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Abstract

Let G be a finite non-abelian group and let T be a transversal of
the center of G in G.

The non-commuting graph of G on a transversal of the center
is the graph whose vertices are the non-central elements of T and
two vertices x and y are joined by an edge whenever xy 6= yx. In
this paper, we classify the groups whose non-commuting graph on a
transversal of the center is projective.
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1. Introduction

In this paper, we consider finite undirected graphs without loops or multiple
edges. Given a graph G, we write V (G) and E(G) to indicate, respectively,
the vertex set and the edge set of G. If V 0 is a subset of V (G), the subgraph
of G induced by V 0 is the graph whose vertex set is V 0 and the edge set is
{{x, y} : x, y ∈ V 0 and {x, y} ∈ E(G)}.

Let G be a finite non-abelian group. The non-commuting graph of G
is the graph denoted by ∇(G) and defined as follows: V (∇(G)) = G \
Z(G), where Z(G) is the center of G, and {x, y} ∈ E(∇(G)) if and only if
xy 6= yx. Studies on the non-commuting graph ∇(G) can be seen in the
papers [1, 2, 3, 4, 6, 7, 8]. As noted in [6, p. 911], if T is a transversal
of the center Z(G) in G, then the adjacency relations in ∇(G) can be
obtained from adjacency relations between elements of T \ Z(G), because
two vertices x and y are adjacent in ∇(G) if and only if there are adjacent
vertices x0 and y0 in ∇(G), with {x0, y0} ⊂ T , such that x ∈ x0Z(G) and
y ∈ y0Z(G). Here, the subgraph of ∇(G) induced by T \Z(G) is called non-
commuting graph of G on a transversal of the center and denoted by T(G).
So, V (T(G)) = T \ Z(G), with |V (T (G))| ≥ 3, and E(T(G)) = {{x, y} :
x, y ∈ T \ Z(G) and xy 6= yx}. Further, we note that if T 0 is another
transversal of Z(G) in G, then the non-commuting graphs obtained from
T and T 0 are isomorphic.

In the study of graph ∇(G) in [3, 4, 6, 7, 8], properties of graph T(G)
were highlighted. Results on T(G) can be seen in [6, 9, 10]. In [6, 8],
the graph T(G) was called the underlying graph associated with ∇(G) and
denoted by ∇u(G). In [11], we also see results about the complemented
graph of T(G).

We recall that a graph is said planar if it can be drawn in the plane
in such a way that no two edges intersect except at a vertex which both
are incident. Given a positive integer k, let Nk be a surface formed by a
connected sum of k projective planes. The smallest positive integer k such
that a graph G can be embedded in Nk is called crosscap of G. A planar
graph is considered with crosscap 0. A graph with crosscap 1 is a projective
graph and, in this case, the graph is non-planar and it can be embedded in
the projective plane. For details on the concept of embedding of graphs in
surface, see [5].

In [10], we see a classification of the groups with a planar non-commuting
graph on a transversal of the center. In this paper, we determine the struc-
ture of a finite group G in the case where T(G) is projective. We prove the
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following result.

Theorem 1.1. Let G be a finite non-abelian group. The non-commuting
graph T(G) is projective if and only if either G/Z(G) is isomorphic to the
dihedral group of order 8 or G/Z(G) is isomorphic to Z2×Z2×Z2 and the
derived subgroup of G is isomorphic to Z2 × Z2.

We observe that there is no finite non-abelian group G such that ∇(G)
is projective (see [2, Theorem 3.3]). In Example 2.5, we see some groups
with a projective non-commuting graph on a transversal of the center.

2. Proof of Theorem 1.1

In this section, we prove the main result of this work. We start with some
concepts and notation.

Let G be a finite group. Given x, y ∈ G, the commutator [x, y] of x and
y is given by [x, y] = xyx−1y−1 and the derived subgroup of G is denoted
by G0. The order of x is indicated by o(x) and the centralizer of x in G is
denoted by CG(x). The dihedral group of order m (with m ≥ 3) is denoted
by D2m and the cyclic group of order n (n ≥ 1) is indicated by Zn.

Let G be a graph. The degree of a vertex u of G is indicated by deg(u).
The complete graph on n vertices is denoted by Kn and the graph without
edges on n vertices is indicated by Kn. The complete multipartite graph
with m partite sets of sizes n1, n2, . . ., nm, with 1 ≤ n1 ≤ n2 ≤ . . . ≤ nm, is
denoted by Kn1,n2,...,nm . Given graphs G1 and G2, with V (G1)∩ V (G2) = ∅,
we write G1 ∨ G2 to indicate the graph whose vertex set is V (G1) ∪ V (G2)
and the edge set is E(G1) ∪ E(G2) ∪ {{x, y} : x ∈ V (G1) and y ∈ V (G2)}.
For example, we note that K1,1,1,1,3 is isomorphic to K3 ∨K4.

To prove Theorem 1.1, we need the following four lemmas.

Lemma 2.1. Let G be a finite graph with |V (G)| ≥ 3.
(i) If G is planar, then |E(G)| ≤ 3|V (G)|− 6.
(ii) If G is a projective connected graph, then |E(G)| ≤ 3|V (G)|− 3.

Proof. Part (i) is [5, Corollary 10.21]. Now, by [5, Corollary 10.39], we
get that if G is a connected graph which is embeddable on a surface S, then
|E(G)| ≤ 3(|V (G)|− c(S)), where c(S) is the Euler characteristic of S, and
we know that if S is the projective plane, then c(S) = 1 (see [5, p. 279]).
This proves statement (ii). 2
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Lemma 2.2. Let G be a finite non-abelian group.
(i) The non-commuting graph T(G) is connected.
(ii) deg(x) = [G : Z(G)]− [CG(x) : Z(G)], for any x ∈ V (T(G)).
(iii) 4|E(T(G))| ≥ |V (T(G))|2 + |V (T(G))|.

Proof. Part (i) is [7, Lemma 5.3]. To prove (ii), consider x ∈ V (T(G))
and write N(x) = {u ∈ V (T(G)) : {x, u} ∈ E(T(G))}. Thus, deg(x) =
|N(x)|. Further, if V (T(G)) \N(x) = {x, x1, . . . , xm}, then

CG(x) = Z(G) ∪ xZ(G) ∪
Ã

m[
i=1

xiZ(G)

!
.

So, |{x, x1, . . . , xm}| = [CG(x) : Z(G)]−1. Since |V (T(G))| = [G : Z(G)]−
1, we have

deg(x) = |N(x)| = |V (T (G))|− |{x, x1, . . . , xm}| = [G : Z(G)]− [CG(x) :
Z(G)].

Let us prove (iii). Write ν = |V (T(G))| and � = |E(T(G))|. By [5,
Theorem 1.1], we know that

2� =
X

x∈V (T(G))
deg(x)(2.1)

Given x ∈ V (T(G)), we observe that [CG(x) : Z(G)] ≤ [G : Z(G)]/2
and thus deg(x) = [G : Z(G)] − [CG(x) : Z(G)] ≥ [G : Z(G)] − [G :
Z(G)]/2 = [G : Z(G)]/2. Since ν + 1 = [G : Z(G)], we obtain

deg(x) ≥ 1
2
(ν + 1)(2.2)

Using (2.1) and (2.2) we get

2� =
X

x∈V (T(G))
deg(x) ≥ 1

2
ν(ν + 1)

and, consequently, 4� ≥ ν2 + ν. 2

Lemma 2.3. Let G be a finite non-abelian group such that [G : Z(G)] =
2m, where m ≥ 2.

(i) The non-commuting graph T(G) is isomorphic to Km−1∨Km if and
only if G has an abelian normal subgroup A such that [G : A] = 2.

(ii) If G/Z(G) has a cyclic subgroup of order m, then T(G) is isomor-
phic to Km−1 ∨Km.

(iii) If T(G) is isomorphic to Km−1 ∨ Km and x is a vertex of T(G)
such that deg(x) = 2m− 2, then o(xZ(G)) = 2.
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Proof. Let G be a finite non-abelian group such that [G : Z(G)] =
2m ≥ 4.

(i) Suppose that T(G) is isomorphic to Km−1∨Km. If x1, x2, . . ., xm−1
are the vertices of T(G) such that the subgraph induced by {x1, . . . , , xm−1}
is isomorphic to Km−1, then it is not difficult to prove that the subgroup
of G generated by Z(G)∪ {x1, . . . , xm−1} is an abelian normal subgroup of
G of index 2.

Conversely, suppose that G has an abelian normal subgroup A such
that [G : A] = 2. So, the subgraph of T(G) induced by V (T(G)) ∩ A
is isomorphic to Km−1. Given x ∈ V (T(G)) \ A, arguing as in the third
paragraph of the proof of [10, Lemma 3.12], we can verify that x is adjacent
to all other vertices of T(G). Therefore, T(G) is isomorphic to Km−1∨Km.

(ii) If A/Z(G) is a cyclic subgroup of order m of G/Z(G), then A is an
abelian normal subgroup of G and [G : A] = 2. By part (i), we obtain that
T(G) is isomorphic to Km−1 ∨Km.

(iii) Take x ∈ V (T(G)) such that deg(x) = 2m−2, that is, x is adjacent
to all vertices of V (T(G)) \ {x}. If o(xZ(G)) > 2, then x2 /∈ Z(G) and,
consequently, there is y ∈ V (T(G))∩x2Z(G) such that y 6= x and [x, y] = 1,
that is, y is not adjacent to x, a contradiction. Hence, o(xZ(G)) = 2. 2

Lemma 2.4. Let G be a finite non-abelian group such that G/Z(G) is
isomorphic to Z2×Z2×Z2. The non-commuting graph T(G) is isomorphic
to K1,1,1,1,3 if and only if G

0 is isomorphic to Z2 × Z2.

Proof. Let G be a finite non-abelian group and suppose that G/Z(G) is
isomorphic to Z2×Z2×Z2. First, we claim that G0 is an elementary abelian
2-group. In fact, given u, v ∈ G, we have that u2 ∈ Z(G) and G0 ≤ Z(G);
thus, [v, u]u = u[v, u] = uvuv−1u−1 = uvu−1u2v−1u−2u = [u, v]u, which
implies that [u, v]2 = 1. Since G0 is abelian, we get that G0 is an elementary
abelian 2-group.

Suppose that T(G) is isomorphic toK1,1,1,1,3. Thus, there are vertices u
and v inT(G) such that uv = vu. Since o(uZ(G)) = o(vZ(G)) = 2, we have
uv /∈ Z(G)∪uZ(G)∪vZ(G). So, given w ∈ V (T(G))\({u, v} ∪ uvZ(G)), we
can suppose that V (T(G)) = {u, v,w, uv, uw, vw, uvw} and the subgraph
of T(G) induced by {u, v, uv} is isomorphic to K3. Putting [u,w] = a
and [v, w] = b, we have that a 6= 1, b 6= 1 and a 6= b (because if a = b,
then [uv,w] = [u,w][v, w] = ab = a2 = 1, that is, {w, uv} /∈ E(T(G)),
a contradiction). Now, given x, y ∈ G, we can write x = uαvβwγz and
y = uδv�wκt, where α, β, γ, δ, �, κ ∈ {0, 1} and z, t ∈ Z(G). Since [u, v] = 1
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and G0 is an elementary abelian 2-group such that G0 ≤ Z(G), it is routine
to check that

[x, y] = [uαvβwγz, uδv�wκt] = [u,w]ακ−γδ[v, w]βκ−γ� = aακ−γδbβκ−γ�.

Therefore, G0 is isomorphic to Z2 × Z2.
Conversely, suppose that G0 is isomorphic to Z2 × Z2, with G0 =

{1, a, b, ab}. Take u, v, w ∈ G \ Z(G) such that G/Z(G) is generated
by {uZ(G), vZ(G), wZ(G)} (we observe that G/Z(G) is isomorphic to
Z2×Z2×Z2). Thus, we can consider V (T(G)) = {u, v,w, uv, uw, vw, uvw}.
Here, we claim that there are x, y ∈ V (T(G)) such that x 6= y and
[x, y] = 1. In fact, if [u, v] = 1 (or [u,w] = 1 or [v,w] = 1), then it is
done. Suppose [u, v] 6= 1, [u,w] 6= 1 and [v, w] 6= 1. If [u, v] = [u,w], then
[u, vw] = [u, v][v,w] = 1; analogously, if [u, v] = [v, w] or [u,w] = [v,w],
we get the desired. Finally, if we suppose [u, v] = a, [u,w] = b and
[v, w] = ab, then we have that [uv, vw] = [u, v][u,w][v, w] = abab = 1.
Hence, there are x, y ∈ V (T(G)) such that x 6= y and [x, y] = 1. So, there
is r ∈ V (T(G)) ∩ xyZ(G) such that [x, r] = [y, r] = 1. Since G is non-
abelian, we get that CG(x) ∩ V (T(G)) = {x, y, r}. Thus, CG(x) is abelian
and [G : CG(x)] = 2. By Lemma 2.3(i), T(G) is isomorphic to K4∨K3 and
we know that K4 ∨K3 isomorphic to K1,1,1,1,3. 2

We are ready to prove Theorem 1.1.
[Proof of Theorem 1] Let G be a finite non-abelian group. If G/Z(G)
is isomorphic to D8 or if G/Z(G) is isomorphic to Z2 × Z2 × Z2 and G0 is
isomorphic to Z2 × Z2, then T(G) is isomorphic to K1,1,1,1,3 (see Lemmas
2.3(ii) and 2.4). By Lemma 2.1, we have that K1,1,1,1,3 is non-planar. By
Figure 2.1, we conclude that K1,1,1,1,3 is projective.
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Figure 2.1: Drawing of K1,1,1,1,3 in the projective plane

Conversely, let G be a finite non-abelian group such that T(G) is a
projective graph. We write |V (T (G))| = ν and |E(T(G))| = �. Using part
(ii) of Lemma 2.1 and parts (i) and (iii) of Lemma 2.2 we get that

1

4
(ν + 1)ν ≤ � ≤ 3ν − 3

So (ν + 1)ν ≤ 12ν − 12 and, consequently, ν ≤ 9. Thus, [G : Z(G)] ≤ 10.
Since G is non-abelian, we have that G/Z(G) is non-cyclic. By [12, p.
85], up to isomorphism, there are 8 non-cyclic groups of order at most 10:
Z2 × Z2, D6, Z2 ×Z4, Z2 × Z2 × Z2, D8, the quaternion group of order 8,
Z3 × Z3 and D10.

If G/Z(G) is isomorphic to D10 then, by Lemma 2.3(iii), T(G) is iso-
morphic to K1,1,1,1,1,4, a non-projective graph (by Lemma 2.1(ii)). Suppose
that G/Z(G) is isomorphic to Z3 × Z3. In this case, given x ∈ G \ Z(G),
we observe that y /∈ CG(x), for any y ∈ G \ (Z(G)∪ xZ(G)∪ x2Z(G)), be-
cause G is non-abelian. Hence, we obtain CG(x) = Z(G)∪xZ(G)∪x2Z(G)
and, consequently, T(G) is isomorphic to K2,2,2,2, that is, T(G) is non-
projective (by Lemma 2.1(ii)). If G/Z(G) is isomorphic to D6, then T(G)
is isomorphic to K1,1,1,2 (Lemma 2.3(iii)) and so T(G) is planar. If G/Z(G)
is isomorphic to Z2 × Z2, then T(G) is planar, because |V (T (G))| = 3.

Finally, we suppose that [G : Z(G)] = 8. Since the complete graph on
7 vertices is non-projective (see Lemma 2.1(ii)), there are u, v ∈ V (T(G)),
u 6= v, such that [u, v] = 1. If uv ∈ Z(G), then there is r ∈ u2Z(G) ∩
V (T(G)) such that r 6= u, r 6= v and [u, r] = [v, r] = 1. If uv /∈ Z(G),
then there is r ∈ uvZ(G) ∩ V (T(G)) such that r 6= u, r 6= v and [u, r] =

Marisol Martínez
circ
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[v, r] = 1. Hence, we conclude that there is r ∈ V (T(G)) \ {u, v} such that
the subgraph of T(G) induced by {u, v, r} is isomorphic to K3. Further,
we have that {u, v, r} = V (T(G)) ∩ CG(u) (because G is non-abelian).
Thus, CG(u) is an abelian normal subgroup of G and [G : CG(u)] = 2.
By Lemma 2.3(i), we obtain that T(G) is isomorphic to K1,1,1,1,3. Now,
by Lemma 2.3(iii), all the elements of V (T(G)) \ {u, v, r} have order 2.
So, if CG(u)/Z(G) is isomorphic to Z2 × Z2, then G/Z(G) is isomorphic
to Z2 × Z2 × Z2 and, in this case, using Lemma 2.4, we get that G0 is
isomorphic to Z2 × Z2. If CG(u)/Z(G) is isomorphic to Z4, then G/Z(G)
has two elements of order 4 and five elements of order 2. In this case,
observing the list of groups of order 8, we obtain that G/Z(G) is isomorphic
to D8. The proof is complete. 2

Example 2.5. We observe that D16/Z(D16) is isomorphic to D8. So,
T(D16) is a projective graph. Now, let G be the group defined by

G := hu, v, a | u4 = v4 = a2 = 1, uv = vu, aua−1 = u−1, ava−1 = v−1i.

Note that G is isomorphic to (Z4 × Z4)Z2, where Z2 acts on Z4 × Z4
by inversion. We can verify that G0 is generated by {u2, v2} and G0 is
isomorphic to Z2 × Z2. Further, |G| = 32, G0 = Z(G) and G/Z(G) is
isomorphic to Z2 ×Z2 ×Z2. Hence, G is a group of one of the types given
in Theorem 1.1.
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