A note on local edge antimagic chromatic number of graphs

Fawwaz Fakhrurrozi Hadiputra
Institut Teknologi Bandung, Indonesia
and
Tita Khalis Maryati
UIN Syarif Hidayatullah Jakarta, Indonesia
Received: May 2023. Accepted : October 2023

Abstract

Let G be a finite, undirected and simple graph. A bijection f : $V(G) \rightarrow[1,|V(G)|]$ is called a local edge antimagic labeling if for any two adjacent edges $u v, v x \in E(G), w(u v) \neq w(v x)$ with $w(u v)=$ $f(u)+f(v)$. By giving every edges uv $\in E(G)$ a coloring with $w(u v)$, then the local edge antimagic labeling of G induces an edge coloring of G. The local edge antimagic chromatic number $\chi_{l e a}^{\prime}(G)$ is the minimum number of colors taken over all edge colorings induced by local edge antimagic labeling of G. In this paper, we investigate characterization of graphs G with small number $\chi_{\text {lea }}^{\prime}(G)$, relationship between local edge antimagic chromatic number $\chi_{\text {lea }}^{\prime}(G)$ and edge independence number $\alpha^{\prime}(G)$, and bounds of $\chi_{\text {lea }}^{\prime}(G)$ for any graphs.

Keywords: Edge coloring, edge independence number, local edge antimagic.

MSC (2020): 05C15, 05C70, 05C78.

Introduction

Consider graphs in this paper to be simple, undirected and finite. Let $n G$ to be a union of n disjoint copies of graph G. The edge independence number $\alpha^{\prime}(G)$ is the size of maximum independent edge set. If the order of a graph G is n, then the edge independence number is bounded by

$$
\alpha^{\prime}(G) \leq\left\lfloor\frac{1}{2} n\right\rfloor
$$

Let G and H be graphs with $v \in V(H)$. We define a comb product of G and H, denoted by $G \triangleright_{v} H$, to be a graph obtained by taking one copy of G and $|V(G)|$ copies of H in which the vertex v in i-th copy of H is identified with the i-th vertex of $G[16]$. The graph $G \triangleright_{v} H$ has a vertex set

$$
V\left(G \triangleright_{v} H\right)=\{(a, x) \mid a \in V(G), x \in V(H)\}
$$

and an edge set

$$
\begin{array}{ll}
E\left(G \triangleright_{v} H\right)=\{(a, x)(b, y) \mid \quad & \text { if } a=b \text { and } x y \in E(H), \\
& \text { or } a b \in E(G) \text { and } v=x=y\}
\end{array}
$$

Let f be a bijection $f: E(G) \rightarrow[1,|E(G)|]$. The map f is called local antimagic labeling if for any two adjacent vertices $u, v \in V(G), w(u) \neq w(v)$ with $w(u)=\sum_{e \in E(u)} f(e)$ and $E(u)$ be the set of all edges incident to u. For every vertex v, assign the color $w(v)$ to the vertex v. Consequently, a local antimagic labeling of G will induce a vertex coloring of G. The local antimagic chromatic number $\chi_{l a}(G)$ is the minimum number of colors taken over all vertex colorings induced by local antimagic labeling of G. Arumugam et al. [3] have determined the local antimagic chromatic number of several families of graphs, namely paths P_{n}, cycles C_{n}, friendship graphs F_{n}, complete bipartites $K_{m, n}$, and wheels W_{n}. They also found some bounds of local antimagic chromatic number for trees. There are other studies about local antimagic chromatic number which involves complete full t-ary trees [4], wheels and helms [7], corona products related to friendship and fan graph [11], graphs amalgamation [12], generalized friendship graphs [14], and lexicographic product graphs [13]. In addition, Haslegrave [10] has proven that every connected graphs other than K_{2} has a local antimagic labeling.

It is natural to consider a variation of such labeling. A bijection f : $V(G) \rightarrow[1,|V(G)|]$ is called local edge antimagic labeling if for any two adjacent edges $u v, v x \in E(G), w(u v) \neq w(v x)$ with $w(u v)=f(u)+f(v)$.

By assigning the color $w(u v)$ to the edge $u v$ for every edge $u v \in E(G)$, the local edge antimagic labeling of G will induce an edge coloring of G. The local edge antimagic chromatic number $\chi_{l e a}^{\prime}(G)$ (some authors write it as $\left.\gamma_{l e a}(G)\right)$ is the minimum number of colors taken over all edge colorings induced by local edge antimagic labeling of G. Agustin et al. [1] have found the local edge antimagic chromatic number of paths P_{n}, cycles C_{n}, ladders L_{n}, stars S_{n}, complete graphs K_{n}, and many more. Some of their results are shown below.

Theorem 1. [1] For $n \geq 3$, the local edge antimagic chromatic number of P_{n} is $\chi_{l e a}^{\prime}\left(P_{n}\right)=2$.

Theorem 2. [1] For $n \geq 3$, the local edge antimagic chromatic number of C_{n} is $\chi_{\text {lea }}^{\prime}\left(C_{n}\right)=3$.

Theorem 3. [1] For $n \geq 3$, the local edge antimagic chromatic number of S_{n} is $\chi_{l e a}^{\prime}\left(S_{n}\right)=n$.

The study is followed by Rajkumar and Nalliah [15] who investigated the local edge antimagic chromatic number of friendship graphs F_{n}, wheels W_{n}, fan graphs f_{n}, helm graph H_{n}, and flower graphs $F l_{n}$. Many variations on local antimagic labeling may also be seen in $[5,8,9]$. To see many other kinds of labeling please consult to [6].

For a graph G, let $\Delta(G)$ be the largest degree of a vertex in G and $\chi^{\prime}(G)$ be the edge chromatic number of G. It is evident that the following inequalities are true

$$
\Delta(G) \leq \chi^{\prime}(G) \leq \chi_{l e a}^{\prime}(G) \leq|E(G)|
$$

In this paper, we investigate characterization of graphs G with small number of $\chi_{\text {lea }}^{\prime}(G)$, relationship of $\chi_{\text {lea }}^{\prime}(G)$ and $\alpha^{\prime}(G)$, and bounds of $\chi_{\text {lea }}^{\prime}(G)$ for any graph G.

Main Results

Unlike the analog labeling [10], proving that every graphs admits local edge antimagic labeling is pretty straightforward. To prove this, consider the following proposition.
Proposition 1. Let G be a graph, $f: V(G) \rightarrow[1,|V(G)|]$ be a bijection, and $w(u v)=f(u)+f(v)$ for an edge $u v \in E(G)$. For any two adjacent edges $u v, v x \in E(G)$, we have $w(u v) \neq w(v x)$ and f is a local edge antimagic labeling.

Proof. For any distinct vertices $u, v, x \in V(G)$, one may observe that

$$
\begin{aligned}
w(u v) \neq w(v x) & \Longleftrightarrow f(u)+f(v) \neq f(v)+f(x) \\
& \Longleftrightarrow f(u) \neq f(x) \\
& \Longleftrightarrow f \text { is injective }
\end{aligned}
$$

Since f is a bijection, it follows that $w(u v) \neq w(v x)$ and f is a local edge antimagic labeling.

Fix any graph G and consider any bijection $f: V(G) \rightarrow[1,|V(G)|]$. By Proposition 1, f is a local edge antimagic labeling. Therefore, we have shown the following.

Corollary 1. Every graphs admits local edge antimagic labeling.
Next, consider graphs G with $\Delta(G)=1$. If G is connected then $G \cong K_{2}$. For more general graphs G, it may be seen that if G does not have any isolated vertex, then $G \cong n K_{2}$ for some positive integer n. It follows that this is the only graph with $\chi_{\text {lea }}^{\prime}(G)=1$.

Proposition 2. Let G be a graph without isolated vertices. We have $\chi_{\text {lea }}^{\prime}(G)=1$ if and only if $G \cong n K_{2}$ for some positive integer n.

Proof. Let G be a graph without isolated vertices and $\chi_{l e a}^{\prime}(G)=1$, then $\Delta(G) \leq 1$ which implies $G \cong n K_{2}$. For the backward direction, let $G \cong n K_{2}$. To show $\chi_{l e a}^{\prime}(G)=1$, consider $X=[1,2 n]$. Create a partition of X into 2-sets namely X_{i} for $i \in[1, n]$ such that

$$
\sum_{t \in X_{i}} t=2 n+1
$$

Then, let f be a map which labels every two adjacent vertices with X_{i} for $i \in[1, n]$. It follows that every edges of G has a weight of $2 n+1$. This implies $\chi_{l e a}^{\prime}(G)=1$.

Then, consider connected graphs G with $\Delta(G)=2$. Using results from [1], we may also determine a characterization as follows

Corollary 2. Let G be a connected graph with the order at least 3. We have $\chi_{\text {lea }}^{\prime}(G)=2$ if and only if $G \cong P_{n}$ for some positive integer n.

Proof. Let G be a connected graph with $\chi_{\text {lea }}^{\prime}(G)=2$. Consequently, $\Delta(G) \leq 2$. This implies G is isomorphic to either paths P_{n} or cycles C_{n}. However, $\chi_{l e a}^{\prime}\left(C_{n}\right)=3$ due to Theorem 2. This implies that G may only
be isomorphic to paths P_{n}. The backward direction is exactly Theorem 1.
We may extend this result to conclude that disjoint paths also have the same local edge antimagic chromatic number. For integers $m \geq 1$ and $n \geq 3$, let $m P_{n}$ be a graph with vertex set

$$
V\left(m P_{n}\right)=\left\{v_{i, j} \mid i \in[1, n], j \in[1, m]\right\}
$$

and with edge set

$$
E\left(m P_{n}\right)=\left\{v_{i, j} v_{i+1, j} \mid i \in[1, n-1], j \in[1, m]\right\}
$$

Theorem 4. Let $m \geq 1$ and $n \geq 3$ be integers. We have $\chi_{\text {lea }}^{\prime}\left(m P_{n}\right)=2$.
Proof. Let $f: V(G) \rightarrow[1, m n]$ be a labeling of $m P_{n}$. We define f according to the parity of n.
If n is even, define f as follows

$$
f\left(v_{i, j}\right)=\left\{\begin{array}{cc}
\frac{i+n(j-1)+1}{2}, & \text { for } i \text { is odd, } \\
m n+1-\frac{i+n(j-1)}{2}, & \text { for } i \text { is even. }
\end{array}\right.
$$

It could be seen that f is a bijection. As a result, we have

$$
w\left(v_{i, j} v_{i+1, j}\right)= \begin{cases}m n+1, & \text { for } i \text { is odd, } \\ m n+2, & \text { for } i \text { is even. }\end{cases}
$$

Else, if n is odd, then f is defined by

$$
f\left(v_{i, j}\right)=\left\{\begin{array}{cl}
\frac{i+n(j-1)+1}{2}, & \text { for } i+j \text { is even } \\
m n+1-\frac{i+n(j-1)}{2}, & \text { for } i+j \text { is odd }
\end{array}\right.
$$

Notice that f is also a bijection. It follows that

$$
w\left(v_{i, j} v_{i+1, j}\right)= \begin{cases}m n+1, & \text { for } i+j \text { is even } \\ m n+2, & \text { for } i+j \text { is odd }\end{cases}
$$

It may be concluded that $\chi_{\text {lea }}^{\prime}\left(m P_{n}\right) \leq 2$. Since $\Delta\left(m P_{n}\right)=2 \leq$ $\chi_{\text {lea }}^{\prime}\left(m P_{n}\right)$, then $\chi_{\text {lea }}^{\prime}\left(m P_{n}\right)=2$.

In Figure 1, we present an example of local edge antimagic labeling for $3 P_{6}$ and $4 P_{5}$. The distinct weights implies $\chi_{\text {lea }}^{\prime}\left(3 P_{6}\right)=\chi_{\text {lea }}^{\prime}\left(4 P_{5}\right)=2$.

Figure 1: Local edge antimagic labeling of $(a) 3 P_{6}$ and $(b) 4 P_{5}$.

Results in disjoint graphs may also be found in star forests. For integers $m \geq 1$ and $n \geq 1$, let $m S_{n}$ be a graph with vertex set

$$
V\left(m S_{n}\right)=\left\{c_{j}, v_{i, j} \mid i \in[1, n], j \in[1, m]\right\}
$$

and with edge set

$$
E\left(m S_{n}\right)=\left\{c_{j} v_{i, j} \mid i \in[1, n], j \in[1, m]\right\}
$$

The following result presents the local edge antimagic chromatic number for disjoint stars.
Proposition 3. Let $m \geq 1$ and $n \geq 3$ be integers. We have $\chi_{\text {lea }}^{\prime}\left(m S_{n}\right)=$ n.

Proof. Let $G=m S_{n}$. A vertex labeling $f: V(G) \rightarrow[1, m(n+1)]$ of $m S_{n}$ is defined as follows

$$
\begin{aligned}
& f\left(c_{j}\right)=j \\
& f\left(v_{i, j}\right)=m(i+1)-j+1
\end{aligned}
$$

the weights of the edges are

$$
w\left(c_{j} v_{i, j}\right)=m(i+1)+1
$$

Therefore, $\chi_{\text {lea }}^{\prime}\left(m S_{n}\right) \geq n$. Since $n=\Delta\left(m S_{n}\right) \leq \chi_{\text {lea }}^{\prime}\left(m S_{n}\right)$, we conclude that $\chi_{\text {lea }}^{\prime}\left(m S_{n}\right)=n$.

Preceding results may be applied to determine bounds of local edge antimagic chromatic number for any graphs G.

Theorem 5. Let H be a subgraph of G. We have

$$
\chi_{l e a}^{\prime}(G) \leq|E(G)|-|E(H)|+\chi_{l e a}^{\prime}(H)
$$

In addition, it follows that

$$
\chi_{l e a}^{\prime}(G) \leq|E(G)|-\max _{F \subset G}\left\{|E(F)|-\chi_{l e a}^{\prime}(F)\right\}
$$

Proof. Let g be a local edge antimagic labeling of H which uses $\chi_{l e a}^{\prime}(H)$ colors. Define a bijection $f:|V(G)| \rightarrow[1,|V(G)|]$ such that

$$
f(v)=g(v)
$$

for $v \in V(H)$ and any mapping (such that f is bijection) for the rest of vertices in G. By Proposition 1, f is a local edge antimagic labeling. Therefore,

- the number of edge colors induced in H is exactly $\chi_{l e a}^{\prime}(H)$,
- the number of edge colors induced in $G-E(H)$ is at most $|E(G)|-$ $|E(H)|$.

This implies

$$
\chi_{\text {lea }}^{\prime}(G) \leq|E(G)|-|E(H)|+\chi_{\text {lea }}^{\prime}(H)
$$

Since H is chosen randomly, then we have

$$
\chi_{l e a}^{\prime}(G) \leq|E(G)|-\max _{F \subset G}\left\{|E(F)|-\chi_{l e a}^{\prime}(F)\right\}
$$

Hence, the theorem holds.
For a graph G, let $m=\alpha^{\prime}(G)$. It may be seen that $\chi_{\text {lea }}^{\prime}\left(m K_{2}\right)=1$ due to Theorem 2. Therefore, by choosing $H=m K_{2}$ in Theorem 5, we have a relationship between $\chi_{l e a}^{\prime}(G)$ and $\alpha^{\prime}(G)$.

Corollary 3. For any graph G, we have $\chi_{\text {lea }}^{\prime}(G)+\alpha^{\prime}(G) \leq|E(G)|+1$.
In some cases, the colors induced may be less than $|E(G)|+1$. The illustration for this occurence is depicted in Figure 2.

Figure 2: A graph G with $\chi_{\text {lea }}^{\prime}(G) \leq 9$.

Some graphs which satisfy the equality in the preceding corollary are path with 4 vertices P_{4} and stars S_{n} for $n \geq 2$ [1]. Moreover, we may also choose H to be some disjoint stars as in Proposition 3 or disjoint paths as in Theorem 4 to Theorem 5. In this case, we have the following corollaries.

Corollary 4. Let G be a graph and q_{n} be the largest integer such that $q_{n} P_{n} \subseteq G$ for $n \geq 3$. Then,

$$
\chi_{l e a}^{\prime}(G) \leq|E(G)|+2-\max _{n \geq 3}\left\{q_{n}(n-1)\right\}
$$

Corollary 5. Let G be a graph and q_{n} be the largest integer such that $q_{n} S_{n} \subseteq G$ for $n \geq 3$. Then,

$$
\chi_{\text {lea }}^{\prime}(G) \leq|E(G)|-\max _{n \geq 3}\left\{\left(q_{n}-1\right) n\right\}
$$

In particular, consider $P_{4} \triangleright_{v} P_{n}$ with v being a leaf in P_{n}. Clearly, $\Delta\left(P_{4} \triangleright_{v} P_{n}\right)=3$. Moreover, it may be seen that $2 P_{2 n} \subseteq P_{4} \triangleright_{v} P_{n}$. Then,

$$
\chi_{l e a}^{\prime}\left(P_{4} \triangleright_{v} P_{n}\right) \leq(4 n-1)+2-2(2 n-1) \leq 3
$$

due to Corollary 4. Consequently, $\chi_{l e a}^{\prime}\left(P_{4} \triangleright_{v} P_{n}\right)=3$. This is a counter example of Theorem 2.1 and Theorem 2.2 in [2] proving that those results are incorrect.

In general, for graphs G, and H a subgraph of G, let q_{H} be the largest integer such that $q_{H} H \subseteq G$. The largest number of $q_{H}|E(H)|$ may vary for each G. Indeed, for some integer m and vertex $v \in V(H)$, the graph $K_{1, m} \triangleright_{v} H$ satisfies the equality in Theorem 5.

Theorem 6. Let m be a positive integer. Let H be a graph with $\Delta(H)=$ $\chi_{\text {lea }}^{\prime}(H)$ and $v \in V(H)$ with $\operatorname{deg}(v)=\Delta(H)$. If $G \cong K_{1, m} \triangleright_{v} H$, then $\chi_{\text {lea }}^{\prime}(G)=m+\Delta(H)$.

Proof. Let $V\left(K_{1, m}\right)=\left\{c, v_{i} \mid i \in[1, m]\right\}$ with c being the center of $K_{1, m}$. By the construction of $G \cong K_{1, m} \triangleright_{v} H$, it may be observed that $|E(G)|=m+(m+1)|E(H)|$ and $\Delta(G)=m+\Delta(H)$. It follows that $\chi_{\text {lea }}^{\prime}(G) \geq m+\Delta(H)$.

For $i \in[1, m+1]$, let $H^{(i)}$ be a subgraph of G with chosen vertices as follows

$$
\begin{aligned}
H^{(1)}= & \left\{\left(v_{1}, u\right) \mid u \in V(H)\right\}, \\
H^{(2)} & =\left\{\left(v_{2}, u\right) \mid u \in V(H)\right\}, \\
& \vdots \\
H^{(m)}= & \left\{\left(v_{m}, u\right) \mid u \in V(H)\right\}, \\
H^{(m+1)}= & \{(c, u) \mid u \in V(H)\} .
\end{aligned}
$$

Hence, there are $m+1$ subgraph of H in $G . q_{k} H \subseteq K_{1, m} \triangleright_{o} H$. Clearly,

$$
(m+1)|E(H)|-\Delta(H) \leq \max _{F \subset G}\left\{|E(F)|-\chi_{l e a}^{\prime}(F)\right\}
$$

By Theorem 5, we have

$$
\begin{aligned}
\chi_{l e a}^{\prime}(G) & \leq|E(G)|-\max _{F \subset G}\left\{|E(F)|-\chi_{\text {lea }}^{\prime}(F)\right\} \\
& \leq m+(m+1)|E(H)|-((m+1)|E(H)|-\Delta(H)) \\
& \leq m+\Delta(H)
\end{aligned}
$$

It may be concluded that $\chi_{\text {lea }}^{\prime}(G)=m+\Delta(H)$.
This implies that the bound in Theorem 5 is sharp. Some graph G which satisfies $\Delta(G)=\chi_{\text {lea }}^{\prime}(G)$ are $G \cong m P_{n}$ and $G \cong m S_{n}$ for some integers m, n. For instance, we present $K_{1,3} \triangleright_{v} P_{5}$ for some $v \in V\left(P_{5}\right)$ which has $\chi_{l e a}^{\prime}\left(K_{1, m} \triangleright_{v} P_{5}\right)=5$ and $K_{1,4} \triangleright_{v} K_{1,3}$ for some $v \in V\left(K_{1,3}\right)$ which has $\chi_{\text {lea }}^{\prime}\left(K_{1,4} \triangleright_{v} K_{1,3}\right)=7$ in Figure 3. Motivated by these results, we proposed a problem shown below.

Problem 1. Characterize graphs G with $\chi_{l e a}^{\prime}(G)=\Delta(G)$.

Figure 3: Graphs with (a) $\chi_{\text {lea }}^{\prime}\left(K_{1, m} \triangleright_{v} P_{5}\right)=5$ and $(b) \chi_{\text {lea }}^{\prime}\left(K_{1,4} \triangleright_{v} K_{1,3}\right)=$ 7.

Acknowledgment

The authors are pleased to thank the anonymous referees for the great feedback.

References

[1] I. H. Agustin, M. Hasan, Dafik, R. Alfarisi, and R. M, Prihandini, "Local edge antimagic coloring of graphs", Far East J. Math. Sci., Vol. 102, No. 9, pp. 1925-1941, 2017. doi 10.17654/MS102091925.
[2] I. H. Agustin, M. Hasan, Dafik, R. Alfarisi, A. I. Kristiana, and R. M. Prihandini, "Local edge antimagic coloring of comb product of graphs", J. Phys.: Conf. Ser., Vol. 1008, pp. 012038, 2018. doi 10.1088/1742-6596/1008/1/012038.
[3] S. Arumugam, K. Premalatha, M. Bača, and A. SemanicovaFenovcikova, "Local antimagic vertex coloring of a graph", Graphs Combin., Vol. 33, pp. 275-285, 2017. doi 10.1007/s00373-017-1758-7.
[4] M. Bača, A. Semaničová-Feňovčíková, R.-T. Lai, and T.-M. Wang, "On local antimagic vertex coloring for complete full t-ary trees", Fund. Inform., Vol. 185, No. 2, pp. 99-113, 2022. doi 10.3233/FI222105.
[5] Dafik, R. Nisviasari, T. K. Maryati, I. H. Agustin, and M. Venkatachalam, "On local super antimagic total face coloring and the application in developing a cipher block chaining key", J. Discrete Math. Sci. Cryptogr., Vol. 24, No. 97, pp. 1-11, 2021. doi 10.1080/09720529.2021.1882162.
[6] J. A. Gallian, "A dynamic survey of graph labelings", Electron. J. Combin., Vol. 29, No. \#DS6, 2022. doi 10.37236/27.
[7] F. F. Hadiputra, D. R. Silaban, and T. K. Maryati, "Local antimagic vertex coloring of wheel graph and helm graph", In Proceedings of the 1st International MIPAnet Conference on Science and Mathematics (IMC-SciMath 2019), pp. 185-189, 2022. doi 10.5220/0010138400002775.
[8] F. F. Hadiputra, D. R. Silaban, and T. K. Maryati, "Super local edge anti-magic total coloring of paths and its derivation", Indones. J. Comb., Vol. 3, No. 2, pp. 126-139, 2020. doi 10.19184/ijc.2019.3.2.6.
[9] F. F. Hadiputra, K. A. Sugeng, D. R. Silaban, T. K. Maryati, and D. Froncek, "Chromatic number of super vertex local antimagic total labelings of graphs", Electron. J. Graph Appl., Vol. 9, No. 2, pp. 485498, 2021. doi 10.5614/ejgta.2021.9.2.19.
[10] J. Haslegrave, "Proof of a local antimagic conjecture", Discrete Math. Theor. Comput. Sci., Vol. 20, No. 1, pp. \#18, 2018. doi 10.23638/DMTCS-20-1-18.
[11] Z. R. Himami and D. R. Silaban, "On local antimagic vertex coloring of corona products related to friendship and fan graph", Indones. J. Comb., Vol. 5, No. 2, pp. 110-121, 2021, doi 10.19184/ijc.2021.5.2.7.
[12] E. Kurniawati, I. H. Agustin, Dafik, and Marsidi, "On the local antimagic labeling of graphs amalgamation", J. Phys.: Conf. Ser., Vol. 1836, pp. 012021, 2021, doi 10.1088/1742-6596/1836/1/012021.
[13] G.-C. Lau and W.-C. Shiu, "On local antimagic chromatic number of lexicographic product graphs", Acta Math. Hungar., Vol. 169, No. 1, pp. 158-170, 2023. doi 10.1007/s10474-023-01305-x.
[14] M. Nalliah, R. Shankar, and T.-M. Wang, "Local antimagic vertex coloring for generalized friendship graphs", J. Discrete Math. Sci. Cryptogr.. doi 10.1080/09720529.2021.1974651.
[15] S. Rajkumar and M. Nalliah, "On local edge antimagic chromatic number of graphs", Proyecciones, Vol. 41, No. 6, pp. 1397-1412, 2022. doi 10.22199/issn.0717-6279-5339.
[16] S. W. Saputro, N. Mardiana, and I. A. Purwasih, "The metric dimension of comb product graphs", Mat. Vesnik, Vol. 69, No. 4, pp. 248-258, 2017.

Fawwaz Fakhrurrozi Hadiputra

Master Program of Mathematics, Institut Teknologi Bandung
Indonesia
e-mail: fawwazfh@alumni.ui.ac.id
orcid 0000-0002-8178-3320
and

Tita Khalis Maryati

Department of Mathematics Education, UIN Syarif Hidayatullah Jakarta
Indonesia
e-mail: tita.khalis@uinjkt.ac.id
Corresponding Author
orcid 0000-0002-8271-9769

