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Abstract

In this paper, we provide a detailed analysis of the structure of
derivations on trivial extensions, the centre of trivial extensions, and
the conditions for a trivial extension to be prime. Additionally, we
examine the structure of derivations on trivial extensions when the
underlying ring, R, is a prime ring, under the conditions of Herstein’s
Theorem, Posner’s Theorem, and Bell’s theorem.
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1. Introduction

Let R and T be associative rings with unity, § and ¢ be homomorphisms
of unitary rings from 7" into R, and M be an R-bimodule. Then, a (6, ¢)-
derivation d is an additive mapping d : T' — M such that, for every x,y € T,
we have d(z.y) = d(x).¢(y) + 0(x).d(y) (for more details see [6]). If R="T
and 6 = ¢ = idp, then we say only that d is a derivation. In particular, for
a fixed element r € R, the map d : M — M defined by d(m) = [r,m] :=
r.m —m.r for all m € M will be called the inner derivation induced by r to
keep the coherence with the case of inner derivations in rings. In this case, if
d(m) = 0 for every m € M, then we say that r is a centralizer of M in R, and
we write r € Zr(M), where Zr(M) :={r € R|r.m —m.r =0,Vm € M}.
As well as, we call the inner derivation on R into M induced by m € M
the map d : R — M defined by d(r) = [m,r] = m.or — r.m for every
r € R. In this case, if d(r) = 0 for every r € M, then we say that m is a
centralizer of R in M, and we write m € Zy/(R), where Zy(R) := {m €
M | r.m —m.r = 0,Yr € R}. Considerable attention has been given to the
study of additive mappings and their impact on the overall structure of a
ring in recent decades, including derivations, homomorphisms, and related
maps (see references [1], [7], [8], [9], [10], [11]).

The ring R is said to be prime if x Ry = 0 implies that either z = 0 or
y = 0, for any elements x and y in R. As well, R is called semiprime if
zRx = 0 implies that z = 0, for any =z € R. Herstein theorem says that
if R is a noncommutative prime ring with char(R) # 2 (namely, z + z =
0 implies x = 0, for any x € R), and d is a derivation on R verifying
d(z).d(y) = d(y).d(z) for every z,y € R, then d = 0 (see [7]). As well,
Posner’s theorem, a classic result, states that the non-commutativity of a
prime ring R forces a centralizing derivation on R to be zero (see [12]). Also,
Bell’s theorem shows that if R is a prime ring having a derivation d which
satisfies [d(x),d(y)] = [z,y], for every z,y € R, then R is commutative (see
[4]).

Actually, we focus on trivial extensions. Recall that the trivial exten-
sion of R by M [2] is the ring R o« M := R&@ M such that for every
(r,m), (r',m') € R o< M, we have

(rym)+ (r',m) = (r+r',m+m),
(r,m) o< (r',m') = (ro’;r.om! + mar’).

In 2018, Bahmani et al. [3] studied Jordan generalized derivations on
trivial extensions. Later, in 2019, Bennis et al. [5] studied Lie generalized
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derivations on trivial extensions. In this paper, we present a comprehensive
investigation of derivations, trivial extensions, and their interplay. Our
focus is on providing a thorough analysis of the structure of derivations
over trivial extensions, and conditions for trivial extensions to be prime.
Additionally, we provide an in-depth analysis of the structure of derivations
in the case where R is a prime ring under the conditions of Herstein’s
theorem, Posner’s theorem and Bell’s theorem mentioned above.

2. Derivations over trivial extensions

Let d be an additive map on R o M. Let m; and w5 be the two projections
over R « M, defined by m1 : (r,m) € Rx M — r € R, and 7 : (r,m) €
Rox M — m e M. We write di :== w1 od and dy := 79 o d; namely,
d = (dy,dg). Furthermore, we define the following maps

s1: M — M so: R — M
m  —  s1(m) = da((0,m)). ’ r — sa(r):=da((r,0)).

We give necessary and sufficient conditions for d to be a derivation.

Theorem 2.1. With the above notations, the map d is a derivation on
R « M if and only if the following statements hold:

1. d; is a (w1, m )-derivation,
2. so is a derivation,

3. s1(r.m) = r.s;y(m) + dy(r,0).m and s;(m.r) = s1(m).r + m.dy(r,0),
for every r € R and m € M,

Proof. Let (r,m),(r";m') € R oc M, and suppose that d is a derivation
over R oc M. Then,

{ d((r,m) o< (r',m")) = (r,m) o< d(r’,m") + d(r,m) o (r',m'),
d((r,m) o< (r',m/)) = d((r.r',r.m' + m.r")).

It follows that d((r.r', r.m/+m.r")) = (r,m) o< d(r',m") +d(r,m) o (r',m’).
Then, we obtain the following equations:

dy ((r.r',rom/ +mo’)) = rdy (¢, m') + dy(r, m).r’,
do((r.ryrom/ +mor’)) = rdo(r',m’) + m.dy(r',m') + di(r,m).m’ + da(r, m).r.
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In other words, we get the following equalities:

Therefore, d; is a (71, m1)-derivation into R. In particular, if m = m/ =0,

then we get that

d2((r,0) o< (1',0)) = so(r.r') = r.sa(r’) + so(r).r';

namely, sy is a derivation of R into R o M. On the other hand, if v =0
and m = 0, then we get that

d2((r,0) o< (0,m")) = d2((0,r.m")) = s1(r-m’) = r.sy(m’) + dy(r,0).m’.

As well as, if r = 0 and m/ = 0, then we get that

do((0,m) o< (r',0)) = do((0,m.r")) = s1(m.r") = s1(m).r" + m.dy(r’,0).

Conversely, let d : (r,m) € R < M — d((r,m)) := (di(r,m),dz(r,m)).
Then, for every (r,m), (r',m’) € R «c M, we have:

d((?", m) o (T/7m/)) = (dl((rv m) o (r/,m’)),dg((r, m) o (T/’m/))'

Let us compute the first projection:

di((r,m) o< (r',m’)) =di((ror',r.m’ + m.a’)),

=rdi(r',m’) + di(r,m).r.

Now, we compute the second projection. Let (r,m), (r',m') € R o< M.

Notice first that

(r,m) o< (r',m') = (r',0) + (0,r.m') + (0,m.r").

Then, we obtain that

da((r,m) o (r',m'))

da((r.r',0)) + d2((0,7.m")) 4+ d2((0, m.r")),

so(r.r) + s1(r.m') + s1(m.r’),

r.so(r') + so(r).r’ + r.sy(m') + di((r,0)).m’ + s1(m).r' + m.dy((r',0)),
r.da((r',m')) + da((r,m)).r" + di((r,0)).m" + m.di((r',0)).
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It follows that
d((r,m) oc (r',m’)) = (r.di((r", ))+d1( r,m
dl((rv )) m' +

= (rdi((r',m ))

(d1((r,m)).r' dz(( ,m)).r’ +di((r,0)).m’),
= (r,m) o< (di((+',m")),

da((r',m'))) + (dl((ﬂm)) da((r,m))) o< (r',m’),
= (r,m)ocd((r',m")) +d((r,m)) o< (', m).

Therefore, d is a derivation. |

Now, we prove that we can always construct a derivation on R o M,
whenever we have a derivation f on R, a derivation g on R into R o« M,
and an additive map s: M — R o« M satisfying some conditions.

Theorem 2.2. Let R be a ring and M be an R-bimodule. Suppose that
there exist

1. a derivation f : R — R,
2. a derivation g : R - R o« M,

3. an additive map s : M — R o M such that s(r.m) = r.s(m)+ f(r).m
and s(m.r) = s(m).r +m.f(r); for every r € R and m € M.

Then, the map

d: RxM — Rx M
(r,m) = d((r,m)) = (f(r),g(r) + s(m)),

is a derivation on R o< M.

Proof. It is easy to see that d is an additive map. On the other hand,
let (r,m), (r',m’) € R o M. Then, we have

d((r,m) o< (r',m")) =d((ro';r.m' +m.r")),

m)).r',r.da((r',m’)) + da((r,
0

m)).r'+

= (f(rr'), g(rr') + s(r.m’ + m.r')),

= (f(r).r" +r.f(r'),g(r).r" +r.g(r') + s(r.m’) + s(m.r')),
=(f(r)r" +r.f(r"),g(r)r" +rglr)+r.s(m’)+ f(r).m'
+s(m).r’ +mf ))

= (f(r).r', f(r
+s(m ))+m
= (f(r),g(r) +
+s(m)),

=d((r,m)) o< (r',m') + (r,m) o< d((r',m')).

)-
F(),

s(m)) o< (r',m’) + (r;m) o< (f(r'), g(r')

(r
m' + (g(r) + s(m)).r") + (r-f ('), 7-(g(r")
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Hence d is a derivation on R o< M. |

Let i1 : R > R x M and i : M — R o M be the two maps defined
by i1(r) = (r,0) and i2(m) = (0,m) for every (r,m) € R x M. Then, we
characterize inner derivations on R oc M.

Theorem 2.3. With the above notations, the derivation d is the inner
derivation on R o« M induced by (r,m) € R o« M, if and only if the
following statements hold:

1. dyoig =0,

2. dj o1 is the inner derivation on R induced by r,
3. s1 is the inner derivation on M induced by 7,
4

. So Is the inner derivation on R into M, induced by m.

Proof. Let (a,x) € R o< M, then we obtain:
d((a,z)) = (r.a —a.r, (re —z.r)+ (m.a—am)).

It follows that dj o is = 0, and dj o 41(a) = r.a — a.r = [r,al, for every
a € R; namely, dy is the inner derivation on R induced by r. As well,
s1(z) = rax—z.r = [r,z], for every x € M; namely, s; is the inner derivation
on M induced by r. So that ss(a) = m.a —a.m = [m,al, for every a € R;
namely, sz is the inner derivation on R into M induced by m. Convesely,
we have:

d(a,z) = (dioii(a)+dyoig(z),51(x) + s2(r)),
= (r.a —a.r,(r.e —z.r) + (m.a — a.m)),
= (r,m) « (a,z) — (a,z) o< (r,m),
= [(r;m), (a,2)].
Therefore, d is the inner derivation on R o M induced by (r,m). O

Recall that a derivation é on a ring A is called centralizing, if for every
x € A, we have [6(x),x] € Za(A). Then, in order to study the centralizing
derivations on R o« M, we need first to study the structure of Zrsps(R o
M); the center of R o< M.

Proposition 2.4. Let R be a ring, M be an R-bimodule, and (r,m) €
A:= R x M. Then, (r,m) is a centralizer in R o< M if and only if the
following statements hold:
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1. re ZR(R),
2. me ZM(R),
3. Zr(R) C Zr(M).

Then, we write Zropr(R x M) = Zr(R) «x Zp(R) with Zr(R) C Zr(M).

Proof.  Suppose that [(a,x), (r,m)] = (0,0), for every element (a,x) in
R o« M; equivalently,

ar—r.a=>0,
am—m.a+x.r—rc=0,

From the first equation, we see that r € Zr(R). Suppose that x = 0. Then,
the second equation implies that a.m — m.a = 0, for every a € R, which
yields that m € Zp(R). In this case, we get that x.r — r.z = 0, where
r € Zr(R). Therefore, Zr(R) C Zr(M). Conversely, since r € Zr(R) and
m € Zy(R), we get that a.r —r.a = 0 and a.m — m.a = 0. It follows
that [(a,x), (r,m)] = (0,z.r — r.x). But we have Zr(R) C Zr(M), then
x.r —r.x = 0. Thus, (r,m) is a centralizer of R o M. O

Corollary 2.5. Let R be a ring and M an R-bimodule. The trivial exten-
sion R o« M is commutative if and only if R is commutative and r.m = m.r
for every (r,m) € R x M.

Proof. By Proposition 2.4, R « M is commutative if and only if

Zr(R) = R and Zp/(R) = M; namely, R is commutative and r.m = m.r

for every (r,m) € R x M. O
So we give a characterization of centralizing derivations on R o« M.

Theorem 2.6. Let R be aring, M be an R-bimodule, and d be a derivation
on R «x M. Then, the derivation d centralizing if and only if, for every
(r,m) € R x M, the following statements hold:

1. dy((r,m)).r —r.di((r,m)) € Zr(R),

2
3. d1((0,m)).m —m.d1((0,m)) € Zp(R),
4
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Proof. Let (r,m) € R o M, and suppose that [d((r,m)),(r,m)] €
ZrocM (R o< M). Then, we obtain

(di((r,m)).r —r.di((r,m)),d1((r,m)).m — m.di((r,m)) + da((r,m)).r

—T.dg((T‘, m))) € ZRocM(R X M)
By Proposition 2.4, we get that

{ dy((r,m)).r —r.di((r,m)) € Zr(R),
di((r,m)).m —m.di((r,m)) + da((r,m)).r — r.da((r,m)) € Zp;(R).

If m = 0, then the first statement shows that dy((r,0)).r — r.di((r,0)) €
Zr(R), and the second statement shows that sa(r).r — r.so(r) € Zy(R). It
follows that di((0,m)).r — r.d1((0,m)) € Zr(R). Therefore, di((r,m)).r —
r.di((r,m)) € Zgr(R). On the other hand, if » = 0, then we get from the
second statement that di((0,m)).m —m.di((0,m)) € Zp(R). Finally, we
conclude that si(m).r —r.s;(m) € Zy(R). The converse is obvious. O

Recall that a derivation § on a ring A is called commuting, if for every
x € A, we have [§(z), z] = 0. So, we characterize the commuting derivations
on R o< M.

Theorem 2.7. Let R be aring, M be an R-bimodule, and d be a derivation
on R «« M. Then, the derivation d commuting if and only if, for every
(r,m) € R x M, the following statements hold:

3. Derivations over R « M when R is a prime ring
First, we study the primeness and semiprimeness of trivial extensions.

Proposition 3.1. Let R be a ring and M be an R-bimodule. Then, R x
M is a prime ring if and only if R is prime and M = {0}.
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Proof. Let m € M. Then, for any (a,z) € R o« M, we have (0,m) o
(a,z) < (0,m) = (0,0); namely, (0,m) x R x (0,m) = (0,0). Since
R « M is prime, (0,m) = (0,0). Thus, M = {0}. Now, Let r and ' be
two elements in R such that »Rr’ = 0. Then, for any (a,0) € R o< M, we
have (r,0) x (a,0)  (r/,0) = (rar’,0) = (0,0). Since R o< M is prime, we
get that either (r,0) = (0,0) or (r/,0) = (0,0); namely, » = 0 or 7" = 0.
Thus, R is prime. Conversely, we have R « {0} = R. Therefore, R «x {0}
is prime. O

Proposition 3.2. Let R be a ring and M be an R-bimodule. Then, R x
M is a semiprime ring if and only if R is semiprime and M = {0}.

Proof. By the same method used in the proof of Proposition 3.1. |

Lemma 3.3. Let R be a ring, M be an R-bimodule, and d a derivation
on R oc M. Then, di o1 is a derivation on R.

Proof. It is easy to see that d; o ¢ is additive. Let r,7’ € R. We have
dy oii(rr’) = di(ro’,0) = m(d((r,0) < (17,0))). Since d is a derivation,
we get d((r,0) o (r',0)) = (r,0) < d((r',0)) +d((r,0)) x (r’,0). Therefore,
dioiy(rr’)y =r.di((r,0)) + di((r,0)).r" = r.dy oir(r') + dy o4y (r).r’. Thus,
dy 011 is a derivation on R. O

Remark 3.4. It is well known that R « {0} is isomorphic to R. Then, all
known results on derivations on prime rings can be extended easily on the
prime ring R o« {0} by taking dy o iy to be the derivation on R.

Let us study the behaviour of derivations on R « M, where R is a
prime ring, under the conditions Herstein’s theorem [7].

Theorem 3.5. Let R be a noncommutative prime ring with char(R) # 2
M be an R-bimodule, and d be a derivation on R o M. If d((r,m))
d((r',m")) = d((+',m")) < d((r,m)) for every (r,m),(r',m') € R x M,
then dy oiy = 0 and s1 € Endg(M). Furthermore, for every m,m’' € M,
we get that [sa(m), d1((0,m"))] = [d1((0,m)), s2(m/)].

Proof. By Lemma 3.3, we have w1 o d o141 is a derivation on R. Since
(( 0)) o< d((r',0)) = d((r',0)) x d((r,0)) for every r,7’" € R, we get that

d1((r,0)).d1((r",0)) = di((r',0)).d1((r,0)); namely, dy o ir(r).dy o 11 (r') =
dy oiy(r').dy o 21( ). By Herstein’s Theorem [7], we get that dy oip = 0. It
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follows from Theorem 2.1 that si(r.m) = r.s1(m) and s;(m.r) = sy(m).r,
for every (r,m) € R x M; namley, s; € Homp(M,R o< M). On the
other hand, the equation d((r, m)) o< d((r',m’)) =d((r',m')) o< d((r,m)) is

equivalent to the equation

da((r,m))-di((r',m)) + di((r,m)).da((r", m")) = do((r', m')).d1 ((r, m))
+d; ((T/’ m/))'d2((rv m))a

namely, we get that
[d2((r,m)), di((r',m))] = [d1((r,m)), da((r',m"))],  (Y(r,m), (r',m/) € R o< M).

Since dj 041 = 0, the equation becomes as follows:

[dQ((T7 m))’ dl((ovm/))] = [dl((()?m))’ dQ((T,’mI))]v (V(T, m)’ (T/7ml) € Rx M)

Recall that da((r,m)) = s1(r) + s2(m). In particular, if m = 0, then we
obtain

[s1(r), d1((0,m"))] = [d1((0,0)), do((r',m"))] = 0, (¥(r,0), (r',m) € R oc M).
Therefore, we conclude that
[SQ(m)’ dl((()’ m/))] = [dl((oa m))7 SQ(m/)]7 (Vm, m' e M)

|

Next, we make the same thing under the conditions of Posner’s theorem
[12].

Proposition 3.6. Let R be a noncommutative prime ring, M be an R-
bimodule such that Zy;(R) = M, and d be a derivation on R o« M. Then,
the derivation d centralizing if and only if, for every (r,m) € R « M, the
following statements hold:

1. dloilzo,

2. di((0,m)).r —r.di((0,m)) € Zr(R).
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Proof. By Lemma 3.3, we have d; o141 is a derivation on R. Further, by
Theorem 2.6, we have di((r,m)).r —r.di((r,m)) € Zr(R). In particular, if
m = 0, then we get dj o i1(r).r —r.dy oi1(r) € Zr(R); namely, d; o4 is
a centralizing derivation on R. Since R is a noncommutative prime ring,
Posner’s Theorem [12] shows that dj o 93 = 0. Therefore, we get that
d1((0,m)).r — r.di((0,m)) € Zr(R). The converse is obtained by applying
Theorem 2.6 since Zy;(R) = M. O

Proposition 3.7. Let R be a noncommutative prime ring, M be an R-
bimodule such that Zy;(R) = M, and d be a derivation on R o« M. Then,
the derivation d commuting if and only if, for every (r,m) € R o« M, the
following statements hold:

1. dl o ’il == O,
2. di1((0,m)).r —r.di((0,m)) =0.

Proof. By the same method used in the proof of Proposition 3.6. O
Next, we study the derivations on R « M verifying the conditions of
Bell’s theorem [4].

Theorem 3.8. Let R be a prime ring, M be an R-bimodule, and d be
a derivation on R o« M such that di o i5 = 0. Suppose that, for every
(rym), (r',m') € R < M, the derivation d verifies [d((r,m)),d((r",m'))] =
[(r,m), (r ,m')]. Then, R < M is commutative.

Proof. Let us compute [d((r,m)),d((r’,m'))], for every (r,m), (r',m') €
Roc M.

[d((r,m)), dl(r',m)] - = dl(r,m)) o d((r', m)) — (( m') O<d(( r ))
di((r,m)).da((r', m')) = da((r”, m0)).
(r.m)).da(, 1)) + da(r, m)). (', o

(")) (1, m)) — (1, ))dl(’bm)))

On the other hand, we have

= (
da(
—d;

(), 07,m)] = () o ¢ 0) = () ox (),
= (ro' —r'rrm’ +ma’ —r'om —m/r).
If m = m' = 0, then we get that [dy o i1(r),d1 o i1(r")] = [r,7]. By
Lemma 3.3, we have d o iy is a derivation on R. Therefore, Bell’s theorem
[4] proves that R is commutative. Further, we get that

dy oy (r).s1(r") — s1(r').dy ot (r) = dy 0 i1 (r').s1(r) — s1(r).dy 01 (1").
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Since djoig = 0, the second component of the equality [d((r,m)), d((r',m'))] =
[(r,m), (r',m")] becomes as follows

dy 0i1(r).s2(r'") + sa(r).dy 0 iy (r') — dy 0 i1 (r").s2(r) — s2(r’).dy 0 i1 (r)

/ / / /
=rm +m.r —r.m-—1m.r.

If ' = 0, then we get that r.m’ — m/.r = 0, for every r € R and m’ €
M; namely, Zy/(R) = M. Thus, Proposition 2.4 shows that R o< M is
commutative. O

4. Conclusion

In conclusion, our study of derivations on trivial extensions has provided
a more complete understanding of the relationships between these map-
pings, trivial extensions, and prime rings. We characterized the structure
of derivations on trivial extensions, and we provided the necessary and
sufficient conditions for derivations to be centralizing or commuting. Ad-
ditionally, we have investigated the primeness of trivial extensions, and we
have explored the structure of derivations in the context of prime rings sat-
isfying the conditions of Herstein’s theorem, Posner’s theorem and Bell’s
theorem. This work advances our knowledge of these mathematical con-
cepts and lays the foundation for further study in this area.
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