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Abstract

Let G be a connected graph. A vertex coloring of G is an N2-vertex
coloring if, for every vertex v, the number of different colors assigned
to the vertices adjacent to v is at most two. The N2-chromatic number
of G is the maximum number of colors that can be used in an N2-
vertex coloring of G. In this paper, we establish tight bounds for the
N2-chromatic number of a graph in terms of its maximum degree and
its diameter, and characterize those graphs that attain these bounds.
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1. Introduction

Let G be a simple, finite, connected, and undirected graph with vertex
set V (G) and edge set E(G). For v ∈ V (G), the notations NG(v) and
dG(v) denote the open neighborhood of v in G and the degree of v in G,
respectively, and we set NG[v] = NG(v) ∪ {v} as the closed neighborhood
of v. The graph G− v is the subgraph of G wherein the vertex v and the
edges incident to it are removed from G. The maximum degree of G is
denoted by ∆(G). For S ⊆ V (G), we define the open neighborhood and
closed neighborhood of S as NG(S) =

S
v∈S NG(v) and NG[S] = NG(S)∪S,

respectively, and we denote the induced subgraph of S in G by G[S]. For
x, y ∈ V (G), the distance between x and y in G is denoted by dG(x, y).
The diameter of G is denoted by diam(G), and a shortest path between
two vertices whose distance is diam(G) is also referred to as a diameter of
G. A peripheral vertex of G is an endpoint of a diameter of G. For each
k, 1 ≤ k ≤ diam(G), we denote by Nk

G(v) the set of vertices of distance k
from vertex v in G.

Graph coloring techniques have been studied by graph theorists for
many decades now. A graph coloring is an assignment of colors (usually
integers for convenience) to the vertices or edges, or both, subject to certain
conditions. In [5], Czap introduced a graph coloring called Mi-edge color-
ing. An edge coloring of a graph G is called Mi-edge coloring if at most i
colors appear at any vertex of G. This edge coloring focuses on determining
the maximum number of colors Ki(G) used in an Mi-edge coloring of G.
Budajová and Czap [4] proved that every graph G with maximum degree
at least 2 has an M2-edge coloring with at least α(G) + 1 colors, where
α(G) is the size of a maximum matching in G. Moreover, Czap, Ivančo and
Šugerek [6] determined the Ki(G) for trees, cacti, complete multipartite
graphs, and graph joins.

In [1], Akbari, Alipourfard, Jandaghi and Mirtaheri introduced a vertex-
coloring version of M2-edge coloring. A vertex coloring f is called an N2-
vertex coloring of G if |{f(x) : x ∈ NG(v)}| ≤ 2 for each v ∈ V (G).
Let t2(G), which we call the N2-chromatic number of G, be the maximum
number of colors that can be used in an N2-vertex coloring of G. Also in
[1], some lower and upper bounds for t2(G) in terms of girth, diameter, and
size of G were provided and the formula t2(T ) = n − c + 2 for any tree T
of order n with c leaves was obtained.

It is not difficult to verify that 2 ≤ t2(G) ≤ n for any connected graph
G of order n ≥ 2. The complete graph Kn, n ≥ 2 and n 6= 3, has N2-
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chromatic number of 2, and t2(G) = n if and only if G = Pn (the path of
order n ≥ 2) or G = Cn (the cycle of order n ≥ 3).

In this paper, we provide some bounds for the N2-chromatic number
of graphs in terms of their maximum degree and their diameter. We also
prove that these bounds are tight and characterize those graphs that attain
these bounds.

For convenience, we call the numbers assigned to the vertices as colors
and, instead of formally exhibiting a function as a vertex coloring of a
particular graph, we may sometimes assign colors to the vertices to describe
a vertex coloring. For graph-theoretic terms and notations that are not
explicitly defined in this paper, we refer the readers to [3].

2. N2-Chromaticity and the Maximum Degree

We again note that t2(G) ≥ 2 for any connected graph G with at least 2
vertices. Moreover, the only connected graphs of order at most 3 are the
paths P2 and P3 and the cycle C3, and we have remarked that t2(P2) = 2,
t2(P3) = 3, and t2(C3) = 3.

Theorem 1. Let G be a connected graph of order n ≥ 4. If ∆(G) = n−1,
then 2 ≤ t2(G) ≤ 3.

Proof. From the preceding paragraph, we are left to show that t2(G) ≤
3. Let v ∈ V (G) such that dG(v) = n − 1. Then the neighbors of v can
be colored by at most two colors other than that of v. Thus, we have
2 ≤ t2(G) ≤ 3. 2

Theorem 2. Let G be a connected graph of order n ≥ 4 with a vertex v
of degree n− 1. Then t2(G) = 3 if and only if G− v is disconnected or is
bipartite.

Proof. Suppose that G−v is disconnected. Let f be a vertex coloring of
G such that f(v) = 1, f(u) = 2 for all vertices u of one component of G−v,
and f(w) = 3 for all other vertices w. This is an N2-vertex coloring of G
using three colors, which implies that t2(G) ≥ 3. Therefore, by Theorem
1, we have t2(G) = 3.

Suppose that G− v is bipartite, and let (X,Y ) be its bipartition. Let
f be a vertex coloring of G such that f(v) = 1, f(x) = 2 for all x ∈ X, and
f(y) = 3 for all y ∈ Y . This color assignment is an N2-vertex coloring of G



250 Arnold A. Eniego, I. J. L. Garces and Jose B. Rosario

using three colors, which implies that t2(G) ≥ 3. By Theorem 1, we have
t2(G) = 3.

Suppose that t2(G) = 3 and G−v is connected. Then, in any N2-vertex
coloring of G, the vertices of G − v must be colored by using two colors
different from the color assigned to v, and adjacent vertices in G− v must
be colored differently. Thus, we have G− v is bipartite. 2

The following corollary follows from Theorems 1 and 2.

Corollary 3. Let G be a connected graph of order n ≥ 4 with a vertex
v of degree n − 1. Then t2(G) = 2 if and only if G − v is a connected
non-bipartite graph.

Corollary 4. Let G be a connected graph of order n ≥ 4 with exactly two
vertices u and v of degree n− 1. Then t2(G) = 3 if and only if G− {u, v}
is an empty graph.

Proof. Note that G − u is a connected graph. From Theorem 2, we
know that t2(G) = 3 if and only if G − u is bipartite. Observe G − u is
bipartite if and only if G− {u, v} is an empty graph. 2

Corollary 5. Let G be a connected graph of order n ≥ 4 with at least 3
vertices of degree n− 1. Then t2(G) = 2.

Proof. For any vertex x of G of degree n − 1, observe that G − x is
connected and non-bipartite. Thus, by Corollary 3, we obtain t2(G) = 2.
2

We observe that if G is a connected graph of order n ≥ 4 with maximum
degree n− 2 and v a vertex of degree n− 2, then there is a unique vertex
u such that uv 6∈ E(G).

Theorem 6. LetG be a connected graph of order n ≥ 4with∆(G) = n−2.
Then 2 ≤ t2(G) ≤ 4.

Proof. Because t2(G) ≥ 2 for any graph G, we only need to show that
t2(G) ≤ 4. Let v be a vertex with dG(v) = n−2. Observe that any coloring
of the vertices of G using at least five colors will force the vertices in NG(v)
to be colored using at least three different colors. Thus, G cannot have an
N2-vertex coloring using at least five colors, and the inequality follows. 2

Theorem 7. LetG be a connected graph of order n ≥ 4with∆(G) = n−2,
and let v and u be vertices such that dG(v) = n− 2 and u 6∈ NG(v). Then
t2(G) = 4 if and only if dG(x) = 2 for all x ∈ NG(u).
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Proof. Note that t2(G) = 4 if and only if there exists an N2-vertex
coloring f of G such that f(u) 6= f(v) and two different colors in NG(v)
distinct from f(u) and f(v). This happens if and only if dG(x) = 2 for all
x ∈ NG(u). 2

Theorem 8. LetG be a connected graph of order n ≥ 4with∆(G) = n−2,
and let v and u be vertices such that dG(v) = n− 2 and u 6∈ NG(v). Then
t2(G) = 3 if and only if dG(x) ≥ 3 for some x ∈ NG(u) and at least one of
the following conditions is satisfied:

(i) NG(y) ∩NG(u) = ∅ for some y ∈ NG(v), or

(ii) G[NG(v)] is disconnected or bipartite.

Proof. Suppose that t2(G) = 3. Theorems 6 and 7 guarantee that
dG(x) ≥ 3 for some x ∈ NG(u). Let f be an N2-vertex coloring of G that
uses three colors. We consider two cases:

Case 1. If f(u) 6= f(v), then there is a vertex y ∈ NG(v) such that f(y) is
different from f(u) and f(v). Because f is an N2-vertex coloring of G, it
follows that NG(y) ∩NG(u) = ∅.
Case 2. If f(u) = f(v), then f(x) is different from f(u) and f(v) for
all x ∈ NG(v). As in the proof of Theorem 2, we see that G[NG(v)] is
disconnected or bipartite.

Conversely, suppose that dG(x) ≥ 3 for some x ∈ NG(u) and at least
one of the two conditions is satisfied. By Theorems 6 and 7, we know that
t2(G) ≤ 3. We show that each condition yields an N2-vertex coloring of G.

Suppose that condition (i) holds. We color vertex u with 1, vertex y
with 2, and the remaining vertices with 3. We can check that the vertices
u and v have neighbors with at most two colors. Because of (i), each vertex
in NG(v) has at most two colors in its neighborhood. Thus, this color
assignment is an N2-vertex coloring of G.

Finally, suppose that condition (ii) holds. If G[NG(v)] is disconnected,
then we can obtain an N2-vertex coloring of G by assigning color 1 to both
u and v, color 2 to all vertices of one component of G[NG(v)], and color
3 to all remaining vertices. On the other hand, if G[NG(v)] is bipartite,
then we color the vertices u and v with 1, the vertices in one bipartition
of G[NG(v)] with 2, and the vertices in other bipartition of G[NG(v)] with
3. The latter color assignment is again an N2-vertex coloring of G. This
completes the proof of the theorem. 2

The following corollary is a quick consequence of Theorems 7 and 8.
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Corollary 9. Let G be a connected graph of order n ≥ 4 with ∆(G) =
n− 2. Then t2(G) = 2 if and only if the following conditions are satisfied:

(i) for every y ∈ NG(v), there is a z ∈ NG(u) such that yz ∈ E(G), and

(ii) G[NG(v)] is connected and non-bipartite.

We generalize the upper bounds set in Theorems 1 and 6 in the following
theorem.

Theorem 10. Let n and k be integers such that n ≥ 2 and 1 ≤ k ≤ n− 1,
and let G be a connected graph of order n with ∆(G) = k. Then t2(G) ≤
n− k + 2.

Proof. Let v ∈ V (G) such that dG(v) = ∆(G) = k. The maximum
number of colors an N2-vertex coloring of G can use is 1+2+(n−k−1) =
n− k+2, which is obtained by using 1 color for v, 2 colors for the vertices
in NG(v), and one different color for each of the other n − k − 1 vertices
that are not in NG(v). 2

The properties claimed in the following lemma follow immediately by
considering a vertex of maximum degree.

Lemma 11. Let G be a connected graph of order n ≥ 6 and with 3 ≤
∆(G) ≤ n−3, and let v ∈ V (G) with dG(v) = ∆(G). If t2(G) = n−∆(G)+2
and f is an N2-vertex coloring that uses t2(G) colors, then

(i) f uses exactly three colors to the vertices in NG[v], and

(ii) f assigns different colors (other than the three colors used in NG[v])
to the vertices in V (G) \NG[v].

Theorem 12. Let G be a connected graph of order n ≥ 6 and with 3 ≤
∆(G) ≤ n − 3, and let v ∈ V (G) with dG(v) = ∆(G). Then t2(G) =
n−∆(G) + 2 if and only if G satisfies the following conditions:

(i) dG(u) = 2 for every u ∈ NG(v) ∩NG(N
2
G(v)),

(ii) 1 ≤ dG(u) ≤ 2 for every u ∈ V (G) \NG[NG(v)], and

(iii) |NG(u) ∩ (V (G) \NG[v])| ≤ 1 for every u ∈ N2
G(v).
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Before proving the preceding theorem, we need some notations. For
S ⊂ V (G), we define the graphG(S) as that subgraph of G with V (G(S)) =
NG[S] and E(G(S)) = {xy ∈ E(G) : x ∈ S or y ∈ S}.

Proof of Theorem 12. For convenience, we let A = {u ∈ NG(v) : NG(u) ⊆
NG[v]}, B = NG(v) \A = NG(v) ∩NG(N

2
G(v)), and C = V (G) \NG[v].

Suppose that t2(G) = n −∆(G) + 2 and f is an N2-vertex coloring of
G that uses t2(G) colors.

The vertices in B are those vertices in NG(v) with at least one adjacent
vertex in N2

G(v). Since f is an N2-vertex coloring, every vertex u ∈ B
needs to have at most two colors around it, that is, one color from v and
another color from a vertex in NG(v) or N

2
G(v). But because u is adjacent

to at least one vertex in N2
G(v) and vertices in N2

G(v) are assigned with
different colors other than the colors used in NG[v] by Lemma 11(i) and
(ii), it follows that u is adjacent only to v and to exactly one vertex in
N2
G(v), and that u is not adjacent to any vertex in NG(v). Thus, we have

dG(u) = 2 for every u ∈ B, which establishes (i).

Lemma 11(ii) implies condition (ii).

Because f is an N2-vertex coloring of G, every vertex u ∈ NG(NG(v))∩
(V (G)\NG(v)) is adjacent to at most one vertex in V (G)\NG[v]. Condition
(iii) follows.

Suppose that a connected graph G satisfies conditions (i), (ii), and (iii).
Since dG(v) = ∆(G) ≤ n−3, we have |V (G)\NG[v]| ≥ 2 and G(NG(v))−v
is disconnected.

Let f be a vertex coloring of G defined as follows: f(v) = 1, f(u) = 2
for all vertices u ∈ NG(v) in one component of G(NG(v)) − v, f(u) = 3
for all vertices u ∈ NG(v) in the other components of G(NG(v)) − v, and
f(ui) = i + 3 for ui ∈ V (G) \ NG[v] = {u1, u2, . . . , un−∆(G)−1}. It is not
difficult to check that f is an N2-vertex coloring of G using n−∆(G) + 2
colors. By Theorem 10, it follows that t2(G) = n−∆(G) + 2.

To exhibit a family of graphs that satisfies the conditions in Theorem
12, we use the vertex amalgamation of graphs. For each k, 1 ≤ k ≤ n, let
Gk be a connected graph and vk a vertex of Gk. The vertex amalgamation
of the graphs Gk at vk, denoted by

nK
k=1

(Gk, vk) = (G1, v1)¯ (G2, v2)¯ · · · ¯ (Gn, vn),

is the graph obtained by identifying (or amalgamating) the vertices v1, v2, . . . , vn.



254 Arnold A. Eniego, I. J. L. Garces and Jose B. Rosario

Corollary 13. For each k, 1 ≤ k ≤ n, let Gk be either a path of order at
least 2 or a cycle of order at least 3. Let G =

Jn
k=1(Gk, vk) for any vertex

vk of Gk. Then t2(G) = |V (G)|−∆(G) + 2.

3. N2-Chromaticity and the Diameter

In [1, Lemma 2.1(i)], it was presented that if the diameter of a connected
graph G is d, then a lower bound for t2(G) is bd/2c (although, in its proof,
it showed dd/2e). We give an improvement of this lower bound.

Theorem 1. Let G be a connected graph with at least two vertices. If
diam(G) = d, then t2(G) ≥ dd/2e+ 1.

Proof. Let v be a peripheral vertex of G, and let f be a vertex coloring of
G defined as follows: f(v) = 1 and f(u) = k+1 for u ∈ N2k−1

G (v)∪N2k
G (v),

1 ≤ k ≤ dd/2e. It is not difficult to verify that f is an N2-vertex coloring
of G that uses dd/2e+ 1 colors. 2

To establish the tightness of the inequality in the preceding theorem,
we need some graph operations. Let G1 and G2 be two graphs with disjoint
vertex sets V1 and V2 and edge sets E1 and E2, respectively. Their union,
denoted by G1 ∪G2, is the graph with V (G1 ∪G2) = V1 ∪ V2 and E(G1 ∪
G2) = E1 ∪ E2. This “union” operation can be easily extended to several
graphs. The join of G1 and G2, denoted by G1 + G2, is the graph with
V (G1 +G2) = V1 ∪ V2 and E(G1 +G2) = E1 ∪E2 ∪ {uv : u ∈ V1, v ∈ V2}.

Introduced in [2] and named in [3], the sequential join of the graphs
G1, G2, . . . ,Gn, denoted by G1 ]G2 ] · · · ]Gn or

Un
k=1Gk, is the graph

n]
k=1

Gk =
n−1[
k=1

(Gk +Gk+1) = (G1 +G2) ∪ (G2 +G3) ∪ · · · ∪ (Gn−1 +Gn).

Corollary 2. For integer d ≥ 2, let a1, a2, . . . , ad+1 be positive integers for
which ak ≥ 2 for 2 ≤ k ≤ d. Then, for any collection {Gk} of connected
graphs with |V (Gk)| = ak for k = 1, 2, . . . , d+ 1, we have

diam

Ã
d+1]
k=1

Gk

!
= d and t2

Ã
d+1]
k=1

Gk

!
=

»
d

2

¼
+ 1.
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Proof. It is not difficult to verify that diam
³Ud+1

k=1Gk

´
= d for any

collection {Gk} of connected graphs with |V (Gk)| = ak. By Theorem 1, we

have t2
³Ud+1

k=1Gk

´
≥ dd/2e+ 1.

Suppose that there is an N2-vertex coloring of
Ud+1
k=1Gk that uses more

than dd/2e + 1 colors. Then there is an integer k, 2 ≤ k ≤ d, such that
this N2-vertex coloring assigns at least 3 different colors to the vertices
of Gk−1, Gk, and Gk+1. Since ak ≥ 2, there is a vertex in Gk−1, Gk, or
Gk+1 that has 3 colors in its neighborhood, a contradiction. Thus, we have

t2
³Ud+1

k=1Gk

´
= dd/2e+ 1. 2

By the contrapositive of Theorem 1 and after noting that the only
connected graph G with diam(G) = 1 and t2(G) = 2 is the complete graph,
we obtain the following corollary.

Corollary 3. Let G be a connected graph of order n ≥ 4. If t2(G) = 2,
then diam(G) ≤ 2. Moreover, if G is not a complete graph with t2(G) = 2,
then diam(G) = 2.

The following lemma follows from Theorems 1, 6, and 10.

Lemma 4. Let G be a connected graph of order n ≥ 7 with t2(G) ≥ 6.
Then ∆(G) ≤ n− 4.

Theorem 5. LetG be a connected graph of order n ≥ 5 with diam(G) = 2.
Then 2 ≤ t2(G) ≤ 5.

Proof. By Theorem 1, we know that t2(G) ≥ 2. It suffices to show that
there exists no N2-vertex coloring of G using six colors. Clearly, there is
no way we can color G with 6 colors if n = 5. Moreover, if n = 6 and G
admits an N2-vertex coloring using 6 colors, then G must be the path P6
or the cycle C6, contradicting our assumption that diam(G) = 2. We are
left to consider the case when n ≥ 7.

Let G be a connected graph of order n ≥ 7 with diam(G) = 2. Suppose
that t2(G) ≥ 6. Let v ∈ V (G) with deg(v) = ∆(G). For each w ∈ N2

G(v),
there is a vertex u ∈ NG(v) such that u is adjacent to w. Note that, by
Lemma 4, we have |N2

G(v)| ≥ 3.
Let f be an N2-vertex coloring of G that uses at least 6 colors. Then

there exist 3 vertices in N2
G(v) with different colors other than the colors

used in NG[v], say w1, w2, and w3. For 1 ≤ i ≤ 3, observe that the sets
NG(wi) ∩ NG(v) are pairwise disjoint. Because diam(G) = 2, there exists
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a vertex w0 in N2
G(v) that is adjacent to two of these wi’s. This vertex w0

has at least 3 colors in its neighborhood, a contradiction. Therefore, no
N2-vertex coloring of G uses 6 or more colors. 2

Corollary 6. For every ordered pair (n, k) of integers, where n ≥ 5 and
2 ≤ k ≤ 5, there exists a connected graph G of order n with diam(G) = 2
and t2(G) = k.

Proof. The graph Kn − e for any edge e of the complete graph Kn,
the graph K2 + Kn−2 (the join of K2 and the empty graph Kn−2 with
n− 2 vertices), and the complete bipartite graph K2,n−2 have order n and
diameter 2. Moreover, it is not difficult to compute that t2(Kn − e) = 2,
t2(K2 +Kn−2) = 3, and t2(K2,n−2) = 4.

For k = 5, we define a graph G as follows:

V (G) = {a, b, c, d, u1, u2, . . . , un−4}

and

E(G) = {ab, bc, cd, au1, au2, . . . , aun−4, du1, du2, . . . , dun−4}.

It can easily be verified that G has order n and diameter 2. By assigning
color 1 to a, 2 to b, 3 to c, 4 to d, and 5 to all ui’s, we obtain an N2-vertex
coloring of G using 5 colors. By Theorem 5, it follows that t2(G) = 5. 2

Theorem 7. LetG be a connected graph of order n ≥ 5 with diam(G) = 2,
and v a peripheral vertex. Then t2(G) = 5 if and only if the induced sub-
graph G[NG(v)] is an empty graph and any of the following two conditions
holds:

(i) there exists a partition {A,B} of N2
G(v) such that

(a) G[N2
G(v)] is a complete bipartite graph with bipartition {A,B},

and

(b) G[A∪A0] and G[B∪B0] are complete bipartite graphs with bipar-
titions {A0, A} and {B0, B}, respectively, where A0 = NG(A) ∩
NG(v) and B0 = NG(B) ∩NG(v);

(ii) there exists a partition {A,B,C} of N2
G(v) such that

(a) G[A∪B] is a complete bipartite graph with bipartition {A,B},
(b) NG(C) ∩ (A ∪B) = ∅, and
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(c) G[NG(v) ∪ C] is a complete bipartite graph with bipartition
{NG(v), C}.

Before we prove the preceding theorem, we need the following lemmas.

Lemma 8. Let G be a connected graph of order n ≥ 5 with diam(G) = 2,
and v a peripheral vertex. Then, in any N2-vertex coloring of G that uses
5 colors, there are two nonempty disjoint subsets A and B of N2

G(v) such
that

(i) all vertices in A and B use two colors, one unique color for each set,
that are different from the colors assigned to the vertices in NG[v],
and

(ii) the induced subgraph G[A ∪ B] is a complete bipartite graph with
bipartition {A,B}.

Moreover, the sets A and B are maximal in the sense that each set contains
all vertices in N2

G(v) that receive the corresponding unique color.

Proof. Let f be an N2-vertex coloring of G that uses 5 colors. It is not
difficult to see that there exists two vertices a, b ∈ N2

G(v) whose colors are
different from each other and from the colors of the vertices inNG[v]. Define
sets A = {x ∈ N2

G(v) : f(x) = f(a)} and B = {y ∈ N2
G(v) : f(y) = f(b)}.

Since f is anN2-vertex coloring, observe that no vertex inNG(v)∪N2
G(v)

is adjacent to a vertex in A and to a vertex in B. Thus, because diam(G) =
2, every vertex in A must be adjacent to every vertex in B. Since every
vertex in A ∪ B is adjacent to a vertex in NG(v) whose color is different
from the color of the vertices in A ∪ B, it follows that no vertex in A is
adjacent to another vertex in A. Similarly, no vertex in B is adjacent to
another vertex in B. Hence, A∪B induces a complete bipartite graph. 2

Lemma 9. Let G be a connected graph of order n ≥ 5 with diam(G) = 2,
and v a peripheral vertex. Then any N2-vertex coloring of G that uses 5
colors assigns 2 or 3 colors to the vertices in N2

G(v). Moreover, if an N2-
vertex coloring uses 3 colors in N2

G(v), then one of these colors is the same
as that color assigned to v.
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Proof. Let f be an N2-vertex coloring of G that uses 5 colors. By
Lemma 8, there are subsets A and B of N2

G(v) whose vertices have corre-
sponding unique colors different from those used in NG[v], and G[A∪B] is
a complete bipartite graph. Thus, f uses at least 2 colors in N2

G(v).

Suppose that f uses at least 3 colors in N2
G(v). Let c be a vertex in

N2
G(v) such that f(c) is different from the colors assigned to A and B. We

show that f(c) = f(v).

Suppose, on the contrary, that f(c) 6= f(v). Because f is an N2-vertex
coloring, diam(G) = 2, and of Lemma 8(i), the vertex c must be adjacent
either to a vertex in A or to a vertex in B (but not both). Without loss of
generality, suppose that c is adjacent to a vertex in A.

Let A0 = NG(A) ∩NG(v) and B0 = NG(B) ∩NG(v). Then A0 ∩B0 = ∅
(otherwise, a vertex in A0 ∩B0 would have three different colors around it,
that is, one from v, another one from A, and another one from B), and
there is a vertex in A0 that receives the color f(c) (otherwise, a vertex in
A would have three colors around it). Because f(v), f(c), and the unique
color used in B are all different, every vertex in B0 must not be adjacent to
c. Since diam(G) = 2, for each vertex u ∈ B0, there is a vertex x ∈ NG(v)
such that x is adjacent to both c and u. This forces f(x) = f(v) so that u
would have two colors around it. This means that each vertex in NG(v) is
colored with either f(c) or f(v).

Because f uses 5 colors and only 4 of them have been used so far (2 in
NG[v] and 2 in A ∪B), f must assign the fifth color to a vertex in N2

G(v).
However, this vertex cannot be of distance 1 or 2 to a vertex in A ∪ B.
This is a contradiction. Therefore, we have f(c) = f(v), and so f assigns
at most 3 colors to the vertices in N2

G(v). 2

Proof of Theorem 7. Suppose that t2(G) = 5 and let f be an N2-vertex
coloring of G that uses 5 colors. By Lemma 8, there exist two nonempty
disjoint subsets A and B of N2

G(v) such that f assigns a unique color to
each set that is different from those assigned to the vertices in NG[v] and
G[A ∪ B] is a complete bipartite graph with bipartition {A,B}. With
Lemma 9, we consider two cases.

Case 1. Suppose that there are exactly 2 colors used in N2
G(v). This

implies that these colors are the ones used to color A and B and that
{A,B} partitions N2

G(v).

Because diam(G) = 2 and {A,B} partitions N2
G(v), the pair {A0, B0}

partitions NG(v), the set NG(v) induces an empty graph, and the induced
subgraphs G[A∪A0] and G[B∪B0] are also complete bipartite graphs. This
establishes condition (i).
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Case 2. Suppose that there are exactly 3 colors used inN2
G(v). By Lemmas

8 and 9, these 3 colors are f(a), f(b), and f(v), where a ∈ A and b ∈ B.
The other two colors of f are used to color the vertices in NG(v).

Let C = {x ∈ N2
G(v) : f(x) = f(v)}. Then {A,B,C} partitions N2

G(v)
and NG(C) ∩ (A ∪ B) = ∅. Because diam(G) = 2, it follows that every
vertex in C is adjacent to every vertex in NG(v), and so C induces an
empty graph.

Let A0 and B0 be the same sets defined in condition (i), and let C 0 =
NG(v) \ (A0 ∪B0). Then A0 ∪B0 induces an empty graph.

Suppose C 0 6= ∅, and let x be a vertex in C 0. Since NG(C)∩(A∪B) = ∅
and diam(G) = 2, for each vertex a ∈ A, there is a vertex a0 ∈ A0 such that
a0 is adjacent to both x and a. However, the vertex a0 has already 3 colors
around it, a contradiction. This implies that C 0 = ∅, and soNG(v) = A0∪B0
induces an empty graph and NG(v)∪C induces a complete bipartite graph
with bipartition {NG(v), C}. This establishes condition (ii) and completes
the proof of the “only if” part of the theorem.

Conversely, suppose that the induced subgraph G[NG(v)] is an empty
graph and any of the two conditions holds. We exhibit anN2-vertex coloring
of G that uses 5 colors for each condition.

With condition (i), we define a vertex coloring f1 of G as follows:
f1(v) = 1, f1(u) = 2 for u ∈ A0, f1(u) = 3 for u ∈ B0, f1(u) = 4 for
u ∈ A, and f1(u) = 5 for u ∈ B. It is not difficult to verify that f1 is an
N2-vertex coloring of G.

With condition (ii), we define a vertex coloring f2 of G as follows:
f2(u) = 1 for u = v or u ∈ C, f2(u) = 2 for u ∈ A0, f2(u) = 3 for u ∈ B0,
f2(u) = 4 for u ∈ A, and f2(u) = 5 for u ∈ B. It is not also difficult to
verify that f2 is an N2-vertex coloring of G. This completes the proof of
Theorem 7.

4. Concluding Remarks

We have established the bounds for the N2-chromatic number of a graph in
terms of its maximum degree and its diameter. In Theorem 1, we showed
that 2 ≤ t2(G) ≤ 3 when G is a connected graph of degree n ≥ 4 with
∆(G) = n − 1, and characterized those graphs with t2(G) = 2 and those
with t2(G) = 3. We presented in Theorem 6 that 2 ≤ t2(G) ≤ 4 when G
is a connected graph of order n ≥ 4 with ∆(G) = n− 2, and characterized
those graphs that satisfy each value of t2(G). Generally, in Theorems 10
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and 1, if G is a connected graph with at least two vertices, then

ddiam(G)/2e+ 1 ≤ t2(G) ≤ |V (G)|−∆(G) + 2. (∗)

For graphs with diameter 2, Theorem 5 guarantees that 2 ≤ t2(G) ≤ 5.
These values of t2(G) were realized in Corollary 6. Finally, Theorem 7
characterized those graphs G with diam(G) = 2 and t2(G) = 5.

While the extreme values in (∗) can be attained by some graphs (see
Theorem 12, Corollary 13, and Corollary 2), there are families of graphs
whose N2-chromatic numbers lie strictly between these extreme bounds.

The double-headed kite DK(Km,Kn, Pk), where m,n ≥ 4 and k ≥ 2,
is the graph

DK(Km,Kn, Pk) = (((Km, v)¯ (Kn, v1)), v2)¯ (Pn, u),

where v is a vertex of Km, v1 and v2 are distinct vertices of Kn, and u is
an endvertex of Pn. It can be computed that

t2(DK(Km,Kn, Pk)) = diam(DK(Km,Kn, Pk)) = k + 1,

which is one less than the upper bound set in (∗).
On the other hand, we slightly modify the graph and technique de-

scribed in Corollary 2. For integer d ≥ 2, let a1, a2, . . . , ad+1 be positive
integers for which ak ≥ 2 for 2 ≤ k ≤ d − 1 and ad = ad+1 = 1 if d is
even, and ak ≥ 2 for 2 ≤ k ≤ d − 2 and ad−1 = ad = ad+1 = 1 if d is odd.
Then, for any collection {Gk} of connected graphs with |V (Gk)| = ak for
k = 1, 2, . . . , d+ 1, we have

diam

Ã
d+1]
k=1

Gk

!
= d and t2

Ã
d+1]
k=1

Gk

!
=

»
d

2

¼
+ 2,

which is one more than the lower bound set in (∗).
With the technique again used in Corollary 2, it is worth observing

that, given integers a and b, where a ≥ 4 and b ≥ da/2e+ 1, there exists a
connected graph G for which diam(G) = a and t2(G) = b.

In Table 4.1, using Theorem 7 and with the help of a Python program
created by Professor Jon Fernandez (a colleague of the second author) to
verify some N2-vertex colorings and some values, we are able to compute
the N2-chromatic number of all known graphs of largest possible order n
with diameter 2, maximum degree ∆, defect k, and the number N of such
graphs up to isomorphism. Some of these graphs attain the Moore bound
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(when k = 0, which are the Moore graphs) and the other graphs are simply
optimal (that is, the largest possible order). We refer the readers to [8] for
a survey of Moore graphs and the degree/diameter problem.

Table 4.1: Values of t2(G) for known Moore graphs and graphs of maximum
order with diam(G) = 2 and maximum degree ∆

The existence of the Moore graph of order 3250 with diameter 2 and
maximum degree 57 is still unknown. However, because of the layer-type
structure of Moore graphs, we can compute their N2-chromatic numbers.
Assuming that this unknownMoore graph does exist, Theorem 7 guarantees
that itsN2-chromatic number is at most 4. Now, let v be a peripheral vertex
of this graph. By assigning the color 1 to v, color 2 to one vertex in NG(v),
color 3 to the remaining vertices in NG(v), and color 4 to the vertices in
N2
G(v), it can be verified that this color assignment is an N2-vertex coloring

of the graph. Therefore, the N2-chromatic number of this yet-to-be-found
Moore graph would be 4.

While we are able to establish some tight bounds for the N2-chromatic
number of graphs, there are still some open questions on this vertex-coloring
concept. We know that t2(G) ≥ 2 for any connected graph G of order at
least 2. The complete graph of order at least 4 and the join of two connected
graphs each of order at least 2 have N2-chromatic number of 2. A particular
case (when d = 2) of Corollary 2 yields another family of graphs with N2-
chromatic number of 2.

Marisol Martínez
tab
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Problem. Characterize those graphs G with t2(G) = diam(G) = 2.
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