Proyecciones Journal of Mathematics
Vol. 43, N ${ }^{o}$ 1, pp. 265-274, February 2024.

Universidad Católica del Norte
Antofagasta - Chile

Projective non-commuting graph of a group

Julio C. M. Pezzott
Universidade Estadual de Maringá, Brazil
Received : June 2023. Accepted : August 2023

Abstract

Let G be a finite non-abelian group and let T be a transversal of the center of G in G.

The non-commuting graph of G on a transversal of the center is the graph whose vertices are the non-central elements of T and two vertices x and y are joined by an edge whenever $x y \neq y x$. In this paper, we classify the groups whose non-commuting graph on a transversal of the center is projective.

Keywords: Non-commuting graph, projective graph, finite group.

Mathematics Subject Classification 2020: 05C25, 05C10.

1. Introduction

In this paper, we consider finite undirected graphs without loops or multiple edges. Given a graph \mathcal{G}, we write $V(\mathcal{G})$ and $E(\mathcal{G})$ to indicate, respectively, the vertex set and the edge set of \mathcal{G}. If V^{\prime} is a subset of $V(\mathcal{G})$, the subgraph of \mathcal{G} induced by V^{\prime} is the graph whose vertex set is V^{\prime} and the edge set is $\left\{\{x, y\}: x, y \in V^{\prime}\right.$ and $\left.\{x, y\} \in E(\mathcal{G})\right\}$.

Let G be a finite non-abelian group. The non-commuting graph of G is the graph denoted by $\nabla(G)$ and defined as follows: $V(\nabla(G))=G \backslash$ $Z(G)$, where $Z(G)$ is the center of G, and $\{x, y\} \in E(\nabla(G))$ if and only if $x y \neq y x$. Studies on the non-commuting graph $\nabla(G)$ can be seen in the papers $[1,2,3,4,6,7,8]$. As noted in [6, p. 911], if T is a transversal of the center $Z(G)$ in G, then the adjacency relations in $\nabla(G)$ can be obtained from adjacency relations between elements of $T \backslash Z(G)$, because two vertices x and y are adjacent in $\nabla(G)$ if and only if there are adjacent vertices x^{\prime} and y^{\prime} in $\nabla(G)$, with $\left\{x^{\prime}, y^{\prime}\right\} \subset T$, such that $x \in x^{\prime} Z(G)$ and $y \in y^{\prime} Z(G)$. Here, the subgraph of $\nabla(G)$ induced by $T \backslash Z(G)$ is called noncommuting graph of G on a transversal of the center and denoted by $\mathbf{T}(G)$. So, $V(\mathbf{T}(G))=T \backslash Z(G)$, with $|V(\mathbf{T}(G))| \geq 3$, and $E(\mathbf{T}(G))=\{\{x, y\}$: $x, y \in T \backslash Z(G)$ and $x y \neq y x\}$. Further, we note that if T^{\prime} is another transversal of $Z(G)$ in G, then the non-commuting graphs obtained from T and T^{\prime} are isomorphic.

In the study of graph $\nabla(G)$ in $[3,4,6,7,8]$, properties of graph $\mathbf{T}(G)$ were highlighted. Results on $\mathbf{T}(G)$ can be seen in $[6,9,10]$. In $[6,8]$, the graph $\mathbf{T}(G)$ was called the underlying graph associated with $\nabla(G)$ and denoted by $\nabla^{u}(G)$. In [11], we also see results about the complemented graph of $\mathbf{T}(G)$.

We recall that a graph is said planar if it can be drawn in the plane in such a way that no two edges intersect except at a vertex which both are incident. Given a positive integer k, let N_{k} be a surface formed by a connected sum of k projective planes. The smallest positive integer k such that a graph \mathcal{G} can be embedded in N_{k} is called crosscap of \mathcal{G}. A planar graph is considered with crosscap 0 . A graph with crosscap 1 is a projective graph and, in this case, the graph is non-planar and it can be embedded in the projective plane. For details on the concept of embedding of graphs in surface, see [5].

In [10], we see a classification of the groups with a planar non-commuting graph on a transversal of the center. In this paper, we determine the structure of a finite group G in the case where $\mathbf{T}(G)$ is projective. We prove the
following result.

Theorem 1.1. Let G be a finite non-abelian group. The non-commuting graph $\mathbf{T}(G)$ is projective if and only if either $G / Z(G)$ is isomorphic to the dihedral group of order 8 or $G / Z(G)$ is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}$ and the derived subgroup of G is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$.

We observe that there is no finite non-abelian group G such that $\nabla(G)$ is projective (see [2, Theorem 3.3]). In Example 2.5, we see some groups with a projective non-commuting graph on a transversal of the center.

2. Proof of Theorem 1.1

In this section, we prove the main result of this work. We start with some concepts and notation.

Let G be a finite group. Given $x, y \in G$, the commutator $[x, y]$ of x and y is given by $[x, y]=x y x^{-1} y^{-1}$ and the derived subgroup of G is denoted by G^{\prime}. The order of x is indicated by $o(x)$ and the centralizer of x in G is denoted by $C_{G}(x)$. The dihedral group of order m (with $m \geq 3$) is denoted by $D_{2 m}$ and the cyclic group of order $n(n \geq 1)$ is indicated by \mathbf{Z}_{n}.

Let \mathcal{G} be a graph. The degree of a vertex u of \mathcal{G} is indicated by $\operatorname{deg}(u)$. The complete graph on n vertices is denoted by K_{n} and the graph without edges on n vertices is indicated by $\overline{K_{n}}$. The complete multipartite graph with m partite sets of sizes $n_{1}, n_{2}, \ldots, n_{m}$, with $1 \leq n_{1} \leq n_{2} \leq \ldots \leq n_{m}$, is denoted by $K_{n_{1}, n_{2}, \ldots, n_{m}}$. Given graphs \mathcal{G}_{1} and \mathcal{G}_{2}, with $V\left(\mathcal{G}_{1}\right) \cap V\left(\mathcal{G}_{2}\right)=\emptyset$, we write $\mathcal{G}_{1} \vee \mathcal{G}_{2}$ to indicate the graph whose vertex set is $V\left(\mathcal{G}_{1}\right) \cup V\left(\mathcal{G}_{2}\right)$ and the edge set is $E\left(\mathcal{G}_{1}\right) \cup E\left(\mathcal{G}_{2}\right) \cup\left\{\{x, y\}: x \in V\left(\mathcal{G}_{1}\right)\right.$ and $\left.y \in V\left(\mathcal{G}_{2}\right)\right\}$. For example, we note that $K_{1,1,1,1,3}$ is isomorphic to $\overline{K_{3}} \vee K_{4}$.

To prove Theorem 1.1, we need the following four lemmas.

Lemma 2.1. Let \mathcal{G} be a finite graph with $|V(\mathcal{G})| \geq 3$.
(i) If \mathcal{G} is planar, then $|E(\mathcal{G})| \leq 3|V(\mathcal{G})|-6$.
(ii) If \mathcal{G} is a projective connected graph, then $|E(\mathcal{G})| \leq 3|V(\mathcal{G})|-3$.

Proof. Part (i) is [5, Corollary 10.21]. Now, by [5, Corollary 10.39], we get that if \mathcal{G} is a connected graph which is embeddable on a surface S, then $|E(\mathcal{G})| \leq 3(|V(\mathcal{G})|-c(S))$, where $c(S)$ is the Euler characteristic of S, and we know that if S is the projective plane, then $c(S)=1$ (see [5, p. 279]). This proves statement (ii).

Lemma 2.2. Let G be a finite non-abelian group.
(i) The non-commuting graph $\mathbf{T}(G)$ is connected.
(ii) $\operatorname{deg}(x)=[G: Z(G)]-\left[C_{G}(x): Z(G)\right]$, for any $x \in V(\mathbf{T}(G))$.
(iii) $4|E(\mathbf{T}(G))| \geq|V(\mathbf{T}(G))|^{2}+|V(\mathbf{T}(G))|$.

Proof. Part (i) is [7, Lemma 5.3]. To prove (ii), consider $x \in V(\mathbf{T}(G))$ and write $N(x)=\{u \in V(\mathbf{T}(G)):\{x, u\} \in E(\mathbf{T}(G))\}$. Thus, $\operatorname{deg}(x)=$ $|N(x)|$. Further, if $V(\mathbf{T}(G)) \backslash N(x)=\left\{x, x_{1}, \ldots, x_{m}\right\}$, then

$$
C_{G}(x)=Z(G) \cup x Z(G) \cup\left(\bigcup_{i=1}^{m} x_{i} Z(G)\right)
$$

So, $\left|\left\{x, x_{1}, \ldots, x_{m}\right\}\right|=\left[C_{G}(x): Z(G)\right]-1$. Since $|V(\mathbf{T}(G))|=[G: Z(G)]-$ 1 , we have

$$
\begin{gathered}
\operatorname{deg}(x)=|N(x)|=|V(\mathbf{T}(G))|-\left|\left\{x, x_{1}, \ldots, x_{m}\right\}\right|=[G: Z(G)]-\left[C_{G}(x):\right. \\
Z(G)] .
\end{gathered}
$$

Let us prove (iii). Write $\nu=|V(\mathbf{T}(G))|$ and $\epsilon=|E(\mathbf{T}(G))|$. By [5, Theorem 1.1], we know that

$$
\begin{equation*}
2 \epsilon=\sum_{x \in V(\mathbf{T}(G))} \operatorname{deg}(x) \tag{2.1}
\end{equation*}
$$

Given $x \in V(\mathbf{T}(G))$, we observe that $\left[C_{G}(x): Z(G)\right] \leq[G: Z(G)] / 2$ and thus $\operatorname{deg}(x)=[G: Z(G)]-\left[C_{G}(x): Z(G)\right] \geq[G: Z(G)]-[G:$ $Z(G)] / 2=[G: Z(G)] / 2$. Since $\nu+1=[G: Z(G)]$, we obtain

$$
\begin{equation*}
\operatorname{deg}(x) \geq \frac{1}{2}(\nu+1) \tag{2.2}
\end{equation*}
$$

Using (2.1) and (2.2) we get

$$
2 \epsilon=\sum_{x \in V(\mathbf{T}(G))} \operatorname{deg}(x) \geq \frac{1}{2} \nu(\nu+1)
$$

and, consequently, $4 \epsilon \geq \nu^{2}+\nu$.
Lemma 2.3. Let G be a finite non-abelian group such that $[G: Z(G)]=$ $2 m$, where $m \geq 2$.
(i) The non-commuting graph $\mathbf{T}(G)$ is isomorphic to $\overline{K_{m-1}} \vee K_{m}$ if and only if G has an abelian normal subgroup A such that $[G: A]=2$.
(ii) If $G / Z(G)$ has a cyclic subgroup of order m, then $\mathbf{T}(G)$ is isomorphic to $\overline{K_{m-1}} \vee K_{m}$.
(iii) If $\mathbf{T}(G)$ is isomorphic to $\overline{K_{m-1}} \vee K_{m}$ and x is a vertex of $\mathbf{T}(G)$ such that $\operatorname{deg}(x)=2 m-2$, then $o(x Z(G))=2$.

Proof. Let G be a finite non-abelian group such that $[G: Z(G)]=$ $2 m \geq 4$.
(i) Suppose that $\mathbf{T}(G)$ is isomorphic to $\overline{K_{m-1}} \vee K_{m}$. If $x_{1}, x_{2}, \ldots, x_{m-1}$ are the vertices of $\mathbf{T}(G)$ such that the subgraph induced by $\left\{x_{1}, \ldots, x_{m-1}\right\}$ is isomorphic to $\overline{K_{m-1}}$, then it is not difficult to prove that the subgroup of G generated by $Z(G) \cup\left\{x_{1}, \ldots, x_{m-1}\right\}$ is an abelian normal subgroup of G of index 2.

Conversely, suppose that G has an abelian normal subgroup A such that $[G: A]=2$. So, the subgraph of $\mathbf{T}(G)$ induced by $V(\mathbf{T}(G)) \cap A$ is isomorphic to $\overline{K_{m-1}}$. Given $x \in V(\mathbf{T}(G)) \backslash A$, arguing as in the third paragraph of the proof of [10, Lemma 3.12], we can verify that x is adjacent to all other vertices of $\mathbf{T}(G)$. Therefore, $\mathbf{T}(G)$ is isomorphic to $\overline{K_{m-1}} \vee K_{m}$.
(ii) If $A / Z(G)$ is a cyclic subgroup of order m of $G / Z(G)$, then A is an abelian normal subgroup of G and $[G: A]=2$. By part (i), we obtain that $\mathbf{T}(G)$ is isomorphic to $\overline{K_{m-1}} \vee K_{m}$.
(iii) Take $x \in V(\mathbf{T}(G))$ such that $\operatorname{deg}(x)=2 m-2$, that is, x is adjacent to all vertices of $V(\mathbf{T}(G)) \backslash\{x\}$. If $o(x Z(G))>2$, then $x^{2} \notin Z(G)$ and, consequently, there is $y \in V(\mathbf{T}(G)) \cap x^{2} Z(G)$ such that $y \neq x$ and $[x, y]=1$, that is, y is not adjacent to x, a contradiction. Hence, $o(x Z(G))=2$.

Lemma 2.4. Let G be a finite non-abelian group such that $G / Z(G)$ is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}$. The non-commuting graph $\mathbf{T}(G)$ is isomorphic to $K_{1,1,1,1,3}$ if and only if G^{\prime} is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$.

Proof. Let G be a finite non-abelian group and suppose that $G / Z(G)$ is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}$. First, we claim that G^{\prime} is an elementary abelian 2-group. In fact, given $u, v \in G$, we have that $u^{2} \in Z(G)$ and $G^{\prime} \leq Z(G)$; thus, $[v, u] u=u[v, u]=u v u v^{-1} u^{-1}=u v u^{-1} u^{2} v^{-1} u^{-2} u=[u, v] u$, which implies that $[u, v]^{2}=1$. Since G^{\prime} is abelian, we get that G^{\prime} is an elementary abelian 2-group.

Suppose that $\mathbf{T}(G)$ is isomorphic to $K_{1,1,1,1,3}$. Thus, there are vertices u and v in $\mathbf{T}(G)$ such that $u v=v u$. Since $o(u Z(G))=o(v Z(G))=2$, we have $u v \notin Z(G) \cup u Z(G) \cup v Z(G)$. So, given $w \in V(\mathbf{T}(G)) \backslash(\{u, v\} \cup u v Z(G))$, we can suppose that $V(\mathbf{T}(G))=\{u, v, w, u v, u w, v w, u v w\}$ and the subgraph of $\mathbf{T}(G)$ induced by $\{u, v, u v\}$ is isomorphic to $\overline{K_{3}}$. Putting $[u, w]=a$ and $[v, w]=b$, we have that $a \neq 1, b \neq 1$ and $a \neq b$ (because if $a=b$, then $[u v, w]=[u, w][v, w]=a b=a^{2}=1$, that is, $\{w, u v\} \notin E(\mathbf{T}(G))$, a contradiction). Now, given $x, y \in G$, we can write $x=u^{\alpha} v^{\beta} w^{\gamma} z$ and $y=u^{\delta} v^{\epsilon} w^{\kappa} t$, where $\alpha, \beta, \gamma, \delta, \epsilon, \kappa \in\{0,1\}$ and $z, t \in Z(G)$. Since $[u, v]=1$
and G^{\prime} is an elementary abelian 2-group such that $G^{\prime} \leq Z(G)$, it is routine to check that

$$
[x, y]=\left[u^{\alpha} v^{\beta} w^{\gamma} z, u^{\delta} v^{\epsilon} w^{\kappa} t\right]=[u, w]^{\alpha \kappa-\gamma \delta}[v, w]^{\beta \kappa-\gamma \epsilon}=a^{\alpha \kappa-\gamma \delta} b^{\beta \kappa-\gamma \epsilon} .
$$

Therefore, G^{\prime} is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$.
Conversely, suppose that G^{\prime} is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$, with $G^{\prime}=$ $\{1, a, b, a b\}$. Take $u, v, w \in G \backslash Z(G)$ such that $G / Z(G)$ is generated by $\{u Z(G), v Z(G), w Z(G)\}$ (we observe that $G / Z(G)$ is isomorphic to $\left.\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}\right)$. Thus, we can consider $V(\mathbf{T}(G))=\{u, v, w, u v, u w, v w, u v w\}$. Here, we claim that there are $x, y \in V(\mathbf{T}(G))$ such that $x \neq y$ and $[x, y]=1$. In fact, if $[u, v]=1$ (or $[u, w]=1$ or $[v, w]=1$), then it is done. Suppose $[u, v] \neq 1,[u, w] \neq 1$ and $[v, w] \neq 1$. If $[u, v]=[u, w]$, then $[u, v w]=[u, v][v, w]=1$; analogously, if $[u, v]=[v, w]$ or $[u, w]=[v, w]$, we get the desired. Finally, if we suppose $[u, v]=a,[u, w]=b$ and $[v, w]=a b$, then we have that $[u v, v w]=[u, v][u, w][v, w]=a b a b=1$. Hence, there are $x, y \in V(\mathbf{T}(G))$ such that $x \neq y$ and $[x, y]=1$. So, there is $r \in V(\mathbf{T}(G)) \cap x y Z(G)$ such that $[x, r]=[y, r]=1$. Since G is nonabelian, we get that $C_{G}(x) \cap V(\mathbf{T}(G))=\{x, y, r\}$. Thus, $C_{G}(x)$ is abelian and $\left[G: C_{G}(x)\right]=2$. By Lemma 2.3(i), $\mathbf{T}(G)$ is isomorphic to $K_{4} \vee \overline{K_{3}}$ and we know that $K_{4} \vee \overline{K_{3}}$ isomorphic to $K_{1,1,1,1,3}$.

We are ready to prove Theorem 1.1.
[Proof of Theorem 1] Let G be a finite non-abelian group. If $G / Z(G)$ is isomorphic to D_{8} or if $G / Z(G)$ is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}$ and G^{\prime} is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$, then $\mathbf{T}(G)$ is isomorphic to $K_{1,1,1,1,3}$ (see Lemmas 2.3(ii) and 2.4). By Lemma 2.1, we have that $K_{1,1,1,1,3}$ is non-planar. By Figure 2.1, we conclude that $K_{1,1,1,1,3}$ is projective.

Figure 2.1: Drawing of $K_{1,1,1,1,3}$ in the projective plane
Conversely, let G be a finite non-abelian group such that $\mathbf{T}(G)$ is a projective graph. We write $|V(\mathbf{T}(G))|=\nu$ and $|E(\mathbf{T}(G))|=\epsilon$. Using part (ii) of Lemma 2.1 and parts (i) and (iii) of Lemma 2.2 we get that

$$
\frac{1}{4}(\nu+1) \nu \leq \epsilon \leq 3 \nu-3
$$

So $(\nu+1) \nu \leq 12 \nu-12$ and, consequently, $\nu \leq 9$. Thus, $[G: Z(G)] \leq 10$. Since G is non-abelian, we have that $G / Z(G)$ is non-cyclic. By [12, p. 85], up to isomorphism, there are 8 non-cyclic groups of order at most 10: $\mathbf{Z}_{2} \times \mathbf{Z}_{2}, D_{6}, \mathbf{Z}_{2} \times \mathbf{Z}_{4}, \mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}, D_{8}$, the quaternion group of order 8, $\mathbf{Z}_{3} \times \mathbf{Z}_{3}$ and D_{10}.

If $G / Z(G)$ is isomorphic to D_{10} then, by Lemma 2.3(iii), $\mathbf{T}(G)$ is isomorphic to $K_{1,1,1,1,1,4}$, a non-projective graph (by Lemma 2.1(ii)). Suppose that $G / Z(G)$ is isomorphic to $\mathbf{Z}_{3} \times \mathbf{Z}_{3}$. In this case, given $x \in G \backslash Z(G)$, we observe that $y \notin C_{G}(x)$, for any $y \in G \backslash\left(Z(G) \cup x Z(G) \cup x^{2} Z(G)\right)$, because G is non-abelian. Hence, we obtain $C_{G}(x)=Z(G) \cup x Z(G) \cup x^{2} Z(G)$ and, consequently, $\mathbf{T}(G)$ is isomorphic to $K_{2,2,2,2}$, that is, $\mathbf{T}(G)$ is nonprojective (by Lemma 2.1(ii)). If $G / Z(G)$ is isomorphic to D_{6}, then $\mathbf{T}(G)$ is isomorphic to $K_{1,1,1,2}$ (Lemma 2.3(iii)) and so $\mathbf{T}(G)$ is planar. If $G / Z(G)$ is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$, then $\mathbf{T}(G)$ is planar, because $|V(\mathbf{T}(G))|=3$.

Finally, we suppose that $[G: Z(G)]=8$. Since the complete graph on 7 vertices is non-projective (see Lemma 2.1(ii)), there are $u, v \in V(\mathbf{T}(G)$), $u \neq v$, such that $[u, v]=1$. If $u v \in Z(G)$, then there is $r \in u^{2} Z(G) \cap$ $V(\mathbf{T}(G))$ such that $r \neq u, r \neq v$ and $[u, r]=[v, r]=1$. If $u v \notin Z(G)$, then there is $r \in u v Z(G) \cap V(\mathbf{T}(G))$ such that $r \neq u, r \neq v$ and $[u, r]=$
$[v, r]=1$. Hence, we conclude that there is $r \in V(\mathbf{T}(G)) \backslash\{u, v\}$ such that the subgraph of $\mathbf{T}(G)$ induced by $\{u, v, r\}$ is isomorphic to $\overline{K_{3}}$. Further, we have that $\{u, v, r\}=V(\mathbf{T}(G)) \cap C_{G}(u)$ (because G is non-abelian). Thus, $C_{G}(u)$ is an abelian normal subgroup of G and $\left[G: C_{G}(u)\right]=2$. By Lemma 2.3(i), we obtain that $\mathbf{T}(G)$ is isomorphic to $K_{1,1,1,1,3}$. Now, by Lemma 2.3(iii), all the elements of $V(\mathbf{T}(G)) \backslash\{u, v, r\}$ have order 2. So, if $C_{G}(u) / Z(G)$ is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$, then $G / Z(G)$ is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}$ and, in this case, using Lemma 2.4, we get that G^{\prime} is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$. If $C_{G}(u) / Z(G)$ is isomorphic to \mathbf{Z}_{4}, then $G / Z(G)$ has two elements of order 4 and five elements of order 2. In this case, observing the list of groups of order 8, we obtain that $G / Z(G)$ is isomorphic to D_{8}. The proof is complete.

Example 2.5. We observe that $D_{16} / Z\left(D_{16}\right)$ is isomorphic to D_{8}. So, $\mathbf{T}\left(D_{16}\right)$ is a projective graph. Now, let G be the group defined by

$$
G:=\left\langle u, v, a \mid u^{4}=v^{4}=a^{2}=1, u v=v u, a u a^{-1}=u^{-1}, a v a^{-1}=v^{-1}\right\rangle .
$$

Note that G is isomorphic to $\left(\mathbf{Z}_{4} \times \mathbf{Z}_{4}\right) \mathbf{Z}_{2}$, where \mathbf{Z}_{2} acts on $\mathbf{Z}_{4} \times \mathbf{Z}_{4}$ by inversion. We can verify that G^{\prime} is generated by $\left\{u^{2}, v^{2}\right\}$ and G^{\prime} is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$. Further, $|G|=32, G^{\prime}=Z(G)$ and $G / Z(G)$ is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}$. Hence, G is a group of one of the types given in Theorem 1.1.

Acknowledgments: The author is grateful to referees for careful reading of this paper and helpful comments.

3. Declarations

No funding was received to assist with the preparation of this manuscript. The author has no competing interests to declare that are relevant to the content of this article.

References

[1] A. Abdollahi, S. Akbari, H. R. Maimani. Non-commuting graph of a group. J. Algebra, Vol. 298 (2), pp. 468-492, 2006.
[2] M. Afkhami, D. G. M. Farrokhi, K. Khashyarmanesh. Planar, toroidal and projective commuting and noncommuting graphs. Comm. Algebra, Vol. 43 (7), pp. 29642970, 2015.
[3] M. Akbari, A. R. Moghaddamfar. Groups for which the noncommuting graph is a split graph. Int. J. Group Theory, Vol. 6 (1), pp. 2935, 2017.
[4] M. Akbari, A. R. Moghaddamfar. The existence or nonexistence of non-commuting graphs with particular properties. J. Algebra Appl., Vol. 13 (1) 2014, 1350064.
[5] J. A. Bondy, U. S. R. Murty. Graph Theory. Springer-Verlag, New York, 2008.
[6] A. R. Moghaddamfar. About noncommuting graphs. Siberian Math. J., Vol. 47 (6), pp. 911914, 2006.
[7] A. R. Moghaddamfar. Some results concerning noncommuting graphs associated with finite groups. Southeast Asian Bull. Math., Vol. 38 (5), pp. 661676, 2014.
[8] A. R. Moghaddamfar, W. J. Shi, W. Zhou, A. R. Zokayi. On the noncommuting graph associated with a finite group. Siberian Math. J., Vol. 46 (2), pp. 325332, 2005.
[9] J. C. M. Pezzott. Double-toroidal and 1-planar non-commuting graph of a group. Algebra Discrete Math., Vol. 34 (1), pp. 132-140, 2022.
[10] J. C. M. Pezzott. Groups whose non-commuting graph on a transversal is planar otoroidal. J. Algebra Appl., Vol. 21 (10), 2022, 2250198, 10pp.
[11] J. C. M. Pezzott, I. N. Nakaoka. On groups whose commuting graph on a transversal is strongly regular. Discrete Math., Vol. 342 (12) 2019, 111626, 8pp.
[12] J. J. Rotman. An Introduction to the Theory of Groups. Fourth edition. Springer-Verlag, New York: 1995.

Julio C. M. Pezzott
Universidade Estadual de Maringá, Brazil
e-mail: juliopezzott@gmail.com

