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Abstract

We are interested in stability results for breather solutions of the
5th, 7th and 9th order mKdV equations. We show that these higher
order mKdV breathers are stable in H2(R), in the same way as classi-
cal mKdV breathers. We also show that breather solutions of the 5th,
7th and 9th order mKdV equations satisfy the same stationary fourth
order nonlinear elliptic equation as the mKdV breather, independently
of the order, 5th, 7th or 9th, considered.
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1. Introduction

In this note we extend previous results on the stability of breather solutions
of the focusing modified Korteweg-de Vries (mKdV) equation (see [4]),

ut + (uxx + 2u
3)x = 0, u(t, x) ∈ R,(1.1)

to new breather solutions of higher order focusing versions of (1.1). Namely,
we are going to deal with

the focusing 5th-order mKdV equation

ut + (u4x + f5(u))x = 0,

f5(u) := 10uu
2
x + 10u

2uxx + 6u
5,

(1.2)

the focusing 7th-order mKdV equation

ut + (u6x + f7(u))x = 0,

f7(u) := 14u
2u4x + 56uuxu3x + 42uu

2
xx + 70u

2
xuxx + 70u

4uxx + 140u
3u2x

+20u7,
(1.3)
and the focusing 9th-order mKdV

ut + (u8x + f9(u))x = 0,

f9(u) := 18u
2u6x + 108uuxu5x + 228uu2xu4x + 210(ux)

2u4x + 126u
4u4x

+138u(u3x)
2 + 756uxu2xu3x + 1008u

3uxu3x + 182(u2x)
3 + 756u3(u2x)

2

+3108u2(ux)
2u2x + 420u

6u2x + 798u(ux)
4 + 1260u5(ux)

2 + 70u9,
(1.4)

and which we will denote them as 5th, 7th and 9th-mKdV equations here-
after. All these higher order mKdV equations are members of an infinite
family of equations, the so call focusing mKdV hierarchy of equations, as
it was shown by Alejo [2] (see [7],[10] for defocusing mKdV versions of this
hierarchy). Note that we are only interested in focusing mKdV versions
since these models are the only mKdV equations bearing regular (not sin-
gular) and real breather solutions. Moreover, other higher order mKdV
cases, (e.g. (2n+1)th-mKdV, n ≥ 5) will not be treated here, since beside
increasing the number of terms in each equation of the higher order hierar-
chy (see Appendix A), we have not at hand a global well posedness theory
of them in a Sobolev space Hs(R) with s ≤ 2, as it was pointed out by
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Grünrock [12, p.506, Cor.2.1]. Since our stability result is stated taking into
account small perturbations in H2(R), only higher order mKdV equations
with a Cauchy problem well defined in a Sobolev space Hs(R), s ≤ 2 are
going to be considered here, namely the 5th, 7th and 9th-mKdV equations
(see [17], [12] for further reading).

These higher order mKdV equations are a well-known completely in-
tegrable set of models [1, 8, 15], with infinitely many conservation laws.
On the other hand, solutions of (1.2), (1.3) and (1.4) are invariant under
space and time translations. In fact, for any given solution u and for any
t0, x0 ∈ R, u(t− t0, x− x0) and, even more −u are also solutions of (1.2),
(1.3) and (1.4).

About the Cauchy problem of higher order versions of (1.1), Linares by
using a contraction mapping argument showed in [17] that the initial value
problem for the 5th-mKdV equation is locally well-posed at H2(R). Kwon,
[14], obtained a better result: the 5th-mKdV equation is locally well-posed
at Hs(R), s ≥ 3

4 . Finally, Grünrock, [12], deduced well-possedness results
to other higher-order mKdV equations at Theorem 2.1. This same author
established that 7th-mKdV equation is locally well-posed at Hs(R), s ≥ 5

4 .
The Cauchy problem for the 5th-mKdV equation is globally well-posed at
Hs(R), s ≥ 1 and in the case of the 7th and 9th-mKdV (1.3)-(1.4) equations
at Hs(R), s ≥ 2. See e.g. Linares [17], Kwon [14] and Grünrock [12] for
further details. Note moreover that we have the following inner relation
between mKdV

ut = −∂x(uxx + 2u3),(1.5)

and its higher order versions, namely the 5th-mKdV,

ut = −∂x
µ
∂2x(uxx + 2u

3)− (2uu2x − 4u2uxx − 6u5)
¶
,(1.6)

the 7th-mKdV

ut = −∂x
µ
∂4x(uxx + 2u

3)− ∂2x(2uu
2
x − 4u2uxx − 6u5)

−(4uuxu3x − 4u2u4x − 2uu2xx − 40u4uxx − 20u3u2x − 20u7)
¶
,

(1.7)
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and the 9th-mKdV

ut = −∂x
∙
∂6x(uxx + 2u

3)− ∂4x(2uu
2
x − 4u2uxx − 6u5)

−∂2x(4uuxu3x − 4u2u4x − 2uu2xx − 40u4uxx − 20u3u2x − 20u7)
−
µ
4uu6x − 8u2u6x − 26uuxu5x + 16uxu5x − 52uuxxu4x + 28uxxu4x

−39u2xu4x − 39uxxu4x − 56u4u4x − 24uu23x + 16u23x
−84uxuxxu3x − 168u3uxu3x − 12u3xx − 196u3u2xx
−168u2u2xuxx − 280u6uxx + 42uu4x − 420u5u2x − 70u9

¶¸
.

(1.8)
In the case of the 5th, 7th and 9th-mKdV equations (1.2)-(1.3)-(1.4), the
profile of their soliton solutions is completely similar to the well known sech
mKdV soliton profile, and it is explicitly given by the formula (we denote
by v5, v7, v9 the speeds of 5th, 7th and 9th order solitons)

u(t, x) := Qc(x− vit)|i=5,7,9, v5 = c2, v7 = c3, v9 = c4

Qc(s) :=
√
csech(

√
cs), c > 0.

(1.9)

Moreover, it is easy to see, by substitution that both 5th, 7th and
9th-mKdV soliton solutions Qc (1.9) satisfy the same nonlinear stationary
elliptic equation

Q00c − cQc + 2Q
3
c = 0, Qc > 0, Qc ∈ H1(R).(1.10)

Note that this second order ODE is precisely the one satisfied by the mKdV
classical soliton. Moreover, note that the soliton solution (1.9) of the 5th,
7th and 9th-mKdV equations also satisfy the 4th, 6th and 8th order elliptic
ODEs coming naturally from integration in space of the 5th, 7th and 9th
order mKdV equations (1.2)-(1.3)-(1.4) respectively. Namely, 5th, 7th and
9th higher order mKdV solitons satisfy the following nonlinear stationary
elliptic equations:

Q(iv)c − c2Qc + f5(Qc) = 0,(1.11)

Q(vi)c − c3Qc + f7(Qc) = 0,(1.12)

and
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Q(viii)c − c4Qc + f9(Qc) = 0.(1.13)

Instead integrating directly in space (1.2), (1.3) and (1.4), another way
to check the validity of (1.11), (1.12) and (1.13) is by using the lowest
order nonlinear stationary elliptic equation (1.10) satisfied by all higher
order mKdV solitons. For instance, in the case of (1.11), we just substitute
and obtain:

Q
(iv)
c − c2Qc + f5(Qc)

= Q
(iv)
c − c2Qc + 10(Q

0
c)
2Qc + 10Q

2
cQ

00
c + 6Q

5
c

= (cQc − 2Q3c)
00 − c2Qc + 10(Q

0
c)
2Qc + 10Q

2
c(cQc − 2Q3c) + 6Q5c

= cQ
00
c − 12Qc(Q

0
c)
2 − 6Q2cQ

00
c − c2Qc + 10(Q

0
c)
2Qc + 10Q

2
c(cQc − 2Q3c)

+6Q5c
= c(cQc − 2Q3c)− 2Qc(cQ

2
c −Q4c)− 6Q2c(cQc − 2Q3c)− c2Qc

+10Q2c(cQc − 2Q3c) + 6Q5c = 0.

The proof for the other higher order nonlinear identities (1.12) and (1.13)
follows in the same way. Note moreover that the second order elliptic
equation (1.10) satisfied by all higher order mKdV solitons is deeply related
to the variational meaning of the soliton solution. To be more precise, it is
well-known that some of the (first) standard conservation laws of 5th, 7th
and 9th-mKdV equations are the mass

M [u](t) :=
1

2

Z
R
u2(t, x)dx =M [u](0),(1.14)

the energy

E[u](t) :=
1

2

Z
R

³
u2x − u4

´
(t, x)dx = E[u](0),(1.15)

and the higher order energies, defined respectively in H2(R)

E5[u](t) :=

Z
R

µ
1

2
u2xx − 5u2u2x + u6

¶
(t, x)dx = E5[u](0),(1.16)

in H3(R)

E7[u](t) :=

Z
R

µ
1

2
u23x +

7

2
u4x − 7u2u2xx + 35u4u2x −

5

2
u8
¶
(t, x)dx = E7[u](0),

(1.17)
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and in H4(R)

E9[u](t) :=
R
R

µ
1

2
u24x − 9u2u23x + 20uu3xx + 51u2xu2xx + 63u4u2xx − 133u2u4x

−210u6u2x + 7u10(t, x)dx = E9[u](0).
(1.18)

Using the lowest order conserved quantities (i.e., mass and energy (1.15)-
(1.16)), the variational structure of any higher order mKdV soliton (1.9)
can be characterized as follows: there exists a well-defined Lyapunov func-
tional, invariant in time and such that any higher order mKdV soliton Qc

(1.9) is an extremal point. Moreover, it is a global minimizer under fixed
mass. For the 5th, 7th and 9th-mKdV cases, this functional is given by
(see [6] for the mKdV case)

H3[u](t) = E[u](t) + cM [u](t),(1.19)

where c > 0 is the scaling of the solitary wave (1.9), and M [u], E[u] are
given in (1.14) and (1.15). Indeed, it is easy to see that for any small
perturbation z(t) ∈ H1(R),

H3[Qc + z](t) = H3[Qc]−
Z
R
z(Q00c − cQc + 2Q

3
c) +O(kz(t)k2H1).(1.20)

The zero order term above is independent of time, and the first order term
in z is zero from (1.10), which it implies the critical character of Qc.

Note that by using higher order conservation laws (1.16), (1.17) and
(1.18), and therefore higher order Lyapunov functionals, we are also able
to characterize 5th, 7th and 9th-mKdV solitons (1.9) as extremal points
of these higher order functionals. More precisely, for instance, in the 5th-
mKdV case, and using the quantitiesM [u], E5[u] given in (1.14) and (1.16),
this functional is explicitly given, for any c > 0, by

H5[u](t) = E5[u](t)− c2M [u](t).(1.21)

For the 7th-mKdV case, using the quantities M [u], E7[u] given in (1.14)
and (1.17), we get

H7[u](t) = E7[u](t) + c3M [u](t),(1.22)
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and finally for the 9th-mKdV case, using the quantities M [u], E9[u] given
in (1.14) and (1.18), we get

H9[u](t) = E9[u](t)− c4M [u](t).(1.23)

In fact, it is easy to see that for any small z(t) ∈ H2(R) (andH3(R),H4(R)
respectively),

H5[Qc + z](t) = H5[Qc] +

Z
R
z

µ
Q(iv)c − c2Qc + f5(Qc)

¶
+O(kz(t)k2H2),(1.24)

H7[Qc + z](t) = H7[Qc]−
R
R z

µ
Q
(vi)
c − c3Qc + f7(Qc)

¶
+O(kz(t)k2H3),

and

H9[Qc + z](t) = H9[Qc] +
R
R z

µ
Q
(viii)
c − c4Qc + f9(Qc)

¶
+O(kz(t)k2H4).

In all cases, the zero order term is independent of time, and the first order
term in z is zero from (1.11), (1.12) and (1.13). Finally, and from the
functionals (1.21)-(1.23) above, we conjecture that the following Lyapunov
functional (here we identify E3 ≡ E)

H2n+1[u](t) = E2n+1[u](t) + (−1)n+1cnM [u](t), n ∈ N+,(1.25)

generates the associated nonlinear ODE

Q(2n)c − cnQc + f2n+1(Qc) = 0, n ∈ N+,(1.26)

satisfied by any soliton solution of the corresponding member of the focusing
mKdV hierarchy (see [2]).

1.1. Breathers in 5th, 7th and 9th order mKdV equations

Beside these soliton solutions of 5th, 7th and 9th-mKdV equations (1.2)-
(1.3)-(1.4), it is possible to find another big set of explicit and oscillatory so-
lutions, known in the physical and mathematical literature as the breather
solution, and which is a spatially localized, and periodic in time, up to
translations, real function.

For the 5th, 7th and 9th-mKdV equations (1.2)-(1.3)-(1.4), the breather
solution in the line can be obtained by using different methods (e.g. Inverse
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Scattering, Hirota method. See [18, 19, 20] for further details). Particu-
larly we use here a matching method to find these breather solutions, i.e.
proposing a well known ansatz, with speeds as free parameters to be deter-
mined in order to define a solution. Note that the same procedure can be
used to obtain periodic breather solutions of the 5th, 7th and 9th-mKdV
equations.

Definition 1.1 (5th, 7th and 9th-mKdV breathers). Let α, β > 0 and
x1, x2 ∈ R. The real-valued breather solution of the 5th, 7th and 9th-
mKdV equations (1.2)-(1.3)-(1.4) is given explicitly by the formula

B ≡ Bα,β(t, x;x1, x2) := ∂xB̃µ := 2∂x

⎡⎣ arctanµβ
α

sin(αy1)

cosh(βy2)

¶⎤⎦,(1.27)

with y1 and y2

y1 = x+ δit+ x1, y2 = x+ γit+ x2, i = 5, 7, 9(1.28)

and with velocities (δ5, γ5) in the 5th order case

δ5 := −α4 + 10α2β2 − 5β4, γ5 := −β4 + 10α2β2 − 5α4,(1.29)

(δ7, γ7) in the 7th order case

δ7 := α6 − 21α4β2 + 35α2β4 − 7β6, γ7 := −β6 + 21α2β4 − 35α4β2 + 7α6,
(1.30)
and (δ9, γ9) in the 9th order case

δ9 := −α8 + 36α6β2 − 126α4β4 + 84α3β6 − 9β8,
γ9 := −β8 + 36α2β6 − 126α4β4 + 84α6β2 − 9α8.(1.31)

Remark 1.1. Observe that breather solutions for 5th, 7th and 9th order
mKdV equations have the same functional expression as the classical mKdV
breather solution [4, Def.1.1]

B ≡ Bα,β(t, x;x1, x2) := 2∂x

⎡⎣ arctanµβ
α

sin(αy1)

cosh(βy2)

¶⎤⎦,(1.32)

with y1 = x+ δt+ x1, y2 = x+ γt+ x2, and velocities δ = α2 − 3β2, γ =
3α2 − β2, and in fact only differing in speeds (1.29)-(1.31).
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Remark 1.2. Finally be aware that these 5th, 7th and 9th breather so-
lutions (1.27) in R could be used to re-approach the ill-posedness of the
Cauchy problem for 5th, 7th and 9th-mKdV equations (1.2)-(1.3) and (1.4),
in the same way they were used by Kenig-Ponce and Vega [13] and Alejo
[3], to show a failure of the flow map associated to some nonlinear disper-
sive equations to be uniformly continuous. This procedure could afford a
complementary proof to the previous works on the ill-posedness of these
higher order equations presented by Kwon [14] and Grünrock [12].

One of the main results of this work will be to prove that, exactly as
it happens with all 5th, 7th and 9th soliton solutions (1.9) which satisfy
the same nonlinear elliptic equation (1.10), breather solutions (1.27) of the
5th, 7th and 9th mKdV equations satisfy the same nonlinear fourth order
stationary elliptic equation. Namely

Theorem 1.2. Any 5th, 7th or 9th mKdV breather B satisfies the same
fourth order stationary elliptic equation than the classical mKdV breather,
namely

B4x+10BB
2
x+10B

2Bxx+6B
5−2(β2−α2)(Bxx+2B

3)+(α2+β2)2B = 0.

This fact can be interpreted as if all mKdV breathers and higher order
mKdV breathers are characterized by the same elliptic equation, in a similar
way as it was showed for the KdV equation by Lax [16]. Moreover, and as
second main result in this paper, we give a positive answer to the question
of breathers stability for these higher order mKdV equations.

Theorem 1.3. 5th, 7th and 9th mKdV breathers are orbitally stable in
the H2-topology.

A more detailed version of this result is given in Theorem 5.1. As we
have already shown, we need the space H2 by a regularity argument and
through the variational characterization that we obtain of these breather
solutions of higher order mKdV equations.

1.2. Organization of this paper

In Sect.2 we present some higher order nonlinear identities adapted to 5th,
7th and 9th-mKdV breathers. Furthermore, we prove that any 5th, 7th or
9th-mKdV breather solutions satisfy a fourth order nonlinear ODE, which
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characterizes them. Sect.3 is devoted to collect and list the properties of
a linearized operator associated to these higher order breather solutions.
In Sect.4 we introduce a suitable H2-Lyapunov functional for higher order
mKdV equations (1.2), (1.3) and (1.4). Finally, in Sect.5 we present a
detailed version of Theorem 5.1.

Acknowledgments. We would like to thank to professors C. Muñoz and
C. Kwak for richful discussions and comments on a previous version.

2. Higher order nonlinear identities

The aim of this section is to show explicit nonlinear identities satisfied by
any 5th, 7th or 9th-mKdV breathers.

First of all, consider the two directions associated to spatial translations.
Let Bα,β as introduced in (1.27). Then we define

B1(t, x;x1, x2) := ∂x1Bα,β(t, x;x1, x2) and
B2(t, x;x1, x2) := ∂x2Bα,β(t, x;x1, x2).

(2.1)

It is clear that, for all t ∈ R, and α, β as in definition (1.27) and x1, x2 ∈ R,
bothB1 andB2 are real-valued, exponentially decreasing in space, functions
in the Schwartz class. Moreover, it is not difficult to see that they are
linearly independent as functions of the x-variable, for all time t fixed.
We also define the partial mass associated to any 5th, 7th or 9th-mKdV
breather B (1.27) as (G = β

α sin(αy1), F = cosh(βy2)):

M(t, x) ≡Mα,β(t, x) := 1
2

R x
−∞B2(t, s;x1, x2)ds

= β + 1
2∂x log(G

2 + F 2)(t, x).
(2.2)

In the last expression we have used that B2 = 1
2∂
2
x log(G

2 + F 2)(t, x), just
following [5, Lemma 2.1, Appendix A] in the case of a vanishing boundary
condition. Finally, let consider B̃ = B̃α,β as the following L∞-function
associated to mKdV breathers:

B̃(t, x) := 2 arctan

µ
β

α

sin(αy1)

cosh(βy2)

¶
.(2.3)

The following nonlinear identities are satisfied by 5th, 7th and 9th-mKdV
breathers:
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Lemma 2.1. We have for all t ∈ R, and α, β > 0, the following identities.
Let B = Bα,β be any 5th, 7th or 9th-mKdV breather solution of the form
(1.27) as it corresponds. Then

1. For any fixed t ∈ R, we have B̃t well-defined in the Schwartz class,
satisfiying respectively for the 5th, 7th or 9th-mKdV equations that

B̃t +B2nx + f2n+1(B) = 0, with n = 2, 3, 4.(2.4)

2. LetM be defined by (2.2). Then

1. The 5th order case:

B2xx − 2BB̃t + 2Mt − 2B6 − 2BxBxxx − 10B2B2x = 0.(2.5)

2. The 7th order case:

B23x +2BB̃t − 2Mt + 5B
8 + 2BxB5x − 2B2xxB4x

+28B2BxB3x − 14B2B2xx + 56BB2xBxx + 7B
4
x + 70B

4B2x = 0.
(2.6)

3. The 9th order case:

B24x −2BB̃t + 2Mt − 2B7xBx + 2B6xBxx − 2B5xB3x + F [B] = 0,
F [B] := −2

R x
−∞ f9(B)(s)Bsds.

(2.7)

Proof. In the 5th case, the first item (2.4) is a consequence of (2.3)
and a convenient integration in space (from −∞ to x). To obtain (2.5)
we multiply (2.4), when n = 2, by Bx and integrate in space in the same
region. The proofs in the 7th and 9th order cases follow similar steps as in
the 5th order case. 2

We compute now the higher order energies (1.16), (1.17) and (1.18) of
any higher order breather solution of (1.2), (1.3) and (1.4) equations.

Lemma 2.2. Let B = Bα,β be any 5th, 7th or 9th order mKdV breather
solutions respectively, for α, β as in definition (1.27). Then the higher order
energies (1.16), (1.17) and (1.18) of a 5th, 7th and 9th-mKdV breather B
are respectively
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E5[B] := −
2

5
βγ5, E7[B] :=

2

7
βγ7, and E9[B] := −

2

9
βγ9,(2.8)

with γ5, γ7, γ9 given in (1.29)-(1.30)-(1.31).

Remark 2.1. Note that as it happens with the classical mKdV breather
solution B, where E[B] := 2

3βγ (see [4, Lemma 2.4]), the sign of the higher
order energies E5, E7, E9 is driven by a nonlinear balance among the dif-
ferent terms depending on scalings α, β.

Remark 2.2. From the above Lemma, we conjecture that for any (2n+1)-
order mKdV breather B, its (2n+ 1)-order energy is given by

E2n+1[B](t) = (−1)n+1
2β

2n+ 1
γ2n+1, n ∈ N,(2.9)

and with

γ2n+1 :=
nX

j=0

(−1)j (2n+ 1)!

(2j)!(2n+ 1− 2j)!α
2jβ2(n−j), n ∈ N.

Proof. (of Lemma 2.2) We start with the 5th order case. First of all,
let us prove the following reduction

E5[B](t) = −
1

5

Z
R
Mt(t, x)dx.(2.10)

Indeed, we multiply (2.4) by B and integrate in space: we getZ
R
B2xx =

Z
R
20B2B2x − 6B6 −BB̃t.

On the other hand, integrating (2.5),Z
R
B2xx =

2

3

Z
R
B6 +

2

3

Z
R
BB̃t −

2

3

Z
R
Mt +

10

3

Z
R
B2B2x.

From these two identities, we getZ
R
B6 =

1

10

Z
R
Mt −

1

4

Z
R
BB̃t +

5

2

Z
R
B2B2x,
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and thereforeZ
R
B2xx = −

3

5

Z
R
Mt +

15

3

Z
R
B2B2x +

1

2

Z
R
BB̃t.

Finally, substituting the last two identities into (1.16), we get (2.10),
as desired. Proceeding in the same way, in the 7th and 9th order cases we
obtain the corresponding simplifications

E7[B](t) =
1

7

Z
R
Mt(t, x)dx, E9[B](t) =

1

9

Z
R
Mt(t, x)dx.(2.11)

Now we prove (2.8). From (2.2), we have that

Mt(t, x) =
1

2
∂x∂t log(G

2 + F 2)(t, x).

Now substituting in the energy (2.10), remembering the identity (2.4) and
the explicit expression forM[B] in (2.2), we get

E5[B](t) = −15
R
RMt(t, x) dx = −15

1
2

R
R

µ
∂x∂t log(G

2 + F 2)

¶
dx

= −
µ
1
5
1
2∂t log(G

2 + F 2)

¶
|+∞−∞ = −25βγ5.

For the 7th and 9th order cases, we proceed as above, but now using (2.4),
(2.6) and (2.7), and we get

E7[B] =
2

7
βγ7, and E9[B] = −

2

9
βγ9.

2

Note that since the profiles of 5th, 7th and 9th order mKdV breathers
(solitons) agree with the expression of the classical mKdV breather (soli-
ton), and since the energy E (1.15) is a conserved quantity for the mKdV
and 5th, 7th and 9th higher order equations, when the lowest energy E
(1.15) is evaluated in these 5th, 7th and 9th higher order breathers we ob-
tain in both cases the same value than the mKdV breather energy, 23βγ.
For the sake of simplicity and to understand that property, we remember
here the relation [5, (4.2),(4.4)] in the case of low order conserved quantities
evaluated at breather solutions B and at soliton solutions Qc:

M [B] = 2Re

∙
M [Qc]|√c=β+iα

¸
and E[B] = 2Re

∙
E[Qc]|√c=β+iα

¸
.(2.12)

The next nontrivial identity for 5th-mKdV breathers (1.27) will be use-
ful in the proof of the nonlinear stationary equation that they satisfy.
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Lemma 2.3. Let B = Bα,β be any 5th-mKdV breather (1.27). Then, for
all t ∈ R,

B̃t = (α
2 + β2)2B − 2(β2 − α2)(Bxx + 2B

3).(2.13)

Proof. We will use the following notation:

B := 2∂x

∙
arctan

µ
β

α

sin(αy1)

cosh(βy2)

¶¸
=

H(t, x)

N(t, x)
,

H := H(t, x) = 2

µ
βα2 cosh(βy2) cos(αy1)− β2α sinh(βy2) sin(αy1)

¶
,

N := N(t, x) = α2 cosh2(βy2) + β2 sin2(αy1),

and from B̃ (2,3)

B̃t := 2∂t

∙
arctan

µ
β

α

sin(αy1)

cosh(βy2)

¶¸
=

P (t, x)

N(t, x)
,

P := P (t, x) = 2

µ
βαδ5 cosh(βy2) cos(αy1)− βαγ5 sinh(βy2) sin(αy1)

¶
,(2.14)

with δ5, γ5 as in (1.29). For the sake of simplicity, we are going to use the
following notation:

N1 := Nx = 2αβ
2 cos(αy1) sin(αy1) + 2α

2β cosh(βy2) sinh(βy2),(2.15)

N2 := Nxx = 2α
2β2(cos2(αy1)− sin2(αy1) + cosh2(βy2)(2.16)

+ sinh2(βy2)),

and

H1 := Hx = −2αβ(α2 + β2) cosh(βy2) sin(αy1),(2.17)

H2 := Hxx = −2αβ(β2 + α2)(α cosh(βy2) cos(αy1)(2.18)

+β sin(αy1) sinh(βy2)).

First of all, we start rewriting the following terms of the l.h.s. of (2.13):
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Bxx + 2B
3 =

1

N3

µ
2H3 +H2N

2 − 2H1NN1 + 2HN2
1 −HNN2

¶
,(2.19)

and hence, we have that

−B̃t − 2(β2 − α2)(Bxx + 2B
3) + (α2 + β2)2B = M0

N3 ,(2.20)

with

M0 := −PN2 + (α2 + β2)2HN2

−2(β2 − α2)

µ
2H3 − 2NH1N1 + 2HN2

1 +N2H2 −HNN2

¶
.

(2.21)

Indeed, we verify, after substituting P and H 0s and N 0s terms explicitly in
M0 and having in mind basic trigonometric and hyperbolic identities, that

M0 = 0,(2.22)

and we conclude. 2

We are ready now to present one of the most important results of this
work, namely, we are going to show that in fact, breather solutions (1.27)
of 5th, 7th and 9th-mKdV equations satisfy the same fourth order ODE
satisfied by the classical mKdV breather solution (2.23) and it characterizes
them. This result means that this ODE identifies breather functions at
different levels in the mKdV hierarchy, i.e. at the mKdV level and at 5th,
7th and 9th mKdV levels, as being solutions of the same stationary fourth
order ODE.

Theorem 2.4. Let B = Bα,β be any 5th, 7th or 9th-mKdV breather so-
lution given in (1.27). Then, for any fixed t ∈ R, B satisfies the same
nonlinear stationary equation than the classical mKdV breather solution
(2.23), namely

G[B] := B4x + 10BB
2
x + 10B

2Bxx + 6B
5 − 2(β2 − α2)(Bxx + 2B

3)
+(α2 + β2)2B = 0.

(2.23)
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Proof. [Proof of Proposition 2.4] In the case of the 5th order breather,
since by (2.4) the first four terms in (2.23) equal −B̃t and using the above
identity (2.13), we simply get

G[B] = −B̃t − 2(β2 − α2)(Bxx + 2B
3) + (α2 + β2)2B = 0.

The 7th and 9th order cases are more involved since we do not have at
hand any identity like (2.13). Therefore, we first recast the l.h.s. of (2.23).
Taking into account the r.h.s. of (1.6), we rewrite the first four terms in
(2.23) and simplify the l.h.s. of (2.23), as follows:

B4x + 10BB
2
x + 10B

2Bxx + 6B
5 − 2(β2 − α2)(Bxx + 2B

3) + (α2 + β2)2B
= ∂2x(Bxx + 2B

3)− 2B(B2x − 2BBxx − 3B4)− 2(β2
−α2)(Bxx + 2B

3) + (α2 + β2)2B
= ∂2x(Bxx + 2B

3)− 2B([B2x +B4]− 2B[Bxx + 2B
3])

−2(β2 − α2)(Bxx + 2B
3) + (α2 + β2)2B

= ∂2x(Bxx + 2B
3) + (4B2 − 2(β2 − α2))(Bxx + 2B

3)
−2B[B2x +B4] + (α2 + β2)2B.

(2.24)

Now, we prove directly that (2.24) vanishes. Having in mind notation (2.14)
and (2.15)-(2.18), we extend it considering the following derivatives:

N3 := Nxxx = −8α3β2 cos(αy1) sin(αy1) + 8α2β3 cosh(βy2) sinh(βy2),
N4 := N4x = 8α

2β2(−α2 cos2(αy1) + α2 sin2(αy1) + β2 cosh2(βy2)
+β2 sinh2(βy2)),

and
H3 := Hxxx = 2αβ((α

4 − β4) cosh(βy2) sin(αy1)
−2αβ(α2 + β2) cos(αy1) sinh(βy2)),

H4 := H4x = 2αβ((α
5 − 2α3β2 − 3αβ4) cosh(βy2) cos(αy1)

+(3α4β + 2α2β3 − β5) sin(αy1) sinh(βy2)).

First of all, remembering from (2.19) that

Bxx + 2B
3 =

1

N3

µ
2H3 +H2N

2 − 2H1NN1 + 2HN2
1 −HNN2

¶
,(2.25)

we get
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∂2x(Bxx + 2B
3) = 1

N5

µ
6H2N(H2N − 6H1N1) + 6H

3(4N2
1 −NN2)

+N(N(H4N
2 − 4H3NN1 + 12H2N

2
1 − 6H2NN2)

−4H1(6N
3
1 − 6NN1N2 +N2N3)) +H(24N4

1 − 36NN2
1N2

+2N2(6H2
1 + 3N

2
2 + 4N1N3)−N3N4)

¶
.

(2.26)
Hence, we have that

∂2x(Bxx + 2B
3) + (4B2 − 2(β2 − α2))(Bxx + 2B

3) = M1
N5 ,(2.27)

with

M1 :=

µ
8H5 + 2H2N(5H2N − 22H1N1) + 2H

3(16N2
1 − 5NN2

+2(α2 − β2)N2) +H

∙
24N4

1 − 36NN2
1N2 + 2N

2(6H2
1 + 3N

2
2 + 4N1N3

+2(α2 − β2)N2
1 )−N3(N4 + 2(α

2 − β2)N2)

¸
+N [−24H1N

3
1 + 12NN1(H2N1 + 2H1N2) +N3(H4 + 2(α

2 − β2)H2)

−2N2(2H3N1 + 3H2N2 + 2H1(N3 + (α
2 − β2)N1))]

¶
.

(2.28)
Moreover, we have that

−2B[B2x +B4] = −2H
N5

µ
H4 + (H1N −HN1)

2

¶
,(2.29)

and therefore,

−2B[B2x +B4] + (α2 + β2)2B = M2
N5 ,(2.30)

with

M2 :=

µ
H(−2(H4 + (H1N −HN1)

2) + (α2 + β2)2N4)

¶
.(2.31)

Hence, we get the following simplification of (2.24):

G[B] = ∂2x(Bxx + 2B
3) + (4B2 − 2(β2 − α2))(Bxx + 2B

3)
−2B[B2x +B4] + (α2 + β2)2B

= M1+M2
N5 ,

(2.32)
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with M1,M2 in (2.28) and (2.31) respectively. In fact, we verify, using the
symbolic software Mathematica, that after substituting H 0s and N 0s terms
explicitly in (2.32) and lengthy rearrangements, we get

M1 +M2 =
P3

i=1 pij sin(αy1)
2i +

P4
i=1 qij sin(αy1)

2i−1,

pij =
PLi

j=0 aij cos(αy1) cosh(βy2)
2j+1,

qij =
PL

0
i

j=0 bij sinh(βy2) cosh(βy2)
2j , Li, L

0
i ∈N.

(2.33)

It is easy to see that aij = bij = 0,∀i = 1, . . . , 4, j = 0, . . . , Li, L
0
i. Therefore

we get that

M1 +M2 = 0,(2.34)

and we conclude. 2

A direct consequence from Theorem 2.4 and identity (2.4), implies that
for the 7th and 9th order cases, we are able to obtain a new identity relating
B̃t and lower order spatial derivatives of the 7th and 9th-mKdV breathers
(see (2.4) for comparison):

Corollary 2.5. Let B = Bα,β be any 7th or 9th-mKdV breather solutions
(1.27) as it corresponds. Then, for any fixed t ∈ R, the associated profile
B̃ (2.3) to any 7th or 9th-mKdV breather satisfies the following nonlinear
identities:

1. 7th order case:

B̃t − 2(β2 − α2)(α2 + β2)2B + 4(α4 − 6α2β2 + β4)B3

+4(β2 − α2)B5 − 4B7 + (3α4 − 10α2β2 + 3β4)Bxx + 4(β
2 − α2)BB2x

−20B3B2x + 2BB2xx − 4BBxB3x = 0.
(2.35)

2. 9th order case:

B̃t + a0B + a1B
3 + a2B

5 + 16
¡
β2 − α2

¢
B7 − 26B9 + a3B

2
xB

+32
¡
α2 − β2

¢
B2xB

3 − 100B2xB5 − 2B4xB + a4Bxx − 6
¡
α2 + β2

¢2
BxxB

2

+20
¡
β2 − α2

¢
BxxB

4 − 28BxxB
6 + 4

¡
β2 − α2

¢
B2xBxx − 12B2xBxxB

2

+8
¡
β2 − α2

¢
B2xxB − 4B2xxB3 + 2B3xx + 8

¡
α2 − β2

¢
BxB3xB

−32BxB3xB
3 − 4BxBxxB3x − 2B23xB = 0,

(2.36)



Higher order mKdV breathers: nonlinear stability 513

for

a0 = −
¡
α2 + β2

¢2
(3α4 − 10α2β2 + 3β4),

a1 = −4(α2 − β2)(α4 − 14α2β2 + β4),
a2 = −2

¡
α4 + 18α2β2 + β4

¢
,

a3 = 2
¡
5α4 − 6α2β2 + 5β4

¢
,

a4 = −4(α2 − β2)(α4 − 6α2β2 + β4).

Proof. For both 7th and 9th order cases, using B4x in (2.23), and
computing from it the expressions of B6x, B8x, and substituting recursively
B4x, we get (2.35) and (2.36). 2

3. Spectral analysis

For any 5th, 7th or 9th-mKdV breather solution B = Bα,β, we define the
following fourth order linear operator:

L[z](x; t) := z(4x)(x)− 2(β2 − α2)zxx(x) + (α
2 + β2)2z(x)

+10B2zxx(x) + 20BBxzx(x)

+
h
10B2x + 20BBxx + 30B

4 − 12(β2 − α2)B2
i
z(x).

(3.1)

As a direct consequence of the already studied spectral properties of
the linearized operator L[z] associated to the mKdV breather solution B
in [4] and after a proper rescaling of B, we obtain the same results for the
5th, 7th or 9th-mKdV breather solutions. In the following lines and for
the sake of completeness, we only summarize and list the main features of
(3.1): consider first the functions B1, B2 (2.1) associated to 5th, 7th and
9th-mKdV breather solutions B (as it corresponds) and denote as scaling
directions, the derivatives

ΛαB = ∂αB, ΛβB = ∂βB.(3.2)

We get the following

Lemma 3.1. For any 5th, 7th or 9th-mKdV breather solution B = Bα,β,
we get that

1. (Continuous spectrum) L is a linear, unbounded operator in L2(R),
with dense domain H4(R). Moreover, L is self-adjoint, and is a com-
pact perturbation of the constant coefficients operator

L0[z] := z(4x) − 2(β2 − α2)zxx + (α
2 + β2)2z.
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In particular, the continuous spectrum of L is the closed interval
[(α2 + β2)2,+∞) in the case β ≥ α, and [4α2β2,+∞) in the case
β < α, with no embedded eigenvalues are contained in this region.

2. (Kernel) For each t ∈ R, one has

kerL = span
n
B1(t;x1, x2), B2(t;x1, x2)

o
.

3. Consider the scaling directions ΛαB and ΛβB introduced in (3.2).
Then Z

R
ΛαB L[ΛαB] = 16α2β > 0,(3.3)

and Z
R
ΛβB L[ΛβB] = −16α2β < 0.(3.4)

4. Let

B0 :=
αΛβB + βΛαB

8αβ(α2 + β2)
.(3.5)

Then B0 is Schwartz and satisfies L[B0] = −B,Z
R
B0B =

1

4β(α2 + β2)
> 0, and

1

2

Z
R
B0L[B0] = −

1

8β(α2 + β2)
< 0.

(3.6)

5. Let B1, B2 the kernel elements defined in (3.1) and W the Wronskian
matrix of the functions B1 and B2,

W [B1, B2](t;x) :=

"
B1 B2
(B1)x (B2)x

#
(t, x).(3.7)

Then

detW [B1, B2](t;x) = −
8α3β3(α2 + β2)[α sinh(2βy2)− β sin(2αy1)]

(α2 + β2 + α2 cosh(2βy2)− β2 cos(2αy1))2
.

(3.8)

6. The operator L defined in (3.1) (associated with 5th, 7th and 9th
mKdV equations) has a unique negative eigenvalue −λ20 < 0, of mul-
tiplicity one, and λ0 = λ0(α, β, x1, x2, t).
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7. (Coercivity) Let us consider the quadratic from associated to L (3.1):

Q[z] :=
R
R zL[z] =

R
R z2xx + 2(β

2 − α2)
R
R z2x + (α

2 + β2)2
R
R z2

−10
R
RB2z2x − 10

R
RB2xz

2 − 40
R
RBBxzzx

+30
R
RB4z2 − 12(β2 − α2)

R
RB2z2.(3.9)

There exists a continuous function ν0 = ν0(α, β), well-defined and
positive for all α, β > 0 and such that, for all z0 ∈ H2(R) satisfying
(here B−1 is the eigenfunction associated to the negative eigenvalue)Z

R
z0B−1 =

Z
R
z0B1 =

Z
R
z0B2 = 0,(3.10)

then
Q[z0] ≥ ν0kz0k2H2(R).(3.11)

For the proof of this Lemma, we refer the interested reader to [4, Sect.4].

4. Variational characterization of higher order mKdV breathers

In this section we define a H2-Lyapunov functional for both 5th, 7th and
9th-mKdV equations (1.2), (1.3) and (1.4) and associated to any of the
higher order breather solutions. This approach is completely similar to the
one depicted in [4] for the classical mKdV breather solution.

Let B = Bα,β be any 5th, 7th or 9th-mKdV breather solution and
t ∈ R. Using a linear combination of the functionals E5[u], E[u] and M [u]
given in (1.16), (1.15) and (1.14), we define

H[u(t)] := E5[u](t) + 2(β
2 − α2)E[u](t) + (α2 + β2)2M [u](t).(4.1)

Therefore, H[u] is a real-valued conserved quantity, well-defined for H2-
solutions of (1.2), (1.3) and (1.4).

Moreover, one has the following:

Lemma 4.1. 5th, 7th and 9th-mKdV breathers (1.27) are critical points
of the Lyapunov functional H (4.1). In fact, for any z ∈ H2(R) with
sufficiently small H2-norm, and B = Bα,β any 5th, 7th and 9th-mKdV
breather solutions, then, for all t ∈ R, one has

H[B + z]−H[B] = 1

2
Q[z] +N [z],(4.2)
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with
Q being the quadratic form defined in (3.7), andN [z] satisfying |N [z]| ≤

Kkzk3H2(R).

Proof. Considering any 5th, 7th or 9th-mKdV breather B, we compute
H[B + z] = 1

2

R
R(Bxx + zxx)

2 − 5
R
R(B + z)2(Bx + zx)

2 +
R
R(B + z)6

+(β2 − α2)
R
R(Bx + zx)

2 − (β2 − α2)
R
R(B + z)4

+1
2(α

2 + β2)2
R
R(B + z)2

= 1
2

R
RB2xx − 5

R
RB2B2x +

R
RB6 + (β2 − α2)

R
RB2x

−(β2 − α2)
R
RB4 + 1

2(α
2 + β2)2

R
RB2 +

R
R z

∙
B4x + 10BB

2
x

+10B2Bxx + 6B
5 − 2(β2 − α2)(Bxx + 2B

3) + (α2 + β2)2B

¸
+1
2

∙ R
R z2xx + 2(β

2 − α2)
R
R z2x + (α

2 + β2)2
R
R z2 + 10

R
RB2zxxz

−20
R
RBBxzxz +

R
R(30B

4 − 10B2x − 12(β2 − α2)B2)z2
¸

−5
R
R(z

2z2x + 2Bxz
2zx + 2Bzz

2
x) +

R
R 20B

3z3 + 15B2z4

+6
R
RBz5 +

R
R z6 − 4(β2 − α2)

R
RBz3 − (β2 − α2)

R
R z4.
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We finally obtain:

H[B + z] = H[B] +
Z
R
G[B]z(t) dx+

1

2
Q[z] +N [z],

where Q is defined in (3.7) and

G[B] := B4x + 10BB
2
x + 10B

2Bxx + 6B
5 − 2(β2 − α2)(Bxx + 2B

3) + (α2 + β2)2B.

From Theorem (2.4), one has G[B] ≡ 0. Finally, the term N [z] is given
by

N [z] := −10
R
RBzz2x +

R
R[

10
3 Bxxz

3 − 5z2z2x + 20B3z3 + 15B2z4 + 6Bz5 + z6]

−4(β2 − α2)
R
RBz3 − (β2 − α2)

R
R z4.(4.3)

Therefore, from direct estimates one has |N [z]| ≤ O(kzk3H2(R)) as de-
sired. 2

Using the previous Lemma, we are able to prove the main result of the
paper.

5. Main Theorem

Theorem 5.1 (H2-stability of 5th, 7th and 9th order mKdV breathers).
Let α, β ∈ R\{0} and B = Bα,β any 5th, 7th or 9th order mKdV breather.
There exist positive parameters η0, A0, depending on α and β, such that
the following holds. Consider u0 ∈ H2(R), and assume that there exists
η ∈ (0, η0) such that

ku0 −B(t = 0; 0, 0)kH2(R) ≤ η.(5.1)

Then there exist x1(t), x2(t) ∈ R such that the solution u(t) of the
Cauchy problem for the 5th (1.2), 7th (1.3) or for the 9th (1.4) equations,
with initial data u0 ∈ H2(R), satisfies

sup
t∈R

°°°u(t)−B(t;x1(t), x2(t))
°°°
H2(R)

≤ A0η,(5.2)

with

sup
t∈R

|x01(t)|+ |x02(t)| ≤ KA0η,(5.3)

for a constant K > 0.

Remark 5.1. Note that the same result is true for the negative breather
−Bα,β which is also a solution of (1.2) or (1.3).
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Proof. [Proof of Theorem 5.1] We take u = u(t) ∈ H2(R) as the
corresponding local in time solution of the Cauchy problem associated to
(1.2), (1.3) or (1.4), with initial condition u(0) = u0 ∈ H2(R) (cf. [17],
[14], [12]).

Therefore once we guaranteed for the case of 5th, 7th and 9th-mKdV
breathers, that they satisfy the same 4th order stationary ODE (2.23) as the
classical mKdV breather, that a suitable coercivity property holds for the
bilinear form Q associated to any of these higher order breathers (see (3.9),
and the existence of a unique negative eigenvalue of the linearized operator
L (3.1) associated again to these higher order breathers, the stability proof
follows the same steps as the H2-stability of classical mKdV breathers [4,
Theorem 6.1]. Namely, we proceed assuming that the maximal time of
stability T is finite and we arrive to a contradiction. 2

A. 11th-mKdV equation

For the sake of completeness, we show the 11th order mKdV equation. It
is written as follows:

ut +∂x

µ
u10x + 22u

2u8x + 198u
4u6x + 924u

6u4x + 506u (u4x)
2 + 3036u3 (u3x)

2

+2310u8uxx + 8316u
5 (uxx)

2 + 9372u2 (uxx)
3 + 9240u7 (ux)

2 + 26796u3 (ux)
4

+176uuxu7x + 484uuxxu6x + 462 (ux)
2 u6x + 836uu3xu5x + 2376u

3uxu5x
+5016u3uxxu4x + 2706 (uxx)

2 u4x + 11220u
2 (ux)

2 u4x + 3498uxx (u3x)
2

+11088u5uxu3x + 21120u (ux)
3 u3x + 54516u

4 (ux)
2 uxx

+44748u (ux)
2 (uxx)

2 + 13398 (ux)
4 uxx + 2376uxuxxu5x + 3696uxu3xu4x

+39336u2uxuxxu3x + 252u
11

¶
= 0.

(A.1)

Moreover, we are able to obtain the 11th order mKdV breather solution,
in the same way we used to get (1.27):

Definition A.1 (11th-mKdV breather). Let α, β > 0 and x1, x2 ∈ R.
The real-valued breather solution of the 11th-mKdV equation (A1) is given
explicitly by the formula

B ≡ Bα,β(t, x;x1, x2) := 2∂x

⎡⎣ arctanµβ
α

sin(αy1)

cosh(βy2)

¶⎤⎦,(A.2)
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with y1 and y2

y1 = x+ δ11t+ x1, y2 = x+ γ11t+ x2,(A.3)

and with velocities

δ11 = α10 − 55α8β2 + 330α6β4 − 462α4β6 + 165α2β8 − 11β10,

γ11 = 11α
10 − 165α8β2 + 462α6β4 − 330α4β6 + 55α2β8 − β10.

(A.4)
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