
Optimal modeling of nonlinear systems: Method
of variable injections

Anatoli Torokhti
University of South Australia, Australia

and
Pablo Soto-Quiros

Instituto Tecnológico de Costa Rica, Costa Rica
Received : April 2023. Accepted : October 2023

Proyecciones Journal of Mathematics
Vol. 43, No 1, pp. 189-224, February 2024.
Universidad Católica del Norte
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Abstract
Our work addresses a development and justification of the new approach to the modeling

of nonlinear systems. Let F be an unknown input-output map of the system with a random

input and output y and x, respectively. It is assumed that y and x are available and

covariance matrices formed from y and x are known. We determine a model of F so that

an associated error is minimized. To this end, the model Tp is constructed as a sum of

p + 1 particular parts, in the form Tp(y) =
Pp

j=0
GjHjQj (vj) where Gj and Hj , for

j = 0, . . . , p, are matrices to be determined, and vj , for j = 1, . . . , p, is a special random

vector called the injection. We denote v0 = y. Further, Qj is a special transform aimed to

facilitate the numerical realization of model Tp. It is determined in the way allowing us to

optimally determine Gj and Hj as a solution of p + 1 separate error minimization problems

which are simpler than the original minimization problem. The empirical determination of

injections v1, . . . ,vp is considered. The proposed method has several degrees of freedom

to diminish the associated error. They are ‘degree’ p of Tp, choice of matrices G0, H0, . . . ,

Gp,Hp, dimensions of matrices G0, H0, . . . , Gp,Hp and injections v1, . . . ,vp, respectively.
In particular, it is shown that a variation of the injections in their dimensionality and special

forms allow us to increase accuracy of the proposed model Tp. The proposed approach differs

from known techniques by its ingredients mentioned above. Four numerical examples are

provided. At the end, the open problem is formulated.

Subjclass [2020]: 15A29, 65F55, 60E05, 65K10.
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1. Introduction

We propose and justify a new method for the optimal modeling of systems
transforming random signals.

1.1. Motivation

The problem of a constructive representation of nonlinear systems has been
a topic of profound research for a long time. A number of fundamental
papers have appeared which established significant advances in this research
area. Some relevant references can be found, in particular, in [31, 19, 67,
69, 68, 34, 24, 15, 22, 21, 72, 6, 20, 63, 50, 42].

The known related results mainly concern proving the existence and
uniqueness of mathematical models used for an approximate representa-
tion of a system under consideration, and for justifying the bounds of errors
arising from the approximation methods. The assumptions are that inputs
and outputs are deterministic and can be represented in an analytical form,
that is, by equations. At the same time, in many applications, the inputs
and outputs are stochastic and cannot be described by equations. Nev-
ertheless, it is possible to represent these sets in terms of their numerical
characteristics, such as the expectation and covariance matrices. Typical
examples are engineering [66, 44, 23, 8], statistics [15, 38, 16, 74], stochastic
signal processing [61, 36, 92, 88, 9], and image processing [17, 60]; in the
latter case, a digitized image, presented by a matrix, is often interpreted
as the sample of a stochastic signal.

While the theory of a system representation with any given accuracy
is well elaborated (see, e.g., [31, 19, 67, 69, 68, 34, 24]), the theory of
optimal constrained and constructive system representation is still not so
well developed, although this is an area of intensive research (see, e.g.,
[22, 21]). Despite increasing demands from applications [72, 6, 20, 63, 92,
88, 9, 38, 16, 74, 66, 44, 23, 8, 60, 22, 21, 28, 79, 51, 3, 32, 29, 5, 62, 65]
this subject is hardly tractable because of intrinsic difficulties in optimal
approximation techniques, especially when the approximating model should
have a specific structure implied by the underlying problem.

We wish to extend the known results in this area to the case when the
inputs and outputs of the system are stochastic, and the approximating
model we search is constructive. The latter means the model can numeri-
cally be realized and, therefore, is applicable to problems in applications.
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1.2. Differences from known techniques

For the case when the dimensionality reductions of signals are not required,
the following results related to the problem under consideration are as
follows.

The well-known Levinson-Schur algorithms (see, e.g. [78, 77]) are fast
but they are only applicable to Toeplitz matrices. The covariance matrices
we consider are not Toeplitz. It is possible to replace the covariance matrix
with a Toeplitz matrix that is closest to a given covariance matrix [26], and
then apply the Levinson-Schur algorithms to that. But this replacement
will, of course, increase the associated error.

The alternating direction method of multipliers (ADMM) is well suited
to the distributed convex optimization [13] (see pp. 2, 33-37) but the
problem we consider is not convex. For non-convex problems, ADMM can
converge to non-optimal points–see pp. 73-77 in [13]. In [57], the pro-
posed scenario requires an use of block diagonal matrices and the existence
of non-singular matrices. In our solution, we do not limit ourselves with
those restrictions. In [14], a fast low-rank modifications of the thin SVD
is studied, but the SVD of the covariance matrices we consider is not thin.
Methods of a fast computation of the pseudo-inverse matrix in [18, 7, 55]
are approximate and iterative and, therefore, the associated computational
load increases with the increase in the number of iterations. The proposed
method avoids iterations for the determination of the optimal systemmodel.

We also note that the problems we consider are different from those
studied in [86, 54, 41].

The optimal dimensionality reduction of a random signal is achieved
by the Karhunen-Loève transform (KLT) which is studied in a number of
works. We cite just a few of them in [70, 35, 36]. The KLT is also known
as Principal Component Analysis [37]. Recall, the KLT is represented by a
matrix of fixed rank that minimizes the error associated with the optimal
compression and estimation of the source random vector s. We consider a
case where the system model consists of p + 1 blocks transforming input
signal y. If the number of blocks p+1 is greater than one then the compres-
sion of data arrays cannot be done by the KLT. Therefore, to find a model
of the system, for p > 1, a new approach should be used. In particular, for
the case of two system blocks, this problem has been solved in [83].

For an arbitrary number of the system blocks, in [27, 25, 75, 93, 71, 4,
48, 45, 56, 89, 91], approximate iterative solutions of this problem are con-
sidered. They are mainly based on implementations of the block coordinate
descent method (BCDM) and its modifications [84, 10]. Unfortunately, con-
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vergence of the BCDM to a global minimum is derived under some heavy
restrictions [84, 10] which are difficult to implement and often cannot be
satisfied in practice.

The proposed method is based on an approach which is different from
those mentioned above. This allows us avoid associated difficulties.

1.3. Short description of the method

Let Ω be a set of outcomes in probability space (Ω,Σ, µ) for which Σ is
a σ—field of measurable subsets of Ω and µ : Σ → [0, 1] is an associated
probability measure. Let x ∈ L2(Ω,Rm) and y ∈ L2(Ω,Rn) be random
input and output, respectively, such that x = F(y) where F : L2(Ω,Rn)→
L2(Ω,Rm) is an unknown non-linear input-output map. It is assumed that
the only available information on F is given by certain covariance matrices
formed from x and y. This is a typical assumption used in the applications
such as those considered, e.g., in [61, 36, 92, 88, 9, 15, 38, 16, 74, 72, 6, 5,
62, 65]. Here, we adopt that assumption. It is also assumed that x and y
are available.

We develop a new approach to the optimal constructive representation
of the nonlinear system F subject to a specialized criterion associated with
the dimensionality reduction of the random input. The latter constraint
follows from the requirements in applications such as those considered in
[15, 38, 16, 74, 44, 3, 32]. In particular, a dimensionality reduction of
random signals is used to optimize the cost of signal transmission.

In Section 2.3 that follows, we consider a problem that concerns finding
the optimal system model that depends on 2p + 2 unknown matrices Gj

and Hj , for j = 0, . . . , p and a given non-negative integer p. The difficulty
is that 2p+2 unknown matrices should be determined from a minimization
of the single cost function represented in (2.6). The solution is provided in
Section 3 and is given by the optimal approximating operator minimizing
the associated error.

Numerical examples that illustrate the advantages of the proposed method
are provided. Computations were performed on a desktop computer with
an Intel(R) Core(TM) i9-10900F CPU (2.80 GHz) and 32.00 RAM using
Matlab R2021a. The related code is available in GitHub. The link is
https://github.com/jusotoTEC/variableInjections.
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1.4. Novelty

The proposed system model Tp is represented by a sum of p+1 terms where
jth term, for j = 0, . . . , p, is a model of jth block of the system (see (2.5) in
Section 2.2). Each term of model Tp contains a special transformation Qj ,
for j = 0, . . . , p, which leads to a faster numerical realization of the proposed
method. This is because the transformations provide a representation of
the problem under consideration in (2.6) by a set of simpler problem each
of which depends on the single pair Gj ,Hj , for j = 0, . . . , p. It allows us to
avoid numerical difficulties associated with computation of large matrices
and determine Gj ,Hj , for j = 0, . . . , p from the problem which is simpler
than that in (2.6). Details are given in Section 3.2 that follows.

The model Tp has several degrees of freedom to minimize the associated
error. They are: ‘degree’ p of Tp, choices of matrices G0,H0, . . . , Gp,Hp

(Theorems 3, 4, 5) and injections v1, . . . ,vp (Section 3.3, Theorem 5, Re-
marks 2, 3 and 6), and dimensions r0, . . . , rp (Theorems 3). In particular,
an influence of variations of the injections v1, . . . ,vp on the decrease of
the associated error is shown in Theorem 4, and Remarks 2, 3 and 6: an
increase in the dimensions and of the injections and their choice improve
the accuracy of the system model.

2. The proposed approach

2.1. Some special notation

Let us write x = [x(1), . . . ,x(m)]
T and y = [y(1), . . . ,y(n)]

T where x(i),y(j) ∈
L2(Ω,R), for i = 1, . . . ,m and j = 1, . . . , n, and x(ω) ∈ Rm and y(ω) ∈ Rn

for all ω ∈ Ω.
Each matrix A ∈ Rm×n defines a bounded linear transformation

A : L2(Ω,Rn)→ L2(Ω,Rm). It is customary to write A rather thenA since
[A(x)](ω) = A[x(ω)], for each ω ∈ Ω.

Let us also denote

kxk2Ω =
Z
Ω

mX
j=1

[xj(ω)]
2dµ(ω) <∞.(2.1)

The covariance matrix formed from x and y is denoted by

Exy =

½Z
Ω
x(i)(ω)y(j)(ω)dµ(ω)

¾m,n

i,j=1
.(2.2)

The Moore-Penrose pseudo-inverse [11] of matrix M is denoted by M†.
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2.2. Generic structure of the system model

Let y be an input signal and v1, . . . ,vp be random vectors such that
vj ∈ L2(Ω,Rqj ), for j = 1, . . . , p. We write y = v0 and q0 = n. Each vj ,
for j = 1, . . . , p, is defined by a nonlinear transformation ϕj of y, i.e., vj =
ϕj(y). The choice of v1, . . . ,vp is considered in Section 3.3. To facilitate
the numerical implementation of the system model introduced below, each
vector vj , for j = 1, . . . , p, is transformed to vector zj ∈ L2(Ω,Rqj ) by
transformation Qj so that

zj = Qj(vj , Zj−1),(2.3)

where Zj−1 = {z0, . . . , zj−1}. The choice of Qj is considered in Section 3.1.
We call v1, . . . ,vp the injections. This is because v1, . . . ,vp contribute to
the decrease of the associated error as shown in Section 3.4 below. At the
same time, in particular, vj can be a noisy version of y, e.g., vj = y + nj
where nj is a random noise. In this case, system filters signals v0, . . . ,vp.

Further, for i = 0, 1, . . . , p, let Gi ∈ Rm×ri , Hi ∈ Rri×qi where ri is
given, 0 < ri < r and

r = r0 + . . .+ rp.(2.4)

Here, r is a positive integer such that r ≤ min{m,n}. It is convenient
to set Q0 = I and z0 = v0 = y.

For a given reduction ratio

c = r/min{m,n},

we consider a system model given by operator Tp : L2(Ω,Rq0) × . . . ×
L2(Ω,Rqp)→ L2(Ω,Rm) such that

Tp(v0, . . .vp) = G0H00 + . . .+GpHpzp,(2.5)

where Gj : L
2(Ω,Rrj ) → L2(Ω,Rm) and Hj : L

2(Ω,Rqj ) → L2(Ω,Rrj ),
for j = 0, 1, . . . , p, are linear operators (i.e. Gj and Hj are represented by
m× rj and rj × qj matrices, respectively. Recall, we use the same symbol
to define a matrix and the associated liner operator).

Importantly, operators H0, . . . ,Hp imply the dimensionality reduction
of vectors v0, . . . ,vp because Hii ∈ L2(Ω,Rri) where 0 < ri < r ≤
min{m,n}, for i = 0, . . . , p.

We call p the degree of model Tp. It is shown below that Tp approximates
the system of interest F : L2(Ω,Rn) → L2(Ω,Rm) with the accuracy
represented by Theorems 8-6 below.
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2.3. Statement of the problem

Let F : L2(Ω,Rn) → L2(Ω,Rm) be a continuous map. We consider the
problem as follows: Given x,y, v1, . . . ,vp and r0, . . . , rp, find matrices
G0,H0, . . . , Gp,Hp and transformations Q0, . . . , Qp that solve

min
G0,H0,...,Gp,Hp

°°°°°°F(y)−
pX

j=0

GjHjzj

°°°°°°
2

Ω

(2.6)

subject to

Gj ∈ Rm×rj and Hj ∈ Rrj×qj ,(2.7)

and

Ezizj = O, for i 6= j,(2.8)

where i, j = 0, . . . , p and O denotes the zero matrix (and the zero vector).
Here, zj , for j = 0, . . . , p, is represented by (2.3). We note that, for Fj =
GjHj , the constraint in (2.7) can also be written as

rank Fj = rj .

It will be shown in Section 3 below that the solution of problem (2.6) - (2.8)
is determined under a special condition imposed on vectors v1, . . . ,vp. The
condition is provided by Definition 3.

An assumption used in the methods of transformations of random sig-
nals is that the covariance matrices Exy and Eyy are known (see, for exam-
ple, [36, 15, 40, 65, 82]). Here, we adopt this assumption. As mentioned, in
particular, in [46, 47, 2, 85, 39, 90], a priori knowledge of the covariances
can come either from specific data models, or, after sample estimation dur-
ing a training phase. Examples 1 and 3 in Sections 3.3 and 3.4 below
illustrate this observation.

3. Solution of problem (2.6)-(2.8)

Definition 1. Random vectors z0, . . . , zp are called pairwise uncorrelated
if the condition in (2.8) holds for any pair of vectors zi and zj , for i 6= j,
where i, j = 0, . . . , p. Two vectors zi and zj belonging to the set of the
pairwise uncorrelated vectors are called uncorrelated.
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For j = 0, . . . , p, let N (M (j)) be a null space of matrix M (j) ∈ Rqj×qj .

Definition 2. Random vectors v0, . . . ,vp are called jointly independent if

M (0)v0(ω) + . . .+M (p)vp(ω) = O,

almost everywhere in Ω, only if vj(ω) ∈ N (M (j)), for j = 0, . . . , p.

Definition 3. Random vector vj , for j = 0, . . . , p, is called the well-defined
injection if

Γzj = ExzjE
†
zj zj
Ezj x 6= O,(3.1)

where zj is defined by (2.3). Otherwise, injection vj is called ill-defined.

An explanation for introducing Definition 3 is provided by Remark 1 at
the end of Section 3.2 below.

3.1. Determination of pairwise uncorrelated vectors

Theorem 1. Let random vectors v0, . . . ,vp be jointly independent. Then
they are transformed to the pairwise uncorrelated vectors z0, . . . , zp by
transformations Q0, . . . , Qp as follows:

z0 = Q0(v0) = v0 and, for j = 1, . . . , p,(3.2)

zj = Qj(vj , Zj−1) = vj −
j−1X
k=0

EvjzkE
†
zkzk

zk.(3.3)

Proof. Suppose that the condition in (2.8) holds for z0, . . . , zi−1. Then,
for = 0, . . . , i− 1,

Eziz = E[(vi −
i−1X
l=0

EvizlE
†
zlzl
zl)z

T ]

= Eviz −
i−1X
l=0

EvizlE
†
zlzl

Ezlz

= Eviz −Eviz E
†
z z Ez z = O.(3.4)

The latter is true because by Lemma 1 in [80],

Eviz E
†
z z Ez z = Eviz .

Thus, by induction, (2.8) holds for any i = 0, . . . , p. 2
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3.2. Determination of matrices G0,H0, . . . , Gp,Hp that solve prob-
lem (2.6)

First, recall the definition of a truncated SVD. Let the SVD of matrix
A ∈ Rm×n be given by

A = UAΣAV
T
A ,

where UA = [u1 u2 . . . um] ∈ Rm×m, VA = [v1 v2 . . . vn] ∈ Rn×n are unitary
matrices, and ΣA = (σ1(A), . . . , σmin(m,n)(A)) ∈ Rm×n is a generalized
diagonal matrix, with the singular values σ1(A) ≥ σ2(A) ≥ . . . ≥ 0 on
the main diagonal. For k < m, j < n and < min(m,n), we denote
UA,k = [u1 u2 . . . uk], VA,j = [v1 v2 . . . vj ], ΣA, = (σ1(A), . . . , σ (A)), and
write

ΠA,L =

rank (A)X
k=1

uku
T
k and ΠA,R =

rank (A)X
j=1

vjv
T
j .

For r = 1, . . . , rank (A),

[A]r =
rX

i=1

σi(A)uiv
T
i ∈ Rm×n,(3.5)

is the truncated SVD of A. For r ≥ rank (A) we write [A]r = A (=
Arank (A)).

Theorem 2. Let v0, . . . ,vp be well-defined injections and vectors z0, . . . , zp
be pairwise uncorrelated. Then the minimal Frobenius norm solution to the
problem in (2.6) is given, for j = 0, . . . , p, by

Gj = UΓzj ,rj
and Hj = UT

Γzj ,rj
ExzjE

†
zjzj ,(3.6)

Proof. For j = 0, . . . , p, let Sj = GjHj , and let S = [S0, . . . , Sp] and
w = [zT0 , . . . , z

T
p ]

T . Then

kF(y)−
pX

j=0

Sjjk2Ω = tr
n
(Exx −ExwS

T − SEwx + SEwwS
T )
o
,(3.7)

where Exw = [Exz0 , . . . , Exzp ] and by Theorem 1, Eww = diag[Ez0z0 , . . . , Ezpzp ]
is block-diagonal matrix. Thus,

SEwwS
T = S0Ez0z0S

T
0 + . . .+ SpEzpzpS

T
p ,
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SEwx = S0Ez0x + . . .+ SpEzpx.

Therefore, (3.7) implies

kF(y)−
pX

j=0

GjHjjk2Ω =
pX

j=0

kF(y)−GjHjzjk2Ω − tr {pExx} .(3.8)

Let us denote by Rm×n
r the set of all m × n matrices of rank at most

r. Then on the basis of [83, 30, 52, 12, 87], the minimal Frobenius norm
solution to the problem

min
GjHj∈Rm×n

rj

kF(y)−GjHjzjk2Ω,(3.9)

for j = 0, . . . , p, is given by

GjHj = UΓzj ,rj
UT
Γzj ,rj

ExzjE
†
zjzj(3.10)

Therefore, (3.6) follows from (3.10). 2

Remark 1. Definition 3 of the well-defined injections is motivated by the
following observation. It follows from (3.6) that if, for all j = 0, . . . , p,
vector vj is such that Γzj = O, then Gj = O and Hj = O. In other words,
then approximating operator Tp = O.

Therefore, in Theorem 2 above and in the Theorems below, vectors
v0, . . . ,vp are assumed well-defined.

3.3. Empirical determination of well-defined injections

First, we wish to show that the proposed system model Tp is also applicable
under the conventional assumption used, for example, in [15, 36, 65, 83, 35,
70], when only matrices Exx, Exy and Eyy are assumed to be givenFoot-
noteIn particular, if y = Ax + ξ where A is a known matrix and random
vector ξ is independent on x, then it is assumed that only Exx and Exi,xi
are given., and matrices Exvj , Eyvj , Ev vj and associated joint probabil-
ity functions are unknown. In this case, Exvj , Eyvj and Ev vj should be
represented in terms of Exx, Exy and Eyy.

We use the Stein’s lemma [76] to show that it can be done indeed
and, therefore, suppose that, for qj ≥ n, vector y = [y(1), . . . ,y(n)]

T

is extended to vector ey(j) with qj components, ey(j) = [ey(j)1 , . . . , ey(j)qj ]
T ,

where sk entries of ey(j) coincide with y(k), for k = 1, . . . , n, and qj =
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s1 + . . . + snFootnoteThere are qj !/s1! . . . sn! such orderings.. In fact,
s1, . . . , sn depend on j but we omit subscript j for the notation simplic-
ity. (For example, if y = [y(1),y(2)]

T then one of such extensions isey(j) = [ey(j)1 , ey(j)2 , ey(j)3 ]T = [y(j)1 ,y
(j)
2 ,y

(j)
1 ]

T where s1 = 2 and s2 = 1.)
In general, injection vj , for j = 1, . . . , p, is defined by a nonlinear

transformation fj so that vj = fj(y) ∈ L2(Ω,Rqj ) and qj ≥ n. Therefore,
vj = fj(y) can be represented as vj = ϕj [φj(y)] = ϕj [ey(j)] where ey(j) =
φj(y), vj = [v

(j)
1 , . . . ,v

(j)
qj ]

T and v
(j)
k = ϕjk(ey(j)k ), for k = 1, . . . , qj , i.e.,

[v
(j)
1 , . . . ,v

(j)
qj ]

T = [ϕjk(ey(j)1 ), . . . , ϕjk(ey(j)qj )]
T .

By the conditions of the Stein’s lemma [76], we also suppose that
(A1) ϕj is a smooth function,

(A2) E[|ϕ(n)j (eyj)|] <∞,
(A3) E[ϕ0j(eyj)] 6= 0,
(A4) sequence {an}∞n=0 where an = E[ϕ

(n)
i (exi)]×E[ϕ(n)j (exj)] is mono-

tone and bounded, for all i, j = 1, ..., q, and

(A5) yi and ϕj(ey(j)k ) are jointly normally distributed, for all i, j =
1, ..., q.

Let us write Eyey(j) = {Eyiey(j)k

}n,qji,k=1. Then by the Stein’s lemma,

E
yiv

(j)
k

= E
yiϕjk(ey(j)k )

= E
yiey(j)k

E[ϕ0jk(ey(j)k )].

Therefore,

Eyvj = Eyey(j)Dj ,(3.11)

where
Dj = diag(E[ϕ

0
j1(ey(j)1 )], . . . , E[ϕ0jqj (ey(j)qj )]) 6= O.

Similarly,

Exvj = Exey(j)Dj .(3.12)

Thus, Eyvj 6= O and Exvj 6= O. Now, to obtain Ev vj , we need to
compute each entry E

v
( )
i v

(j)
k

= E
ϕ i(ey( )i )ϕjk(ey(j)k )

, for i, k = 1, 2, ..., qj . By

the results obtained in Section 3 of [59],

E
ϕ i(ey(j)i )ϕjk(ey(j)k

)
=

∞X
n=1

µ
Eey( )i ey(j)k

¶n
n!

E[ϕ
(n)
i (ey( )i )]E[ϕ(n)jk (ey(j)k )].(3.13)
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On the basis of assumption (A4) and the Abel’s test (see, e.g., Corollary
5.58 in [64]), the series in (3.13) converges.

In (3.11), (3.12) and (3.13), entries of matrices Eyey(j) , Exey(j) andEey(j)i ey(j)k

are the same as entries of matrices Eyy, Exy and Eyy, respectively. There-
fore, Eyvj , Exvj and Ev vk are determined, in fact, in terms of Exy and Eyy,

and expectations E[ϕ0 i(ey( )i )] and E[ϕ
(n)
jk (ey(j)k )], for i, k = 1, . . . , qj .

The following Example 1 illustrates the above derivations. Injections
v1, . . . ,vp defined in Example 1, are well-defined in the sense of condition
(3.1) checked up numerically.

Example 1. Random vectors of type [eey1 , . . . , eeyq ]T have been exploited,
in particular, in [43]. In this regard, let us consider v

(j)
k = ϕjk(ey(j)k ) = eey(j)k ,

for j = 1, .., p and k = 1, . . . , qj , and suppose the above conditions (A1)-

(A5) hold. Then E[ϕ0jk(ey(j)k ] = E[ϕjk(ey(j)k ] = E[eey(j)k ] =
√
e. Therefore,

Dj =
√
eI and then Eyvj =

√
eEyey(j) and Exvj =

√
eExey(j) . On the other

hand, E[ϕ
(n)
ji (ey(j)i )] = E[ϕji(ey(j)i )] =

√
e. Thus, (3.13) implies

E
v
( )
i v

(j)
k

= E
ϕ i(ey( )i )ϕjk(ey(j)k )

= e
∞X
n=1

µ
Eey( )i ey(j)k

¶n
n!

= e
Eey( )

i
ey(j)
k

+1

− e.

Therefore, Ev vk = eM k whereM k = {e
Eey( )

i
ey(j)
k −1}qji,k=1. Then, in par-

ticular, for j = 1, Exz1 = Exv1 −ExyE
†
yyEyv1 =

√
e(Exey(1) −ExyE

†
yyEyey(1))

and Ez1z1 = e(M11 − Eey(1)yE†yyEyey(1)), where ey(1) 6= y. That is, condi-
tion (3.1) is represented in terms of entries of matrices Exy and Eyy, as
supposed, and can be verified numerically.

Remark 2. In our simulations in Examples 2, 3 and 4 below, empirical
injections v1, . . . ,vp are chosen ‘similar’ to vector x. That is, if by the
assumption, x is, e.g., Gaussian then v1, . . . ,vp are Gaussian as well. This
is another way to define v1, . . . ,vp.

3.4. Error analysis associated with solution of problem (2.6)-(2.8)

Here, in Theorem 3, we obtain the constructive representation of the error
associated with the solution of problem (2.6)-(2.8). We also prove that
the error can be improved by the increase in the dimensions of injections



Optimal modeling of nonlinear systems: Method of variable ... 201

v1, . . . ,vp (Theorem 4) and degree of approximating operator Tp (Theorems
3, 4, 5).

Let us write

ε(p)
GH
= min

G0,H0,...,Gp,Hp

kF(y)−
pX

j=0

GjHjjk2Ω.

Theorem 3. For j = 0, . . . , p, let Aj = Exzj (E
1/2
zjzj )

†, rank (Aj) = sj and
sj ≥ rj + 1. For k = 1, . . . , sj , let σk be a singular value of Aj . Then the
error associated with the solution of problem (2.6)-(2.8) is represented by

ε(p)
GH
= tr{Exx}−

pX
j=0

rjX
k=1

σ2k(Aj)(3.14)

In particular, the error decreases as p increases.

Proof. For GjHj determined by (3.10), we have

kF(y)−GjHjzjk2Ω = tr{Exx −Exzj (GjHj)
T −GjHjEzjx +GjHjEzjzj (GjHj)

T }

= kE1/2xx k2 − kExzj (E
1/2
zjzj )

†k2 + k(GjHj −ExzjE
†
zjzj )E

1/2
zjzjk

2

= kE1/2xx k2 − kExzj (E
1/2
zjzj )

†k2 + kGjHjE
1/2
zjzj −Exzj (E

1/2
zjzj )

†k2(3.15)

because

E†zjzjE
1/2
zjzj = (E

1/2
zjzj )

†

and

ExzjE
†
zjzjEzjzj = Exzj(3.16)

(see [80]). Further, it follows from (3.6) that in the notation introduced

in (3.5), matrix GjHj is represented as GjHj = [Exzj (E
1/2
zjzj )

†]rj (E
1/2
zjzj )

†.
Therefore,

kGjHjE
1/2
zjzj −Exzj (E

1/2
zjzj )

†k2 = k[Exzj (E
1/2
zjzj )

†]rj (E1/2zjzj )
†E1/2zjzj −Exzj (E

1/2
zjzj )

†k2

= k[Exzj (E
1/2
zjzj )

†]rj −Exzj (E
1/2
zjzj )

†k2

= k[Aj ]rj −Ajk2

=

sjX
k=rj+1

σ2k(Aj).(3.17)
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because [Exzj (E
1/2
zjzj )

†]rj (E
1/2
zjzj )

†E1/2zjzj = [Exzj (E
1/2
zjzj )

†]rj . Further, since

kExzj (E
1/2
zjzj )

†k2 = kAjk2 =
sjX
k=1

σ2k(Aj),(3.18)

then (3.8), (3.15), (3.17) and (3.18) imply (3.14). In particular, it follows
from (3.14) that the error decreases as degree p increases. 2

Remark 3. According to Remark 2, in Examples 2, 3 and 4 that follow,
empirical injections v1, . . . ,vp are chosen ‘similar’ to vector x. They are
well-defined in the sense of condition (3.1) verified numerically.

Further, we wish to show the utility of injections v1, . . . ,vp in the
sense of the diminution of the associated error by increasing dimensions
of v1, . . . ,vp. To this end, we write

Aj = {aki(j)}
m,qj
k,i=1 and Aj − [Aj ]rj = {bki(j)}

m,qj
k,i=1

where aki(j) and aki(j) are entries of matrices Aj and Aj − [Aj ]rj , respec-
tively. Let us also denote

γk,(j) =
mX
i=1

³
a2ki(j) − b2ki(j)

´
,

γ(j) = max{γ1,(j), . . . , γqj ,(j)},

γ = max
j=1,...,p

γ(j),

α0 = tr{Exx −
Pp

j=0AjA
T
j }, and q = q1 + . . . ,+qp. We wish to show

the utility of injections v1, . . . ,vp in the sense of the diminution of the
associated error by increasing dimensions of v1, . . . ,vp.

Theorem 4. Let v1, . . . ,vp be well-defined injections and let matrices
G0,H0, . . . , Gp,Hp be defined by Theorem 2. Then the associated er-
ror decreases as the sum q of dimensions of injections v1, . . . ,vp increases.
In particular, there is β ∈ (0, γ] such that, given α ≥ α0 , then

α0 ≤ ε(p)
GH
≤ α iff q ≥

tr {Exx}−
r0X
k=1

σ2k(A0)

β
.(3.19)
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Proof. It follows from (3.8), (3.14), (3.15) and (3.17) that

ε(p)
GH

= kF(y)−GjH0z0k2Ω +
pX

j=1

kF(y)−GjHjzjk2Ω − tr {pExx}

= tr {Exx}−
r0X
k=1

σ2k(A0) +
pX

j=1

kF(y)−GjHjzjk2Ω − tr {pExx}(3.20)

where

kF(y)−GjHjzjk2Ω = tr {Exx}−
µ
kAjk2 −

°°°[Aj ]rj −Aj

°°°2¶
= tr {Exx}−

qjX
k=1

mX
i=1

³
a2ki(j) − b2ki(j)

´
.

Therefore,

ε(p)
GH

= tr {Exx}−
r0X
k=1

σ2k(A0)−
pX

j=1

qjX
k=1

mX
i=1

³
a2ki(j) − b2ki(j)

´
.(3.21)

Here,

qjX
k=1

mX
i=1

³
a2ki(j) − b2ki(j)

´
> 0 since by (3.17),

kAjk2 −
°°°[Aj ]rj −Aj

°°°2 = rjX
k=1

σ2k(Aj) > 0.(3.22)

Thus, (3.20) - (3.22) imply that ε(p)
GH

decreases as qj increases, for j =
1, . . . , p, and p increases. Further, (3.14) implies

ε(p)
GH
≥ tr{Exx}−

pX
j=0

sjX
k=1

σ2k(Aj) = tr

⎧⎨⎩Exx −
pX

j=0

AjA
T
j

⎫⎬⎭ = α0 .(3.23)

Since

0 <
pX

j=1

qjX
k=1

mX
i=1

³
a2ki(j) − b2ki(j)

´
≤ γ

pX
j=1

qj = γq,

then

pX
j=1

qjX
k=1

mX
i=1

³
a2ki(j) − b2ki(j)

´
= qβ.(3.24)
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Therefore, (3.21), (3.23) and (3.24) imply

α0 ≤ ε(p)
GH
= tr {Exx}−

r0X
k=1

σ2k(A0)− qβ.

thus, if ε(p)
GH
≤ α then the right inequality in (3.19) is true. Conversely, if

the latter is true then ε(p)
GH
≤ α. 2

Remark 4. An empirical explanation of Theorem 4 is that the increase
in q implies the increase in the dimensions of matrices H1, . . . ,Hp in (2.5)
and (3.6). Hence, it implies the increase in the number of parameters
to optimize. As a result, for the given r, the accuracy associated with
the system model Tp improves. Further, it follows from (3.19) that, as q
increases, ε(p)

GH
tends to α0 which is the error associated with the full rank

model Th (see (3.32)). The error is given by (3.36).

Remark 5. By Theorem 3, the error associated with solution of problem
(2.6) decreases as degree p of the system model Tp increases. At the same
time, the increase in degree p of model Tp may involve an increase in pa-
rameter r given by (2.4). However, by a condition of some applied problem
in hand, r must be fixed. In the following Theorem 5, under the condition
of fixed r, the case of decreasing the error as the degree p of the system
model increases is detailed.

Theorem 5. Let r and rj , for j = 0, . . . , p, be given. Let g be a nonnega-
tive integer such that g < p and let g = rg + rg+1 + . . .+ rp. If

rg+1+...+rpX
k=rg+1

σ2k(Ag) <
pX

j=g+1

rjX
k=1

σ2k(Aj),(3.25)

where
pX

j=g+1

rjX
k=1

σ2k(Aj) =
pX

j=g+1

qjX
k=1

mX
i=1

³
a2ki(j) − b2ki(j)

´
,

then

ε(p)
GH

< ε(g)
GH

,(3.26)

i.e., for the same r, the error associated with the higher degree model p is
less than that associated with the lower degree model g.
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Proof. We write r = r0 + . . .+ rg−1 + g. Then

ε(g)
GH

= tr{Exx}−
g−1X
j=0

rjX
k=1

σ2k(Aj)−
gX

k=1

σ2k(Ag)

= tr{Exx}−
g−1X
j=0

rjX
k=1

σ2k(Aj)−
rgX
k=1

σ2k(Ag)−
rg+1+...+rpX
k=rg+1

σ2k(Ag).(3.27)

Thus, (3.14) and (3.27) imply (3.25) and (3.26). 2

Remark 6. The RHS in (3.25) increases as the dimension qj of at least
single injection vj , for j = g + 1, . . . , p, increases while the LHS does not
depend on qj . In other words, one can always find qj , for j = g + 1, . . . , p,
such that the inequality in (3.25) is true.

Remark 7. If p = 1 and m = q0 = q1, then proposed method is equivalent
to the GBT2 [83]. For m = q0 = q1 and r0 = r1 = m/4, the computational
load of the GBT2 is estimated as 57m3. The computational load associated
with computation of Gj and Hj by (3.6) is represented in Table 3.1.

Table 3.1: Estimate of computational load associated with computation of
Gj and Hj .

Particular parts of (3.6) Number of flops

1. E
†
zjzj 14q3j

2. ExzjE
†
zjzj 2mq2j

3. Γzj = ExzjE
†
zjzjEzjx 2m2qj

4. UΓzj
from SVD of Γzj 12m3

5. Hj = UT
Tzj ,rj

ExzjE
†
zjzj 2m2qj +m2rj

It follows from Table 3.1 that the total computational load of the pro-
posed method is given by

pX
j=0

(14q3j + 2mq2j + 4m
2qj +m2rj + 12m

3).

In particular, if m = q0 = ... = qp and rj = m/4, for all j = 0, 1, ..., p, then
the computational load of the proposed method is 32pm3. A lower error is
provided by the proposed method at the expense of increased computational
and/or storage costs what, we believe, is quite natural. In general, a better
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Table 3.2: Numerical characterizations of models T0(v0), T1(v0,v1) and
T2(v0,v1,v2) in Case 1

Model q0 q1 q2 r0 r1 r2 MSE

T0(v0) 100 N/A N/A 50 N/A N/A 8.30

T1(v0,v1) 100 25 N/A 25 25 N/A 7.93

T2(v0,v1,v2) 100 25 500 17 17 16 7.03

Table 3.3: Numerical characterizations of models T0(v0), T1(v0,v1) and
T2(v0,v1,v2) in Case 2

Model q0 q1 q2 r0 r1 r2 MSE

T0(v0) 100 N/A N/A 50 N/A N/A 8.30

T1(v0,v1) 100 200 N/A 25 25 N/A 7.61

T2(v0,v1,v2) 100 200 500 17 17 16 6.28

result is normally achieved by some additional efforts. This observation is
illustrated by the following example.

Example 2. Here, we wish to numerically illustrate Theorems 3, 4 and
5. To this end, we assume that y = x + ξ where x ∈ L2(Ω, Rm) and
ξ ∈ L2(Ω, Rm) are uniformly and normally distributed random vectors, re-
spectively. Injections v1 ∈ L2(Ω, Rq1) and v2 ∈ L2(Ω, Rq2) are here chosen
as uniformly distributed random vectors. Random vector ξ simulates noise
and is uncorrelated with x and v1,v2. Covariance matrices Exvj , Evivj , for
i, j = 0, 1, 2, are represented by Exvj =

1
sXV T

j and Evivj =
1
sViV

T
j where

X ∈ Rm×s and Vj ∈ Rqj×s are sample matrices of x and vj , respectively,
for j = 0, 1, 2. We choose m = 100 and r = 50. Then models T0(v0),
T1(v0,v1) and T2(v0,v1,v2) are specified by choosing particular values of
qj and rj , for j = 0, 1, 2, as shown in Tables 1 and 2.

In the Tables, Cases 1 and 2 for specific values of qj and rj , for j = 0, 1, 2,
are considered. The values of the associated mean square errors (MSE) are
also included. In Figure 3.1 the MSE are illustrated diagrammatically.
It follows from Tables 1,2 and Figure 3.1 that, for the same r, the error
associated with the proposed system model decreases if degree p or the sum
q of the injection dimensions increases.
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Figure 3.1: Example 2: Diagrams of the errors associated with T0(v0),
T1(v0,v1) and T2(v0,v1,v2).

Here, we wish to compare the error associated with the proposed tech-
nique (represented by ε(p)

GH
in Theorem 3) with that of the method consid-

ered in [83] and abbreviated as GBT2. Recall that GBT2 is represented by
B(y, g) = B1(B2y+B3g) where B : L2(Ω,Rq0)×L2(Ω,Rq1)→ L2(Ω,Rm),
g ∈ L2(Ω,Rq1), and B1, B2, B3 are linear operators defined by matrices
B1 ∈ Rm×m and Bj ∈ Rm×qj−2 , for j = 2, 3. GBT2 is not assigned for a
system modeling and for the problem in (2.6), (2.7) and (2.8). At the same
time, in terms of the model degree introduced in Section 2.2, GBT2 can
be interpreted as a ‘second’ degree model. Therefore, it is interesting to
compare the associated errors. Let u = [yT gT ]T ∈ L2(Ω,R2n) and denote
by ε

GBT2 the error associated with GBT2.

Theorem 6. Let Au = Exu(E
1/2
uu )†. If

pX
j=0

rjX
k=1

σ2k(Aj) >
rX
=1

σ2(Au)(3.28)

then

ε(p)
GH

< εGBT2 .(3.29)

Marisol Martínez
a
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Proof. By [83], εGBT2 = tr{Exx} −
rX
=1

σ2(Au). Then the latter and

(3.14) involve the theorem validity. 2

In other words, under the condition in (3.28), the error associated with
the proposed technique is less than that of GBT2. Note that the condition
in (3.28) is easy to satisfy by the increase in p, for example.

Remark 8. The following Example 3 numerically illustrates the theoret-
ical results obtained above and also demonstrates how the proposed tech-
nique is extended to the case of complex-valued random vectors.

Example 3. Let xc ∈ L2(Ω,Cm) and yc ∈ L2(Ω,Cm), i.e., let xc and yc
be random vectors with complex values. Then xc = xr + jxi and yc =
yr + jyi where j =

√
−1, and xr,yr ∈ L2(Ω,Rm) and xi,yi ∈ L2(Ω,Rm)

are the real and imaginary parts of xc and yc, respectively, represented
by Gaussian random vectors with zero-mean and standard deviation one
(abbreviated as G(0, 1)). Let us consider the case when yc is represented
by

yc = Acxc + ξc,(3.30)

where Ac = diag(ejφ1 , ejφ2 , ..., ejφm) ∈ Cm×m, j =
√
−1, φi is a random

number generated from Gaussian distribution with zero-mean and standard
deviation one, ξc ∈ L2(Ω,Cm) with Exicxic = σ2I and σ ∈ R. The random
vectors of this type are considered in a number of applications such as those
in [73, 49, 53, 33, 58].

As shown, in particular, in [61, 1], the problems concerning complex
random vector xc can always be treated in terms of the associated real
random vector

x =

"
xr
xi

#
∈ L2(Ω,R2m).

Let ξc = ξr + jξi and Ac = Ar + jAi. The complex-valued vector given by
(3.30) holds if and only if the real-valued random vector y = Ax+ ξ holds,
where

y =

"
yr
yi

#
∈ L2(Ω,R2m), ξ =

"
ξr
ξi

#
∈ L2(Ω,R2m),

and

A =

"
Ar −Ai

Ai Ar

#
∈ R2m×2m.
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See, for instance, Appendix II in [61]. The above implies

Exx =

"
Exrxr Exrxi

Exixr Exixi

#
∈ R2m×2m

and Exixi = σ2I. Further, we denote Exx = {ek, }2mk, =1. In applications
such as those associated with synthetic aperture radar interferometry (see,
e.g., [53, 33]) matrix Exx has a so-called triangular-time-Gaussian shape
generated by

ek, =

⎧⎨⎩ 1− |k − |
m− 1 bk, for |k − | ≤ m− 1

bk
,

0, otherwise,
(3.31)

where bk is a parameter (called in [53, 33] the normalized baseline param-
eter). Here, Exx is considered in this form.

Marisol Martínez
b
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Figure 3.2: Example 3: Diagrams of the errors associated with T1(v0,v1),
T0(v0) and GBT2 [83].

In this example, the injection v1 is represented as complex random
vector v1c = v1r + jv1i ∈ L2(Ω,Cq1), where v1r ∈ L2(Ω,Rq1) and v1i ∈
L2(Ω,Rq1) are the G(0, 1). It is assumed that v1c is uncorrelated with ξc.
Further, we write

v1 =

"
v1r
v1i

#
∈ L2(Ω,R2q1), u =

"
x
v1

#
∈ L2(Ω,R2(m+q1)),

Marisol Martínez
c
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and choose v1 such that covariance matrix

Euu =

"
Exx Exv1

Ev1x Ev1v1

#
∈ R2(m+q1)×2(m+q1)

has a triangular-time-Gaussian shape. As a result, matrices Exv1 and Ev1v1

are determined as blocks of Euu. Then it follows that Ev1y = Ev1xA
T and

Eyy = AExxA
T + σ2I. Then G0,H0, . . . , Gp,Hp are determined by (3.6).

In this case, condition (3.1) is true, i.e. v1 is well-defined.
We wish to compare the accuracy associated with Tp(v0, . . . ,vp) where

G0,H0, . . . , Gp,Hp are determined by (3.6), for p = 0 and p = 1. We also
wish to compare it with the accuracy associated with the method considered
in [83] and called GBT2.

In Figure 3.2, for m = 10 and bk = 0, 4 diagrams of the mean square
error (MSE) associated with T0(v0), T1(v0,v1) and GBT2 are represented
as follows. Figure 3.2 (a): the errors versus dimension q1 of injection v1.
Figure 3.2 (b): the errors versus parameter σ in noise ξ. Figure 3.2 (c):
the errors versus the reduction ratio.

It follows from Figure 3.2 that the error associated with T1(v0,v1) is
less than those of T0(v0) and GBT2. In particular, in Figure 3.1 (a), the
diagram of MSE associated with T1(v0,v1) illustrates Theorems 4 and 6.
First, the MSE decreases as q increases as Theorem 4 states. Second, for
q ≥ 30, condition (3.28) of Theorem 6 is true and the MSE associated with
T1(v0,v1) is less than those of GBT2. For q < 30, the MSE associated with
T1(v0,v1) is slightly equal than that of GBT2. This is because, for q < 30,
condition (3.28) is not satisfied.

3.5. Optimal model of the system with no reduction of input di-
mensionality

An important case of problem (2.6)-(2.8) is when the matrix product GjHj ,
for j = 0, . . . , p, is replaced with a full rank matrix Pj ∈ Rm×qj . Then the
input-output map Th given by

Th(v0, . . .vp) =
hX

k=0

Pkk(3.32)

is called the full rank system model of degree h. In Theorems 7 and 8
below, the optimal full rank model of degree h is determined and justified
as a solution of problem (3.33). In problem (3.33) no constraint similar to
that in (2.7) is imposed.
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Theorem 7. Let vectors z0, . . . , zp be pairwise uncorrelated. Then the
minimal Frobenius norm solution to the problem

min
P0,...,Ph

kF(y)−
hX

k=0

Pkkk2Ω,(3.33)

is given, for k = 0, . . . , h, by

Pk = ExzkE
†
zkzk

.(3.34)

Proof. Similar to (3.8),

kF(y)−
hX

j=0

Pjjk2Ω =
hX

j=0

kx− Pjzjk2Ω − tr {hExx} .(3.35)

The minimal Frobenius norm solution to the problem

min
Pj
kx− Pjzjk2Ω

is given by (3.34). 2

Theorem 8. Let Aj = Exzj (E
1/2
zjzj )

†. The error associated with the mini-
mal Frobenius norm solution to the problem in (3.33) is represented by

min
P0,...,Ph

kF(y)−
hX

j=0

Pjjk2Ω = tr{Exx}−
hX

j=0

kAjk2,(3.36)

where k · k is the Frobenius norm.

Proof. For Pj determined by (3.34),

kF(y)−Pjjk2Ω = tr{Exx}−kExzj (E
1/2
zjzj )

†k2+kPjE1/2zjzj −Exzj (E
1/2
zjzj )

†k2.(3.37)

Here,

kPjE1/2zjzj −Exzj (E
1/2
zjzj )

†k2 = kExzjE
†
zjzjE

1/2
zjzj −Exzj (E

1/2
zjzj )

†k2

= kExzj (E
1/2
zjzj )

† −Exzj (E
1/2
zjzj )

†k2

= 0.

That is,

kF(y)− Pjjk2Ω = tr{Exx}− kExzj (E
1/2
zjzj )

†k2.(3.38)

Then (3.36) follows from (3.8) and (3.38). 2
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Remark 9. It follows from Theorem 8 that the error associated with the
system model determined by (3.32) and Theorem 7 decreases if degree h
increases.

Figure 3.3: Example 4: Diagrams of the errors associated with T0(v0),
T1(v0,v1) and T2(v0,v1,v2).

Example 4. Here, we wish to numerically illustrate Remark 9 and The-
orem 8. To this end, we consider y = x + ξ where x ∈ L2(Ω, Rm) and
ξ ∈ L2(Ω, Rm) are uniformly and normally distributed random vectors, re-
spectively, with m = 50. Injections v1 ∈ L2(Ω, Rq1) and v2 ∈ L2(Ω, Rq2)
are here chosen as uniformly distributed random vectors with q1 = q2 =
m = 50. Noise ξ is uncorrelated with x and v1,v2. The mean square errors
(MSE) associated with T0(v0), T1(v0,v1) and T2(v0,v1,v2) are 11.81, 9.52
and 7.95, respectively. They are diagrammatically shown in Figure 3.3, and
illustrate Remark 9 and Theorem 8, i.e., the error associated with model
Th decreases if degree h increases.

Marisol Martínez
e
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4. Conclusion and open problem

We have proposed and justified a new approach to the optimal modeling of
non-linear system F . It is assumed that its random input y and random
output x are available and known in terms covariance matrices, and the
input-output map F is unknown. The basic idea is to build the system
model Tp as a sum of p+1 particular parts. The constructive determination
of each part of the model is provided. The proposed model is optimal in the
sense of minimization of the associated error. A significant ingredient of the
proposed model is a set of so called injections v1, . . . ,vp which allows us to
further improve the accuracy of the system representation. The proposed
model has several degrees of freedom to minimize the associated error.

An open associated problem is as follows: Given x,y and r0, . . . , rp,
find matrices G0,H0, . . . , Gp,Hp, injections v1, . . . ,vp and transformations
Q0, . . . , Qp that solve

min
v1,...,vp

min
G0,H0,...,Gp,Hp

°°°°°°F(y)−
pX

j=0

GjHjzj

°°°°°°
2

Ω

(4.1)

subject to

Gj ∈ Rm×rj and Hj ∈ Rrj×qj ,(4.2)

and
Ezizj = O, for i 6= j,(4.3)

where i, j = 0, . . . , p.
An important difference from the problem in (2.6), (2.7) and (2.8) is

that the problem in (4.1), (4.2) and (4.3) has p more unknowns to deter-
mine, they are v1, . . . ,vp. It makes this problem quite difficult. We are
planning to tackle to it in the near future. A possible solution device is
based on the special iterative procedure such that, for each iteration loop,
the best approximation problem is solved providing searched optimal matri-
ces G0,H0, . . . , Gp,Hp and optimal injections v1, . . . ,vp with the smallest
associated error.
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