,+∞) where µ1 (s, x) = sx is the product of s and x. Note that
each map (µ1)s is a homeomorphism of [0,+∞). We observe that zero
is a fixed point and the open interval (0,+∞) is an invariant subset for
this action. Now, we can take the restriction µ : S × (0,+∞) → (0,+∞).
We fix the family F = {(a,+∞) ⊂ S : a > 0}. It is not difficult to show
that F is a filter basis on the subsets of S and satisfies the translation
hypothesis. Take the one-point compactifications X1 = (0,+∞) ∪ {∞1}
and X2 = [0,+∞) ∪ {∞2} of (0,+∞) and [0,+∞), respectively. Take the
product action ϕ : S ×X1 ×X2 → X1 ×X2 of S on X1 ×X2 defined by

ϕ (s, x1, x2) = (µ̄s (x1) , µ̄s (x2)) , s ∈ S, (x1, x2) ∈ X1 ×X2,where µ̄s
is the extension as in the equation 2.1 at the end of the first section. Since
the map ϕs is a homeomorphism on each coordinate it is a homeomorphism
of X1 ×X2. Now, we consider the subspace X of X1 ×X2 defined by

X=X1 ×X2 \ ((0,+∞)× {∞2}) .
Note thatX is a locally compact, noncompact Hausdorff space. SinceX

is an invariant subset ofX1×X2 we have that S acts on X as a restriction of
the mapping ϕ above. Let Y = X ∪{∞} be the one-point compactification
of X and ϕ̄ : S × Y → Y the action of S extended to Y as in the equation
2.1. Note that this action admits three fixed points: (∞1, 0), (∞1,∞2), and
∞. We denote the sets C1 = X1 × {0}, C2 = {(∞1,∞2)}, and C3 = {∞3}.
We claim that M = {C1, C2, C3} is a dynamic F-Morse decomposition in
Y . Indeed, it is immediate that M is a collection of nonempty, pairwise
disjoint, invariant and compact sets. Take the neighborhood X1 × [0, 1) of
C1. For (x1, x2) ∈ X1 × [0, 1) \ C1, we have S (x1, x2) = X1 × [0,+∞)X1 ×
[0, 1). Hence, C1 is an isolated invariant set. Take the neighborhood V =
((0, 1) ∪ (1,+∞) ∪ {∞1}) × (1,+∞) ∪ {(∞1,∞2)} of C2. For (x1, x2) ∈
V \C2, we have S (x1, x2) = Sx1×(0,+∞)V . Hence, C2 is isolated invariant.
Now, take the neighborhood Y \ K of C3, where K is the compact set
(X1 × [0, 1]) ∪ {(∞1,∞2)} in X. For (x1, x2) ∈ (Y \K) \ C3 = X \K, we
have S (x1, x2) = Sx1 × (0,+∞) (Y \K). Thus, C3 is an isolated invariant
set. It remains to show the items 1 and 2 of Definition 2. Let x = (x1, x2) ∈
Y \ i = 13SCi. It is enough to show that ω̄ (x,F) = {(∞1,∞2) ,∞3} and
ω̄∗ (x,F) = {(∞1, 0)}
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ω̄ (x,F) =
\
a>0

clsY ((a,+∞)x) =
\
a>0

clsY ((ax1,+∞)× (ax2,+∞))

=
\
a>0

([ax1,+∞) ∪ {∞1})× ([ax2,+∞)) ∪ {(∞1,∞2) ,∞3}

= {(∞1,∞2) ,∞3} ,

and

ω̄∗ (x,F) =
\
a>0

clsY ((a,+∞)∗ x) =
\
a>0

clsY ((0, 1/a)x)

=
\
a>0

clsY ((0, x1/a)× (0, x2/a))

=
\
a>0

((0, x1/a] ∪ {∞1})× [0, x2/a]

= {(∞1, 0)} .

The picture bellow illustrates the trajectories, the limit sets, and the
dynamic F-Morse decompositionM.
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Now, we claim thatM is not an F-Morse decomposition. From Proposi-
tion 2.1, it is enough to show that C2 and C3 are neither F-attractors nor F-
repellers. Indeed, take the open neighborhood V = ((0, b) ∪ (c,+∞) ∪ {∞1})×
(d,+∞) ∪ {(∞1,∞2)} of C2, where b < c.

We have

ω̄ (V,F) =
\
a>0

clsY ((a,+∞)V ) =
\
a>0

clsY (X1 × (ad,+∞) ∪ {(∞1,∞2)})

=
\
a>0

X1 × [ad,+∞) ∪ {(∞1,∞2) ,∞3}

= {(∞1,∞2) ,∞3} ,

and ω̄∗ (V,F) = T
a>0 clsY ((0, 1/a)V ) = clsY (X1 × (0,+∞) ∪ {(∞1,∞2)}) =

Y.Hence, C2 is neither an F-attractor nor an F-repeller. Take an open
neighborhood U = X1 × (b,+∞) ∪ {∞3} of C3.

We have

ω̄ (U,F) =
\
a>0

clsY (X1 × (ab,+∞) ∪ {∞3})

=
\
a>0

X1 × [ab,+∞) ∪ {(∞1,∞2) ,∞3}

= {(∞1,∞2) ,∞3} ,

and ω̄∗ (U,F) = T
a>0 clsY (X1 × (0,+∞) ∪ {∞3}) = Y.Hence, C2 is nei-

ther an F-attractor nor an F-repeller.
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