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Abstract

In this paper, we provide a detailed analysis of the structure of
derivations on trivial extensions, the centre of trivial extensions, and
the conditions for a trivial extension to be prime. Additionally, we
examine the structure of derivations on trivial extensions when the
underlying ring, R, is a prime ring, under the conditions of Herstein’s
Theorem, Posner’s Theorem, and Bell’s theorem.
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1. Introduction

Let R and T be associative rings with unity, θ and φ be homomorphisms
of unitary rings from T into R, and M be an R-bimodule. Then, a (θ, φ)-
derivation d is an additive mapping d : T →M such that, for every x, y ∈ T ,
we have d(x.y) = d(x).φ(y) + θ(x).d(y) (for more details see [6]). If R = T
and θ = φ = idR, then we say only that d is a derivation. In particular, for
a fixed element r ∈ R, the map d : M → M defined by d(m) = [r,m] :=
r.m−m.r for all m ∈M will be called the inner derivation induced by r to
keep the coherence with the case of inner derivations in rings. In this case, if
d(m) = 0 for everym ∈M , then we say that r is a centralizer ofM inR, and
we write r ∈ ZR(M), where ZR(M) := {r ∈ R | r.m−m.r = 0,∀m ∈M}.
As well as, we call the inner derivation on R into M induced by m ∈ M
the map d : R → M defined by d(r) = [m, r] = m.r − r.m for every
r ∈ R. In this case, if d(r) = 0 for every r ∈ M , then we say that m is a
centralizer of R in M , and we write m ∈ ZM(R), where ZM(R) := {m ∈
M | r.m−m.r = 0,∀r ∈ R}. Considerable attention has been given to the
study of additive mappings and their impact on the overall structure of a
ring in recent decades, including derivations, homomorphisms, and related
maps (see references [1], [7], [8], [9], [10], [11]).

The ring R is said to be prime if xRy = 0 implies that either x = 0 or
y = 0, for any elements x and y in R. As well, R is called semiprime if
xRx = 0 implies that x = 0, for any x ∈ R. Herstein theorem says that
if R is a noncommutative prime ring with char(R) 6= 2 (namely, x + x =
0 implies x = 0, for any x ∈ R), and d is a derivation on R verifying
d(x).d(y) = d(y).d(x) for every x, y ∈ R, then d = 0 (see [7]). As well,
Posner’s theorem, a classic result, states that the non-commutativity of a
prime ring R forces a centralizing derivation on R to be zero (see [12]). Also,
Bell’s theorem shows that if R is a prime ring having a derivation d which
satisfies [d(x), d(y)] = [x, y], for every x, y ∈ R, then R is commutative (see
[4]).

Actually, we focus on trivial extensions. Recall that the trivial exten-
sion of R by M [2] is the ring R ∝ M := R

L
M such that for every

(r,m), (r0,m0) ∈ R ∝M , we have(
(r,m) + (r0,m0) = (r + r0,m+m0),
(r,m) ∝ (r0,m0) = (r.r0, r.m0 +m.r0).

In 2018, Bahmani et al. [3] studied Jordan generalized derivations on
trivial extensions. Later, in 2019, Bennis et al. [5] studied Lie generalized
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derivations on trivial extensions. In this paper, we present a comprehensive
investigation of derivations, trivial extensions, and their interplay. Our
focus is on providing a thorough analysis of the structure of derivations
over trivial extensions, and conditions for trivial extensions to be prime.
Additionally, we provide an in-depth analysis of the structure of derivations
in the case where R is a prime ring under the conditions of Herstein’s
theorem, Posner’s theorem and Bell’s theorem mentioned above.

2. Derivations over trivial extensions

Let d be an additive map on R ∝M . Let π1 and π2 be the two projections
over R ∝ M , defined by π1 : (r,m) ∈ R ∝ M 7→ r ∈ R, and π2 : (r,m) ∈
R ∝ M 7→ m ∈ M . We write d1 := π1 ◦ d and d2 := π2 ◦ d; namely,
d = (d1, d2). Furthermore, we define the following maps

s1 : M → M
m 7→ s1(m) := d2((0,m)).

,
s2 : R → M

r 7→ s2(r) := d2((r, 0)).

We give necessary and sufficient conditions for d to be a derivation.

Theorem 2.1. With the above notations, the map d is a derivation on
R ∝M if and only if the following statements hold:

1. d1 is a (π1, π1)-derivation,

2. s2 is a derivation,

3. s1(r.m) = r.s1(m) + d1(r, 0).m and s1(m.r) = s1(m).r +m.d1(r, 0),
for every r ∈ R and m ∈M ,

Proof. Let (r,m), (r0,m0) ∈ R ∝M , and suppose that d is a derivation
over R ∝M . Then,(

d((r,m) ∝ (r0,m0)) = (r,m) ∝ d(r0,m0) + d(r,m) ∝ (r0,m0),
d((r,m) ∝ (r0,m0)) = d((r.r0, r.m0 +m.r0)).

It follows that d((r.r0, r.m0+m.r0)) = (r,m) ∝ d(r0,m0)+d(r,m) ∝ (r0,m0).
Then, we obtain the following equations:(

d1((r.r
0, r.m0 +m.r0)) = r.d1(r

0,m0) + d1(r,m).r
0,

d2((r.r
0, r.m0 +m.r0)) = r.d2(r

0,m0) +m.d1(r
0,m0) + d1(r,m).m

0 + d2(r,m).r
0.
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In other words, we get the following equalities:⎧⎪⎨⎪⎩
d1((r,m) ∝ (r0,m0)) = π1(r,m).d1(r

0,m0) + d1(r,m).π1(r
0,m0),

d2((r,m) ∝ (r0,m0)) = (π1(r,m).d2(r
0,m0) + π2(r,m).d1(r

0,m0))+
(d2(r,m).π1(r

0,m0) + d1(r,m).π2(r
0,m0)).

Therefore, d1 is a (π1, π1)-derivation into R. In particular, if m = m0 = 0,
then we get that

d2((r, 0) ∝ (r0, 0)) = s2(r.r
0) = r.s2(r

0) + s2(r).r
0;

namely, s2 is a derivation of R into R ∝ M . On the other hand, if r0 = 0
and m = 0, then we get that

d2((r, 0) ∝ (0,m0)) = d2((0, r.m
0)) = s1(r.m

0) = r.s1(m
0) + d1(r, 0).m

0.

As well as, if r = 0 and m0 = 0, then we get that

d2((0,m) ∝ (r0, 0)) = d2((0,m.r0)) = s1(m.r0) = s1(m).r
0 +m.d1(r

0, 0).

Conversely, let d : (r,m) ∈ R ∝ M 7→ d((r,m)) := (d1(r,m), d2(r,m)).
Then, for every (r,m), (r0,m0) ∈ R ∝M , we have:

d((r,m) ∝ (r0,m0)) = (d1((r,m) ∝ (r0,m0)), d2((r,m) ∝ (r0,m0)).

Let us compute the first projection:

d1((r,m) ∝ (r0,m0)) = d1((r.r
0, r.m0 +m.r0)),

= r.d1(r
0,m0) + d1(r,m).r

0.

Now, we compute the second projection. Let (r,m), (r0,m0) ∈ R ∝ M .
Notice first that

(r,m) ∝ (r0,m0) = (r.r0, 0) + (0, r.m0) + (0,m.r0).

Then, we obtain that

d2((r,m) ∝ (r0,m0)) = d2((r.r
0, 0)) + d2((0, r.m

0)) + d2((0,m.r0)),
= s2(r.r

0) + s1(r.m
0) + s1(m.r0),

= r.s2(r
0) + s2(r).r

0 + r.s1(m
0) + d1((r, 0)).m

0 + s1(m).r
0 +m.d1((r

0, 0)),
= r.d2((r

0,m0)) + d2((r,m)).r
0 + d1((r, 0)).m

0 +m.d1((r
0, 0)).
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It follows that

d((r,m) ∝ (r0,m0)) = (r.d1((r
0,m0)) + d1((r,m)).r

0, r.d2((r0,m0)) + d2((r,m)).r
0+

d1((r, 0)).m
0 +m.d1((r

0, 0))),
= (r.d1((r

0,m0)), r.d2((r0,m0)) +m.d1((r
0, 0)))+

(d1((r,m)).r
0, d2((r,m)).r0 + d1((r, 0)).m

0),
= (r,m) ∝ (d1((r0,m0)),

d2((r
0,m0))) + (d1((r,m)), d2((r,m))) ∝ (r0,m0),

= (r,m) ∝ d((r0,m0)) + d((r,m)) ∝ (r0,m0).

Therefore, d is a derivation. 2

Now, we prove that we can always construct a derivation on R ∝ M ,
whenever we have a derivation f on R, a derivation g on R into R ∝ M ,
and an additive map s :M → R ∝M satisfying some conditions.

Theorem 2.2. Let R be a ring and M be an R-bimodule. Suppose that
there exist

1. a derivation f : R→ R,

2. a derivation g : R→ R ∝M ,

3. an additive map s :M → R ∝M such that s(r.m) = r.s(m)+f(r).m
and s(m.r) = s(m).r +m.f(r); for every r ∈ R and m ∈M .

Then, the map

d : R ∝M → R ∝M
(r,m) 7→ d((r,m)) := (f(r), g(r) + s(m)),

is a derivation on R ∝M .

Proof. It is easy to see that d is an additive map. On the other hand,
let (r,m), (r0,m0) ∈ R ∝M . Then, we have

d((r,m) ∝ (r0,m0)) = d((r.r0, r.m0 +m.r0)),
= (f(r.r0), g(r.r0) + s(r.m0 +m.r0)),
= (f(r).r0 + r.f(r0), g(r).r0 + r.g(r0) + s(r.m0) + s(m.r0)),
= (f(r).r0 + r.f(r0), g(r).r0 + r.g(r0) + r.s(m0) + f(r).m0

+s(m).r0 +m.f(r0)),
= (f(r).r0, f(r).m0 + (g(r) + s(m)).r0) + (r.f(r0), r.(g(r0)
+s(m0)) +m.f(r0)),
= (f(r), g(r) + s(m)) ∝ (r0,m0) + (r,m) ∝ (f(r0), g(r0)
+s(m0)),
= d((r,m)) ∝ (r0,m0) + (r,m) ∝ d((r0,m0)).



464 Brahim Boudine and Mohammed Zerra

Hence d is a derivation on R ∝M . 2

Let i1 : R → R ∝ M and i2 : M → R ∝ M be the two maps defined
by i1(r) = (r, 0) and i2(m) = (0,m) for every (r,m) ∈ R ×M . Then, we
characterize inner derivations on R ∝M .

Theorem 2.3. With the above notations, the derivation d is the inner
derivation on R ∝ M induced by (r,m) ∈ R ∝ M , if and only if the
following statements hold:

1. d1 ◦ i2 = 0,

2. d1 ◦ i1 is the inner derivation on R induced by r,

3. s1 is the inner derivation on M induced by r,

4. s2 is the inner derivation on R into M , induced by m.

Proof. Let (a, x) ∈ R ∝M , then we obtain:

d((a, x)) = (r.a− a.r, (r.x− x.r) + (m.a− a.m)).

It follows that d1 ◦ i2 = 0, and d1 ◦ i1(a) = r.a − a.r = [r, a], for every
a ∈ R; namely, d1 is the inner derivation on R induced by r. As well,
s1(x) = r.x−x.r = [r, x], for every x ∈M ; namely, s1 is the inner derivation
on M induced by r. So that s2(a) = m.a− a.m = [m,a], for every a ∈ R;
namely, s2 is the inner derivation on R into M induced by m. Convesely,
we have:

d(a, x) = (d1 ◦ i1(a) + d1 ◦ i2(x), s1(x) + s2(r)),
= (r.a− a.r, (r.x− x.r) + (m.a− a.m)),
= (r,m) ∝ (a, x)− (a, x) ∝ (r,m),
= [(r,m), (a, x)].

Therefore, d is the inner derivation on R ∝M induced by (r,m). 2

Recall that a derivation δ on a ring A is called centralizing, if for every
x ∈ A, we have [δ(x), x] ∈ ZA(A). Then, in order to study the centralizing
derivations on R ∝ M , we need first to study the structure of ZR∝M(R ∝
M); the center of R ∝M .

Proposition 2.4. Let R be a ring, M be an R-bimodule, and (r,m) ∈
A := R ∝ M . Then, (r,m) is a centralizer in R ∝ M if and only if the
following statements hold:
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1. r ∈ ZR(R),

2. m ∈ ZM(R),

3. ZR(R) ⊆ ZR(M).

Then, we write ZR∝M(R ∝M) = ZR(R) ∝ ZM(R) with ZR(R) ⊆ ZR(M).

Proof. Suppose that [(a, x), (r,m)] = (0, 0), for every element (a, x) in
R ∝M ; equivalently, (

a.r − r.a = 0,
a.m−m.a+ x.r − r.x = 0,

From the first equation, we see that r ∈ ZR(R). Suppose that x = 0. Then,
the second equation implies that a.m −m.a = 0, for every a ∈ R, which
yields that m ∈ ZM(R). In this case, we get that x.r − r.x = 0, where
r ∈ ZR(R). Therefore, ZR(R) ⊆ ZR(M). Conversely, since r ∈ ZR(R) and
m ∈ ZM(R), we get that a.r − r.a = 0 and a.m − m.a = 0. It follows
that [(a, x), (r,m)] = (0, x.r − r.x). But we have ZR(R) ⊆ ZR(M), then
x.r − r.x = 0. Thus, (r,m) is a centralizer of R ∝M . 2

Corollary 2.5. Let R be a ring andM an R-bimodule. The trivial exten-
sion R ∝M is commutative if and only if R is commutative and r.m = m.r
for every (r,m) ∈ R×M .

Proof. By Proposition 2.4, R ∝ M is commutative if and only if
ZR(R) = R and ZM(R) = M ; namely, R is commutative and r.m = m.r
for every (r,m) ∈ R×M . 2

So we give a characterization of centralizing derivations on R ∝M .

Theorem 2.6. LetR be a ring,M be anR-bimodule, and d be a derivation
on R ∝ M . Then, the derivation d centralizing if and only if, for every
(r,m) ∈ R ∝M , the following statements hold:

1. d1((r,m)).r − r.d1((r,m)) ∈ ZR(R),

2. s2(r).r − r.s2(r) ∈ ZM(R),

3. d1((0,m)).m−m.d1((0,m)) ∈ ZM(R),

4. s1(m).r − r.s1(m) ∈ ZM(R).
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Proof. Let (r,m) ∈ R ∝ M , and suppose that [d((r,m)), (r,m)] ∈
ZR∝M(R ∝M). Then, we obtain

(d1((r,m)).r − r.d1((r,m)), d1((r,m)).m−m.d1((r,m)) + d2((r,m)).r

−r.d2((r,m))) ∈ ZR∝M(R ∝M).

By Proposition 2.4, we get that(
d1((r,m)).r − r.d1((r,m)) ∈ ZR(R),
d1((r,m)).m−m.d1((r,m)) + d2((r,m)).r − r.d2((r,m)) ∈ ZM(R).

If m = 0, then the first statement shows that d1((r, 0)).r − r.d1((r, 0)) ∈
ZR(R), and the second statement shows that s2(r).r− r.s2(r) ∈ ZM(R). It
follows that d1((0,m)).r − r.d1((0,m)) ∈ ZR(R). Therefore, d1((r,m)).r −
r.d1((r,m)) ∈ ZR(R). On the other hand, if r = 0, then we get from the
second statement that d1((0,m)).m −m.d1((0,m)) ∈ ZM(R). Finally, we
conclude that s1(m).r − r.s1(m) ∈ ZM(R). The converse is obvious. 2

Recall that a derivation δ on a ring A is called commuting, if for every
x ∈ A, we have [δ(x), x] = 0. So, we characterize the commuting derivations
on R ∝M .

Theorem 2.7. LetR be a ring,M be anR-bimodule, and d be a derivation
on R ∝ M . Then, the derivation d commuting if and only if, for every
(r,m) ∈ R ∝M , the following statements hold:

1. d1((r,m)).r − r.d1((r,m)) = 0,

2. s2(r).r − r.s2(r) = 0,

3. d1((0,m)).m−m.d1((0,m)) = 0,

4. s1(m).r − r.s1(m) = 0.

Proof. The same method used in the proof of Theorem 2.6. 2

3. Derivations over R ∝M when R is a prime ring

First, we study the primeness and semiprimeness of trivial extensions.

Proposition 3.1. Let R be a ring and M be an R-bimodule. Then, R ∝
M is a prime ring if and only if R is prime and M = {0}.
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Proof. Let m ∈ M . Then, for any (a, x) ∈ R ∝ M , we have (0,m) ∝
(a, x) ∝ (0,m) = (0, 0); namely, (0,m) ∝ R ∝ (0,m) = (0, 0). Since
R ∝ M is prime, (0,m) = (0, 0). Thus, M = {0}. Now, Let r and r0 be
two elements in R such that rRr0 = 0. Then, for any (a, 0) ∈ R ∝ M , we
have (r, 0) ∝ (a, 0) ∝ (r0, 0) = (rar0, 0) = (0, 0). Since R ∝M is prime, we
get that either (r, 0) = (0, 0) or (r0, 0) = (0, 0); namely, r = 0 or r0 = 0.
Thus, R is prime. Conversely, we have R ∝ {0} ∼= R. Therefore, R ∝ {0}
is prime. 2

Proposition 3.2. Let R be a ring and M be an R-bimodule. Then, R ∝
M is a semiprime ring if and only if R is semiprime and M = {0}.

Proof. By the same method used in the proof of Proposition 3.1. 2

Lemma 3.3. Let R be a ring, M be an R-bimodule, and d a derivation
on R ∝M . Then, d1 ◦ i1 is a derivation on R.

Proof. It is easy to see that d1 ◦ i1 is additive. Let r, r0 ∈ R. We have
d1 ◦ i1(r.r0) = d1(r.r

0, 0) = π1(d((r, 0) ∝ (r0, 0))). Since d is a derivation,
we get d((r, 0) ∝ (r0, 0)) = (r, 0) ∝ d((r0, 0)) + d((r, 0)) ∝ (r0, 0). Therefore,
d1 ◦ i1(r.r0) = r.d1((r

0, 0)) + d1((r, 0)).r
0 = r.d1 ◦ i1(r0) + d1 ◦ i1(r).r0. Thus,

d1 ◦ i1 is a derivation on R. 2

Remark 3.4. It is well known that R ∝ {0} is isomorphic to R. Then, all
known results on derivations on prime rings can be extended easily on the
prime ring R ∝ {0} by taking d1 ◦ i1 to be the derivation on R.

Let us study the behaviour of derivations on R ∝ M , where R is a
prime ring, under the conditions Herstein’s theorem [7].

Theorem 3.5. Let R be a noncommutative prime ring with char(R) 6= 2,
M be an R-bimodule, and d be a derivation on R ∝ M . If d((r,m)) ∝
d((r0,m0)) = d((r0,m0)) ∝ d((r,m)) for every (r,m), (r0,m0) ∈ R ∝ M ,
then d1 ◦ i1 = 0 and s1 ∈ EndR(M). Furthermore, for every m,m0 ∈ M ,
we get that [s2(m), d1((0,m

0))] = [d1((0,m)), s2(m0)].

Proof. By Lemma 3.3, we have π1 ◦ d ◦ i1 is a derivation on R. Since
d((r, 0)) ∝ d((r0, 0)) = d((r0, 0)) ∝ d((r, 0)) for every r, r0 ∈ R, we get that
d1((r, 0)).d1((r

0, 0)) = d1((r
0, 0)).d1((r, 0)); namely, d1 ◦ i1(r).d1 ◦ i1(r0) =

d1 ◦ i1(r0).d1 ◦ i1(r). By Herstein’s Theorem [7], we get that d1 ◦ i1 = 0. It
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follows from Theorem 2.1 that s1(r.m) = r.s1(m) and s1(m.r) = s1(m).r,
for every (r,m) ∈ R × M ; namley, s1 ∈ HomR(M,R ∝ M). On the
other hand, the equation d((r,m)) ∝ d((r0,m0)) = d((r0,m0)) ∝ d((r,m)) is
equivalent to the equation

d2((r,m)).d1((r
0,m0)) + d1((r,m)).d2((r

0,m0)) = d2((r
0,m0)).d1((r,m))

+d1((r
0,m0)).d2((r,m));

namely, we get that

[d2((r,m)), d1((r
0,m0))] = [d1((r,m)), d2((r

0,m0))], (∀(r,m), (r0,m0) ∈ R ∝M).

Since d1 ◦ i1 = 0, the equation becomes as follows:

[d2((r,m)), d1((0,m
0))] = [d1((0,m)), d2((r

0,m0))], (∀(r,m), (r0,m0) ∈ R ∝M).

Recall that d2((r,m)) = s1(r) + s2(m). In particular, if m = 0, then we
obtain

[s1(r), d1((0,m
0))] = [d1((0, 0)), d2((r

0,m0))] = 0, (∀(r, 0), (r0,m0) ∈ R ∝M).

Therefore, we conclude that

[s2(m), d1((0,m
0))] = [d1((0,m)), s2(m

0)], (∀m,m0 ∈M).

2

Next, we make the same thing under the conditions of Posner’s theorem
[12].

Proposition 3.6. Let R be a noncommutative prime ring, M be an R-
bimodule such that ZM(R) =M , and d be a derivation on R ∝M . Then,
the derivation d centralizing if and only if, for every (r,m) ∈ R ∝ M , the
following statements hold:

1. d1 ◦ i1 = 0,

2. d1((0,m)).r − r.d1((0,m)) ∈ ZR(R).
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Proof. By Lemma 3.3, we have d1 ◦ i1 is a derivation on R. Further, by
Theorem 2.6, we have d1((r,m)).r− r.d1((r,m)) ∈ ZR(R). In particular, if
m = 0, then we get d1 ◦ i1(r).r − r.d1 ◦ i1(r) ∈ ZR(R); namely, d1 ◦ i1 is
a centralizing derivation on R. Since R is a noncommutative prime ring,
Posner’s Theorem [12] shows that d1 ◦ i1 = 0. Therefore, we get that
d1((0,m)).r − r.d1((0,m)) ∈ ZR(R). The converse is obtained by applying
Theorem 2.6 since ZM(R) =M . 2

Proposition 3.7. Let R be a noncommutative prime ring, M be an R-
bimodule such that ZM(R) =M , and d be a derivation on R ∝M . Then,
the derivation d commuting if and only if, for every (r,m) ∈ R ∝ M , the
following statements hold:

1. d1 ◦ i1 = 0,

2. d1((0,m)).r − r.d1((0,m)) = 0.

Proof. By the same method used in the proof of Proposition 3.6. 2
Next, we study the derivations on R ∝ M verifying the conditions of

Bell’s theorem [4].

Theorem 3.8. Let R be a prime ring, M be an R-bimodule, and d be
a derivation on R ∝ M such that d1 ◦ i2 = 0. Suppose that, for every
(r,m), (r0,m0) ∈ R ∝ M , the derivation d verifies [d((r,m)), d((r0,m0))] =
[(r,m), (r0,m0)]. Then, R ∝M is commutative.

Proof. Let us compute [d((r,m)), d((r0,m0))], for every (r,m), (r0,m0) ∈
R ∝M .

[d((r,m)), d((r0,m0))] = d((r,m)) ∝ d((r0,m0))− d((r0,m0)) ∝ d((r,m)),
= (d1((r,m)).d1((r

0,m0))− d1((r
0,m0)).d1((r,m)),

d1((r,m)).d2((r
0,m0)) + d2((r,m)).d1((r

0,m0))
−d1((r0,m0)).d2((r,m))− d2((r

0,m0)).d1((r,m))).

On the other hand, we have

[(r,m), (r0,m0)] = (r,m) ∝ (r0,m0)− (r0,m0) ∝ (r,m),
= (r.r0 − r0.r, r.m0 +m.r0 − r0.m−m0.r).

If m = m0 = 0, then we get that [d1 ◦ i1(r), d1 ◦ i1(r0)] = [r, r0]. By
Lemma 3.3, we have d ◦ i1 is a derivation on R. Therefore, Bell’s theorem
[4] proves that R is commutative. Further, we get that

d1 ◦ i1(r).s1(r0)− s1(r
0).d1 ◦ i1(r) = d1 ◦ i1(r0).s1(r)− s1(r).d1 ◦ i1(r0).
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Since d1◦i2 = 0, the second component of the equality [d((r,m)), d((r0,m0))] =
[(r,m), (r0,m0)] becomes as follows

d1 ◦ i1(r).s2(r0) + s2(r).d1 ◦ i1(r0)− d1 ◦ i1(r0).s2(r)− s2(r
0).d1 ◦ i1(r)

= r.m0 +m.r0 − r0.m−m0.r.

If r0 = 0, then we get that r.m0 − m0.r = 0, for every r ∈ R and m0 ∈
M ; namely, ZM(R) = M . Thus, Proposition 2.4 shows that R ∝ M is
commutative. 2

4. Conclusion

In conclusion, our study of derivations on trivial extensions has provided
a more complete understanding of the relationships between these map-
pings, trivial extensions, and prime rings. We characterized the structure
of derivations on trivial extensions, and we provided the necessary and
sufficient conditions for derivations to be centralizing or commuting. Ad-
ditionally, we have investigated the primeness of trivial extensions, and we
have explored the structure of derivations in the context of prime rings sat-
isfying the conditions of Herstein’s theorem, Posner’s theorem and Bell’s
theorem. This work advances our knowledge of these mathematical con-
cepts and lays the foundation for further study in this area.
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