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Abstract

The focal point of this paper is to ascertain the precise value of edge
irregularity strength of various finite, simple, undirected and captivat-
ing graphs, including the splitting graph, shadow graph, jewel graph,
jellyfish graph and m copies of 4-pan graph.
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1. Introduction

In recent years, the interest in graph labeling has grown significantly due to
its relevance in solving practical problems across different disciplines. An
intriguing and well-researched topic of graph theory, graph labeling has ap-
plications in a variety of fields, including computer science, mathematics,
social networks and more. Now a days, graph labeling has found exten-
sive applications across diverse domains of life. For instance, it plays a
crucial role in DNA sequence analysis by facilitating the exploration of ge-
netic information and relationships. Additionally, it is employed in image
and video processing to accomplish tasks such as object detection, tracking
and scene analysis. Consequently, researchers and practitioners can acquire
valuable insights into the structural and combinatorial attributes of graphs,
resulting in a more profound comprehension of intricate relationships and
patterns present within real-world systems. The study of graph labeling
revolves around assigning the non-negative integers to the vertex set Λ(Υ)
, edge set Γ(Υ), or other elements of a graph Υ in such a way that certain
predefined properties or constraints are satisfied. When we assign labels to
vertices or edges, it falls into two categories: vertex labeling or edge label-
ing. If both vertices and edges are labeled simultaneously, it is referred to
total labeling.

The most recent Gallian survey [15] indicates a substantial amount of
work has been dedicated to the field of graph labeling. Edge labeling for a
graph Υ was first developed in 1988 by Chartrand et al. [13]. We call this
labeling as irregular assignments because all vertices have distinct weights.
Irregularity strength, s(Υ), is a minimum positive integer used to form ir-
regular labeling. Similar insights into the irregularity strength of graphs are
shown in the works [2], [10], [14], [20] and [21]. Vertex irregular mapping
or edge mapping Ψ : Γ(Υ) −→ {1, 2, 3, ..., s} refers to a mapping of edges
where each vertex is assigned a unique weight. The calculation of a vertex’s
weight involves applying the equation wtΨ(c) = ΣΨ(cd), ∀c, d ∈ Λ(Υ) and
cd ∈ Γ(Υ).

In 2007, Baca et al. [12] introduced two new labelings: edge irregu-
lar total labeling and vertex irregular total labeling, as a result of Char-
trand’s research. Edge irregular total labeling for a graph Υ is a map-
ping Ψ : Γ(Υ) ∪ Λ(Υ) −→ {1, 2, 3, ..., s} in such a way that the total
edge weights assessed by wtΨ(cd) = Ψ(c) + Ψ(d) + Ψ(cd), ∀c, d ∈ Λ(Υ),
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cd ∈ Γ(Υ), are different for all edges. Total edge irregularity strength de-
noted by tes(Υ) is a minimum positive integer used to label edges and
vertices to form edge irregular total labeling. Similarly, vertex irregular
total labeling Ψ : Γ(Υ) ∪ Λ(Υ) −→ {1, 2, 3, ..., s} is a mapping of edges
and vertices of Υ in such a way that the total vertex weights calculated by
wtΨ(c) = Ψ(c) +ΣΨ(cd), ∀c, d ∈ Λ(Υ), cd ∈ Γ(Υ), are different for all ver-
tices. Total vertex irregularity strength denoted by tvs(Υ) is a minimum
positive integer used to label vertices and edges to form vertex irregular
total labeling. Inspired by Baca’s invention, numerous researchers have
deduced results concerning the two aforementioned labelings. In 2009, An-
holcer et al. [7] gave a new upper bound for the total vertex irregularity
strength of graphs which improved all other known upper bounds. In 2012,
Mushayt et al. [9] calculated exact value of total edge irregularity strength
of hexagonal grid graphs. In 2012, Ahmad et al. determined exact value
of total edge irregularity strength of the strong product of two paths Pn
and Pm in their paper [6], while in 2014, they found total edge irregularity
strength of product of two cycles Cn and Cm in their paper [4]. In 2014,
Baca et al. [11] obtained useful results regarding total edge irregularity
strength of generalized prism. Several authors have made contributions to
the exploration of total edge irregularity strength and total vertex irregu-
larity strength in their papers [7], [16], [18], [19], [22], [23], [24], [25] and [26].

Edge irregularity and vertex irregularity were both new labels developed
by Marzuki based on the previously improved motivation in [12], which were
categorized as total labels with complete irregularity. Total irregularity
strength for a graph Υ is denoted as ts(Υ). Papers [12] and [21] played a
significant role in the development of outcomes pertaining to irregular total
labeling.
Due to the challenges of previous findings, Ahmed et al. introduced a new
concept of edge irregularity strength, denoted as es(Υ) in [3], which was
a minimum positive integer s used to label vertices to form edge irregular
labeling. In the light of this inspiration, numerous researchers discovered
the edge irregularity strength of diverse graphs. In 2016, Ahmad et al. [5]
investigated exact value of edge irregularity strength of different families
of toeplitz graph. One year later, Mushayt et al. [8] took product of
certain families of graphs with P2 and determined their exact value of edge
irregularity strength. In the same year, Imran et al. [17] gave results on
edge irregularity strength of friendship graphs, cycle chains, caterpillars,
star graphs and kite graphs. Ahmad et al. [1] computed edge irregularity
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strength of some chain graphs and the join of two graphs, and introduced a
conjecture and open problems for researchers to research further. Tarawneh
et al. [29] estimated edge irregularity strength of corona graphs of path Pm
with P2, Pm with K1 and Sm with Pm, as well as the edge irregularity
strength of the corona product of a cycle with isolated vertices in their
paper [27]. Additionally, they explored edge irregularity strength of various
graphs in papers [28], [30] and [31]. By the motivation of previous results,
Zhang et al. [32] introduced some new families of comb graph, such as
comb graph Can, Cdn, Cen, Cfn and Cgn, and found their exact value of
edge irregularity strength in 2020.

Theorem 1.1

The following Theorem provides us a lower bound that plays a vital role in
our findings:
[3] Let Υ be a simple graph with maximum degree 4 =4(Υ), then
es(Υ) ≥ max{d |Γ(Υ)|+12 e, 4(Υ)}.

2. Preliminaries

In this section, we discuss the essential definitions employed within this
paper.

Definition 2.1

Edge irregular mapping or vertex mapping Ψ : Λ(Υ) −→ {1, 2, 3, ..., s} is a
mapping of vertices in such a way that all edges have distinct weights. Edges
weights can be assessed by using the relation wtΨ(fm) = Ψ(f) + Ψ(m),
∀f,m ∈ Λ(Υ) and fm ∈ Γ(Υ). Edge irregularity strength denoted by es(Υ)
is a minimum positive integer used to label vertices to form edge irregular
labeling.

Definition 2.2

The shadow graph of a star graph represented by D2(K1,η),η > 1, can
be constructed using the vertex set Λ(D2(K1,η)) = {v, w, uξ, xξ; 1 ≤ ξ ≤
η} and the edge set Γ(D2(K1,η)) = {uξv, uξw, vxξ, wxξ; 1 ≤ ξ ≤ η}. It
comprises a total of 2η + 2 vertices and 4η edges.
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Figure 2.1: Shadow graph D2(K1,4).

Definition 2.3

The splitting graph represented by S0(K1,η), η > 1, can be constructed
using the vertex set Λ(S0(K1,η)) = {u, y, vξ, xξ; 1 ≤ ξ ≤ η} and the edge
set Γ(S0(K1,η)) = {xξu, uvξ, vξy; 1 ≤ ξ ≤ η}. It comprises a total of 2η + 2
vertices and 3η edges.

Figure 2.2: Splitting graph S0(K1,4).
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Definition 2.4

Jellyfish graph denoted by Jη,η, η > 1, can be constructed using the vertex
set Λ(Jη,η) = {u, v, x, z, xξ, yξ; 1 ≤ ξ ≤ η} and the edge set
Γ(Jη,η) = {ux, uz, xv, xz, zv, vyξ, xξu; 1 ≤ ξ ≤ η}. It comprises a total of
2η + 4 vertices and 2η + 5 edges.

Figure 2.3: Jellyfish graph J4,4.

Definition 2.5

The jewel graph denoted by Jη, η ≥ 1, can be constructed using the ver-
tex set Λ(Jη) = {x, y, z, wξ; 1 ≤ ξ ≤ η + 1} and the edge set Γ(Jη) =
{yz, zx, xwξ, ywξ, zw1; 1 ≤ ξ ≤ η+1}. It comprises a total of η+4 vertices
and 2η + 5 edges.

Figure 2.4: Jewel graph J3.
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Definition 2.6

4−Pan graph with m copies is obtained by joining a cycle graph C4,
to each vertex of path graph Pm,m ≥ 2, with a bridge and is denoted
by Υ = 4 − Pm, m ≥ 2. It is obtained by vertex set Λ(4 − Pm) =
{qm, rm, sm, tm, um; 1 ≤ m ≤ η} and the edge set Γ(4−Pm) = {qmqm+1; 1 ≤
m ≤ η − 1}S{qmrm, rmsm, smtm, tmum, umrm; 1 ≤ m ≤ η}. It comprises a
total of 5η vertices and 6η − 1 edges.

Figure 2.5: 3 copies of 4-Pan graph.

3. Main Results

In this section, we demonstrate the outcomes of our computations.

Theorem 3.1. Let D2(K1,η) be a shadow graph, then es(D2(K1,η)) =
2η + 1, η > 1.

Proof: Let D2(K1,η) be a shadow graph. Our task is to demonstrate that
es(D2(K1,η)) = 2η + 1. The lower bound, es(D2(K1,η)) ≥ 2η + 1, is ob-
tained by Theorem 1.1. To establish the converse, we have to prove that
es(D2(K1,η)) does not exceed 2η + 1. To achieve this, define a vertex la-
beling Ψ : Λ(D2(K1,η))→ {1, 2, 3, ..., 2η + 1} such that

Ψ(uξ) = ξ, 1 ≤ ξ ≤ η,

Ψ(xξ) = η + ξ, 1 ≤ ξ ≤ η,

Ψ(v) = 1,

Marisol Martínez
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Ψ(w) = 2η + 1, η > 1.

The edge weights are calculated as follows:

wtΨ(uξv) = Ψ(uξ) +Ψ(v) = ξ + 1, 1 ≤ ξ ≤ η,

wtΨ(uξw) = Ψ(uξ) +Ψ(w) = ξ + 2η + 1, 1 ≤ ξ ≤ η,

wtΨ(vxξ) = Ψ(v) +Ψ(xξ) = ξ + η + 1, 1 ≤ ξ ≤ η,

wtΨ(wxξ) = Ψ(w) +Ψ(xξ) = ξ + 3η + 1, 1 ≤ ξ ≤ η.

The aforementioned computations show that all vertex labels are at
most 2η+1, and all edges possess distinct weights. The labeling Ψ provides
the upper bound on es(D2(K1,η)), i.e es(D2(K1,η)) ≤ 2η + 1. Combining
with the lower bound, we conclude that es(D2(K1,η)) = 2η+1. This brings
us to the end of the proof.

Figure 3.1: Irregular labeling on shadow graph D2(K1,4).

Theorem 3.2. Let S0(K1,η) be a splitting graph, then es(S0(K1,η)) =
2η, η > 1.

Marisol Martínez
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Proof: Let S0(K1,η) be a splitting graph. Our task is to demonstrate
that es(S0(K1,η)) = 2η. The lower bound, es(S0(K1,η)) ≥ 2η, is ob-
tained by Theorem 1.1. To establish the converse, we have to prove that
es(S0(K1,η)) does not exceed 2η. To achieve this, define a vertex labeling
Ψ : Λ(S0(K1,η))→ {1, 2, 3, ..., 2η} such that

Ψ(xξ) = ξ, 1 ≤ ξ ≤ η,

Ψ(vξ) = η + ξ, 1 ≤ ξ ≤ η, η > 1,

Ψ(u) = 1,

Ψ(y) = η + 1, η > 1.

The edge weights are calculated as follows:

wtΨ(xξu) = Ψ(xξ) +Ψ(u) = ξ + 1, 1 ≤ ξ ≤ η,

wtΨ(uvξ) = Ψ(u) +Ψ(vξ) = ξ + η + 1, 1 ≤ ξ ≤ η,

wtΨ(vξy) = Ψ(vξ) +Ψ(y) = ξ + 2η + 1, 1 ≤ ξ ≤ η.

The aforementioned computations show that all vertex labels are at
most 2η, and all edges possess distinct weights. The labeling Ψ provides
the upper bound on es(S0(K1,η)), i.e es(S

0(K1,η)) ≤ 2η. Combining with
the lower bound, we conclude that es(S0(K1,η)) = 2η. This brings us to
the end of the proof. 2
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Figure 3.2: Irregular labeling on splitting graph S0(K1,4).

Theorem 3.3. Let Jη be a jewel graph, then es(Jη) = 2η + 3, η ≥ 1.

Proof: Let Jη be a jewel graph. Our task is to demonstrate that es(Jη) =
2η+3. The lower bound, es(Jη) ≥ 2η+3, is obtained by Theorem 1.1. To
establish the converse, we have to prove that es(Jη) does not exceed 2η+3.
To achieve this, define a vertex labeling Ψ : Λ(Jη) → {1, 2, 3, ..., 2η + 3}
such that

Ψ(x) = 1,

Ψ(y) = 2η + 3, η ≥ 1,

Ψ(wξ) = η + 2− ξ, 1 ≤ ξ ≤ η + 1,

Ψ(z) = η + 2, η ≥ 1.

Marisol Martínez
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The edge weights are calculated as follows:

wtΨ(xwξ) = Ψ(x) +Ψ(wξ) = η + 3− ξ, 1 ≤ ξ ≤ η + 1,

wtΨ(ywξ) = Ψ(y) +Ψ(wξ) = 3η − ξ + 5, 1 ≤ ξ ≤ η + 1,

wtΨ(zw1) = Ψ(z) +Ψ(w1) = 2η + 3, η ≥ 1,

wtΨ(yz) = Ψ(y) +Ψ(z) = 3η + 5, η ≥ 1,

wtΨ(zx) = Ψ(z) +Ψ(x) = η + 3, η ≥ 1.

The aforementioned computations show that all vertex labels are at
most 2η+3, and all edges possess distinct weights. The labeling Ψ provides
the upper bound on es(Jη), i.e es(Jη) ≤ 2η+3. Combining with the lower
bound, we conclude that es(Jη) = 2η + 3. This brings us to the end of the
proof. 2

Figure 3.3: Irregular labeling on jewel graph J3.

Theorem 3.4. Let Jη,η be a jellyfish graph, then es(Jη,η) = η + 3, η > 1.

Marisol Martínez
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Proof: Let Jη,η be a jellyfish graph. Our task is to demonstrate that
es(Jη,η) = η + 3. The lower bound, es(Jη,η) ≥ η + 3, is obtained by
Theorem 1.1. To establish the converse, we have to prove that es(Jη,η) does
not exceed η + 3. To achieve this, define a vertex labeling Ψ : Λ(Jη,η) →
{1, 2, 3, ..., η + 3} such that

Ψ(xξ) = ξ, 1 ≤ ξ ≤ η,

Ψ(yξ) = ξ, 1 ≤ ξ ≤ η − 1,

Ψ(u) = 1,

Ψ(x) = η + 1, η > 1,

Ψ(z) = η + 2, η > 1,

Ψ(v) = η + 3, η > 1,

Ψ(yη) = η + 3, η > 1.

The edge weights are calculated as follows:

wtΨ(xξu) = Ψ(xξ) +Ψ(u) = ξ + 1, 1 ≤ ξ ≤ η,

wtΨ(ux) = Ψ(u) +Ψ(x) = η + 2,

wtΨ(uz) = Ψ(u) +Ψ(z) = η + 3,

wtΨ(xv) = Ψ(x) +Ψ(v) = 2η + 4,

wtΨ(xz) = Ψ(x) +Ψ(z) = 2η + 3,

wtΨ(vz) = Ψ(v) +Ψ(z) = 2η + 5,

wtΨ(vyξ) = Ψ(v) +Ψ(yξ) = ξ + η + 3, 1 ≤ ξ ≤ η.

The aforementioned computations show that all vertex labels are at
most η+3, and all edges possess distinct weights. The labeling Ψ provides
the upper bound on es(Jη,η), i.e es(Jη,η) ≤ η+3. Combining with the lower
bound, we conclude that es(Jη,η) = η+3. This brings us to the end of the
proof.
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Figure 3.4: Irregular labeling on jellyfish graph J4,4.

Theorem 3.5. Let 4−Pm be a 4−Pan graph with m ≥ 2 copies, then
es(4− Pm) = 3m.

Proof: Let 4 − Pm be a 4−Pan graph with m copies. Our task is to
demonstrate that es(4−Pm) = 3m. The lower bound, es(4−Pm) ≥ 3m, is
obtained by Theorem 1.1. To establish the converse, we have to prove that
es(4 − Pm) does not exceed 3m. To achieve this, define a vertex labeling
Ψ : Λ(4− Pm)→ {1, 2, 3, ..., 3m} such that

Ψ(qm) =
m3−9m2+35m−24

3 , 1 ≤ m ≤ η,

Ψ(rm) =
m3−9m2+35m−24

3 , 1 ≤ m ≤ η,

Ψ(sm) =
m2−m+4

2 , 1 ≤ m ≤ η,

Ψ(tm) =
−m3+9m2−8m+18

6 , 1 ≤ m ≤ η,

Ψ(um) =
−m3+9m2−8m+18

6 , 1 ≤ m ≤ η.

The edge weights are calculated as follows:

wtΨ(qmqm+1) = Ψ(qm) +Ψ(qm+1) =
2m3−15m2+55m−21

3 , 1 ≤ m ≤ η − 1,

wtΨ(qmrm) = Ψ(qm) +Ψ(rm) =
2
3(m

3 − 9m2 + 35m− 24), 1 ≤ m ≤ η,

Marisol Martínez
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wtΨ(rmsm) = Ψ(rm) +Ψ(sm) =
2m3−15m2+67m−36

6 , 1 ≤ m ≤ η,

wtΨ(smtm) = Ψ(sm) +Ψ(tm) =
−m3+12m2−11m+30

6 , 1 ≤ m ≤ η,

wtΨ(tmum) = Ψ(tm) +Ψ(um) =
−m3+9m2−8m+18

3 , 1 ≤ m ≤ η,

wtΨ(umrm) = Ψ(um) +Ψ(rm) =
m3−9m2+62m−30

6 , 1 ≤ m ≤ η.

The aforementioned computations show that all vertex labels are at
most 3m, and all edges possess distinct weights. The labeling Ψ provides
the upper bound on es(4−Pm), i.e es(4−Pm) ≤ 3m. Combining with the
lower bound, we conclude that es(4−Pm) = 3m. This brings us to the end
of the proof. 2

Figure 3.5: Irregular labeling on 4− P3.
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4. Conclusion

In this paper, we determined the exact value of edge irregularity strength
of shadow graph, splitting graph, jewel graph, jellyfish graph and m copies
of 4-pan graph. These findings have significant implications for various
applications, such as network design and optimization. Continuing to push
the boundaries of graph theory research, the approach employed in this
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work will be utilized as a base for investigating the edge irregularity strength
of other intricate graphs. Moving forward, a promising future direction will
be to find the edge irregularity strength of different families of Deep Neural
Network(DNN). Determining the edge irregularity strength of the graphs
mentioned above has the potential to yield valuable insights in the field of
graph theory.
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