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Abstract

The token graphs of graphs have been studied at least from the 80’s
with different names and by different authors. The Johnson graph
J(n, k) is isomorphic to the k-token graph of the complete graph Kn.
To our knowledge, the unique results about the automorphism groups
of token graphs are for the case of the Johnson graphs. In this paper
we begin the study of the automorphism groups of token graphs of
another graphs. In particular we obtain the automorphism group of
the k-token graph of the path graph Pn, for n 6= 2k. Also, we obtain
the automorphism group of the 2-token graph of the following graphs:
cycle, star, fan and wheel graphs.
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1. Introduction

Let Γ be a simple graph of order n. Let 1 ≤ k ≤ n−1 be an integer. The k-
token graph Fk(Γ) of Γ is defined as the graph with vertex set all k-subsets
of V (Γ), where two vertices are adjacent in Fk(Γ) whenever their symmetric
difference is an edge of Γ. If k ∈ {1, n− 1}, then Fk(Γ) is isomorphic to Γ
and in this case we say that Fk(Γ) is a trivial token graph of Γ. In fact, if
Γ is a graph of order n, then Fk(Γ) ' Fn−k(Γ).

The token graphs have been redefined several times and with differ-
ent names. When k = 2, this class of graphs are called double vertex
graphs that were widely studied by Alavi et al. [1, 2, 3, 4] and are the
same that the 2-subgraph graphs defined in a thesis of G. Johns [19]. In
the work of Zhu et al. [31], the k-token graphs are named n-tuple vertex
graphs. Later, T. Rudolph [29] redefined the double vertex graphs with
the name of symmetric powers of graphs with the idea to study the graph
isomorphism problem and some problems in quantum mechanics. There
are several papers related with Rudolph’s work, see, e. g., [6, 7, 8, 15] and
the references therein. Some of them motivated by the connection between
token graphs and the Heisenberg Hamiltonian (see, e. g., [26] and the ref-
erences therein), that is related with the Heisenberg model [17], a quantum
theory of ferromagnetism.

Finally, R. Fabila-Monroy, et. al. [14], in an independent way, rein-
troduce this concept but now with the name of token graphs and began a
systematic study of several combinatorial properties of this graphs: con-
nectivity, diameter, cliques, chromatic number and Hamiltonian paths. In
the last years, several groups of authors have continued with this line of
research (see, e.g., [5, 11, 12, 16, 18, 22, 28]). For example, Carballosa et
al. [10] studied the planarity and regularity of token graphs and Lea nos
and Trujillo-Negrete [22] proved a conjecture of Fabila-Monroy, et. al [14]
about the connectivity of token graphs. Finally, Gómez Soto et al. [16]
found the packing number of the 2-token graph of the path graph, that is
equal to the size of largest binary code of length n and constant weight 2
that can correct a single adjacent transposition (sequence A085680 in [30]).

When Γ is the complete graph Kn, the k-token graph Fk(Γ) is isomor-
phic to the Johnson graph J(n, k) [20]. To the knowledge of the authors,
the only results about the automorphism groups of token graphs are about
Johnson graphs. It is known that if n 6= 2k, then Aut(Fk(Kn)) ' Sn and
if n = 2k, then Aut(Fk(Kn)) ' S2 × Sn, where Sn denotes the symmetric
group on n symbols (see., e.g. [21, 25, 27]).
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In this work, we study the automorphism group of other token graphs.
Our main results can be stated as two theorems:

Theorem 1.1. Let n 6= 4 be an integer greater than 2. If
Γ ∈ {Cn,K1,n−1, A1,n−1,W1,n−1}, then

Aut(F2(Γ)) = Aut(Γ),

where Cn,K1,n−1, A1,n−1 andW1,n−1, denotes the cycle, star, fan and wheel
graphs, respectively.

Theorem 1.2. Let Pn be the path graph of order n > 2, with n 6= 2k.
Then

Aut(Fk(Pn)) = Aut(Pn).

Theorem 1.1 is not true in general. For example, the automorphism
group of the grid graph G2,3 is of order 4 but |Aut(F2(G2,3))| = 8.

In the proofs of our results, we use elementary group theory, as in
[23, 24, 25], and properties of token graphs. For the case of the token
graphs of path graphs we obtain a formula for the distance between pair of
vertices in Fk(Pn) that generalizes the one given by Beaula et al. [9].

The outline of this paper is as follows. In Section 2 we present some
definitions, notation and some preliminary results. We show that Aut(Γ) is
a subgroup of Aut(Fk(Γ)), for every graph Γ. Also, we show that if n = 2k,
then |Aut(Fk(Γ))| ≥ 2|Aut(Γ)|. The proof of Theorem 1.1 is worked for
each case separately. In Section 3 we show that Aut(F2(Cn)) = Aut(Cn)),
for n 6= 4. In Section 4 we prove that if Γ ∈ {K1,n, A1,n,W1,n}, then
Aut(F2(Γ)) = Aut(Γ), for n 6= 4. In Section 5 we prove Theorem 1.2.

2. Preliminaries and first results

In this paper, all our graphs are simple and finite, that is, a graph Γ is a
pair (V (Γ), E(Γ)) where V (Γ) is a finite set and E(Γ) is a subset of the
set of all 2-subsets of V (Γ). An edge of a graph Γ will be denoted by
{u, v} or uv, for u, v ∈ V (Γ). We use u ∼ v to indicate that u and v
are adjacent vertices, that is uv ∈ E(Γ). The neighborhood of a vertex v
is defined as N(v) = {u ∈ V (Γ):uv ∈ E(Γ)} and the degree d(v) of v is
defined as |N(v)|. The neighborhood of a set of vertices X is defined as
N(X) =

S
x∈X N(x) \ X. Let U be a subset of V (Γ), we will use ΓhUi

to denote the subgraph of Γ induced by U . The graph difference Γ− U is
defined as the graph ΓhV (Γ) \ Ui.
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Let Γ1 and Γ2 be two simple graphs. An isomorphism of Γ1 onto Γ2 is a
bijection φ:V (Γ1)→ V (Γ2) such that uv ∈ E(Γ1) if and only if φ(u)φ(v) ∈
E(Γ2). An automorphism of a graph Γ is an isomorphism of Γ onto itself.
The set of all automorphism of a graph Γ is a subgroup of Sym(V (Γ)), the
group of all permutations of V (Γ), an is denoted by Aut(Γ). To obtain the
automorphism group of graphs in general is a difficult problem. But it is
possible to obtain this group for particular cases.

It is well-known that Aut(Γ) acts on V (Γ). Let v ∈ V (Γ), the orbit
of v is defined as O(v) = {f(v): f ∈ Aut(Γ)} and the stabilizer of v is
Stab(x) = {f ∈ Aut(Γ): f(x) = x}. The orbit-stabilizer theorem says
that |Aut(Γ)| = |O(v)||Stab(v)|, for every v ∈ V (Γ). Let f ∈ Aut(Γ),
we say that a vertex x ∈ V (Γ) is a fixed point of f if f(x) = x. We use
Fix(f) to denote the set of fixed points of f . As usual, sometimes we write
Aut(Γ) = G instead of Aut(Γ) ' G. We use Sn to denote the symmetric
group over {1, . . . , n}.

The following observation (see [14]) will be used, sometimes without
reference, when we compute the degree of vertices in Fk(Γ).

Observation 2.1. The degree of a vertex A in Fk(Γ) is equal to the num-
ber of edges between A and V (Γ) \A.

In particular if {x, y} ∈ V (F2(Γ)), then d({x, y}) = d(x)+d(y) if x 6∼ y
and d({x, y}) = d(x) + d(y)− 2 if x ∼ y.

The following result, that appears in [10] and [14], will be useful in some
of the proofs.

Proposition 2.2. Let X be a subset of V (Γ) and Γ0 = Γ−X. Then Fk(Γ0)
is isomorphic to the graph obtained from Fk(Γ) by deleting the vertices A
in Fk(Γ) such that A has al least one element of X.

2.1. First results

Our first result shows an important relation between Aut(Γ) and Aut(Fk(Γ)).
The proof of the following theorem is straightforward.

Theorem 2.3. Let Γ be a graph. Then Aut(Γ) is isomorphic to a subgroup
of Aut(Fk(Γ)). In fact, if θ ∈ Aut(Γ), then the function fθ:V (Fk(Γ)) →
V (Fk(Γ)) defined as

fθ({v1, . . . , vk}) = {θ(v1), . . . , θ(vk)}

is an automorphism of Fk(Γ).
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The automorphism fθ of Fk(Γ), for θ ∈ Aut(Γ), defined in previous
theorem is called the automorphism induced by θ. When the context is
clear, we use Aut(Γ) as the set of automorphism of Γ or as the subgroup of
Aut(Fk(Γ)) induced by the automorphisms of Γ. We write Aut(Fk(Γ)) =
Aut(Γ) to mean that every automorphism of Fk(Γ) is induced by some
automorphism of Γ.

Now, the following proposition shows that for n = 2k, Aut(Fk(Γ)) has
always more elements than Aut(Γ).

Theorem 2.4. Let Γ be a graph of order n, with n even. The function
fc:V (Fn/2(Γ)) → V (Fn/2(Γ)) defined as fc(A) = Ac is an automorphism,
where Ac = V (Γ) \ A. Even more fc is not an induced automorphism of
any φ ∈ Aut(Γ).

Proof. The proof is exactly the same that the given in the proof of
Theorem 3.5 in [25] for the case when Γ is the complete graph Kn (the
graph Fk(Kn) is isomorphic to the Johnson graph J(n, k)). 2

Clearly, the function fc in previous theorem is a fixed point free invo-
lution.

Corollary 2.5. Let n ≥ 4 be an even integer. If Γ is a graph of order n,
then

|Aut(Fn/2(Γ))| ≥ 2|Aut(Γ)|.

3. Automorphism group of the 2-token graph of cycle graphs

In this section we prove that Aut(F2(Cn)) = Aut(Cn), for n 6= 4. In Figure
1 we show F2(C7). Let D2n denote the dihedral group of 2n elements. It is
well-known that Aut(Cn) = D2n. Using computer software, we obtain that
Aut(F2(C4)) = S2 × D8. First we present some observations and results
that will be useful. In this section, V (Cn) = {1, 2 . . . , n} and E(Cn) =
{{i, i+ 1}: 1 ≤ i ≤ n− 1} ∪ {{1, n}}.

Observation 3.1. Let n ≥ 4 be an integer.

1. If v ∈ F2(Cn), then d(v) ∈ {2, 4}.

2. |N(u) ∩N(v)| ≤ 2, for every pair of vertices u, v ∈ F2(Cn).
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We use i⊕j and iªj to denote the sum (i+j) mod n and (i−j) mod n,
respectively, with the convention that n ≡ n (mod n). Let r = bn/2c. We
define the following subsets of V (F2(Cn)).

Lq = {{i, i⊕ q}: 1 ≤ i ≤ n},

where 1 ≤ q ≤ r.

Figure 1: The 2-token graph of C7, where V (C7) = {1, . . . , 7}. The red
subgraph is induced by L1 ∪ L2.

The proof of the following proposition is an easy exercise.

Proposition 3.2. Let n ≥ 3 be an integer and r = bn/2c.

1. If n is even, then |Ln/2| = n/2 and |Lq| = n, for 1 ≤ q < r.

2. If n is odd, then |Lq| = n, for 1 ≤ q ≤ r.

3. The set L = {L1, . . . , Lr} is a partition of V (F2(Cn)).

4. Let n ≥ 6 and 3 ≤ q ≤ r. If {i, i⊕ q} ∈ Lq, with 1 ≤ i ≤ n, then two
neighbors, say B,C, of {i, i ⊕ q} belongs to Lq−1 and the vertex in
N(B) ∩N(C) \ {{i, i⊕ q}} belongs to Lq−2.

5. Let v ∈ V (F2(Cn)), then d(v) = 2 if and only if v ∈ L1.

In Figure 1 we show the subgraph of F2(C7) induced by L1 ∪ L2.

Marisol Martínez
f-1
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Figure 2: An illustration of Proposition 3.2(4).

Proposition 3.3. Let n ≥ 6. The subgraph of F2(Cn) induced by L1∪L2
is isomorphic to C2n.

Proof. First note that if {i, i⊕ 1} in L1, then

N({i, i⊕ 1}) = {{iª 1, i⊕ 1}, {i, i⊕ 2}},

and if {i, i⊕ 2} in L2, then

N({i, i⊕ 2}) = {{i, i⊕ 1}, {i, i⊕ 3}, {i⊕ 1, i⊕ 2}, {iª 1, i⊕ 2}}.

Since n ≥ 6, thenN({i, i⊕1}) ⊂ L2, N({i, i⊕2})∩L1 = {{i, i⊕1}, {i⊕1, i⊕
2}} andN({i, i⊕2})∩L3 = {{i, i⊕3}, {iª1, i⊕2}}. Thus, it is easy to check
that the function φ:V (L1 ∪ L2)→ V (C2n) given by φ ({i, i⊕ 1}) = 2i− 1,
for every {i, i⊕ 1} ∈ L1, and φ ({i, i⊕ 2}) = 2i, for every {i, i⊕ 2} ∈ L2, is
a graph isomorphism. 2

We also need the following well-known observation.

Proposition 3.4. If f ∈ Aut(Cn) fixes two adjacent vertices on Cn, then
f = id.

Now we present our main result of this section.

Theorem 3.5. Let n ≥ 3 be an integer. If n 6= 4, then Aut(F2(Cn)) =
Aut(Cn).

Marisol Martínez
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Proof. If n = 3, then F2(C3) ' C3 and the result follows for this case.
Suppose now that n ≥ 5. Let Γ = F2(Cn). In the view of Theorem 2.3, it is
enough to show that |Aut(Γ)| ≤ 2n. Let x ∈ V (Γ) be the vertex {1, n} and
let Γ1 = ΓhN(x)i. Since N(x) = {{1, n − 1}, {2, n}}, then |Aut(Γ1)| = 2.
Let ϕ: Stab(x)→ Aut(Γ1) be the function defined by ϕ(f) = f |Γ1 . As ϕ is a
group homomorphism we have that |Stab(x)| ≤ |Kerϕ||Aut(Γ1)| ≤ 2|Kerϕ|.
We will prove that Kerϕ = {id}.

Let f ∈ Kerϕ. By Proposition 3.2(3) it is enough to show that f(Lq) ⊂
Fix(f), for every q ∈ {1, . . . , n/2}.

First we prove that f(L1 ∪ L2) ⊂ Fix(f). Let Γ2 = hL1 ∪ L2i. By
Proposition 3.3 it follows that Γ2 ' C2n. Note that f(L1 ∪ L2) = L1 ∪ L2.
Indeed, L1 is equal to the set of vertices of degree 2 in Γ and the vertices
in L2 are the unique vertices in Γ that have two of its neighbors in L1 (see
Figure 1 for an example). Then f |L1∪L2 ∈ Aut(Γ2). Since f ∈ Kerϕ and
f ∈ Stab(x), we have that f({1, n}) = {1, n}, f({1, n−1}) = {1, n−1} and
f({2, n}) = {2, n}. But {1, n} and {2, n} are adjacent vertices in Γ and
then all the vertices in L1∪L2 are fixed by f (by Proposition 3.4). If n = 5
we are done. For n ≥ 6 we will prove that f(Lq) ⊂ Fix(f), for 3 ≤ q ≤ n/2.
Suppose by induction that f(Lj) ⊂ Fix(f), for 2 ≤ j < q ≤ n/2. Let
u ∈ Lq, that is u = {i, i⊕q}, for some i ∈ {1, . . . , n}. By Proposition 3.2(4),
we have that two neighbors of u, say v and w, belongs to Lq−1 and the vertex
z in N(v) ∩ N(w) \ {u} belongs to Lq−2 (see Figure 2). By hypothesis,
{v,w, z} ⊂ Fix(f) which implies that f(u) ∈ N(v) ∩ N(w) and hence
f(u) = u (we are using Observation 3.1 that shows that |N(v)∩N(w)| ≤ 2).
Then f(Lq) ⊂ Fix(f) as desired.

Therefore Kerϕ = {id} and hence |Stab(x)| ≤ 2. Now, since x ∈ L1, by
Proposition 3.2(5) it follows that |O(x)| ≤ n. Finally, by the orbit-stabilizer
theorem we obtain |Aut(Γ)| = |O(x)||Stab(x)| ≤ 2n which concludes the
proof of the theorem. 2

The following conjecture is based on experimental results obtained by
computer.

Conjecture 3.6. Let n be an integer and 3 ≤ k ≤ n/2. If k 6= n/2 then
Aut(Fk(Cn)) = Aut(Cn) and if k = n/2, then Aut(Fk(Cn)) = S2×Aut(Cn).

4. Automorphism groups of the 2-token graphs of star, fan
and wheel graphs

In this section we obtain the automorphism groups of the 2-token graphs
of star, fan and wheel graphs. In all such cases we have that if |G| ≥ 5,
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then Aut(F2(G)) = Aut(G).

Star graphs

First we consider the case of the star graph K1,n−1. In Figure 3 we show
F2(K1,6). For small star graphs we have that F2(K1,2) ' P3 and F2(K1,3) '
C6 and hence Aut(F2(K1,2)) ' S2 and Aut(F2(K1,3)) ' D6. In this section
V (K1,n−1) = {1, 2, . . . , n}, where 1 is the vertex of degree n− 1.

Figure 3: The 2-token graph of K1,6 (V (K1,6) = {1, . . . , 7}, with
d(1) = 7). The set B,R,O,G defined in the proof of Theorem 4.1 are the

set of blue, red, orange and green vertices, respectively.

Theorem 4.1. Let n ≥ 5 be an integer. Then Aut(F2(K1,n−1)) = Aut(K1,n−1).

Proof. Let Γ = F2(K1,n−1). Since graph K1,n−1 is bipartite, it follows
that Γ is also bipartite ([14, Proposition 1]). In fact, a bipartition of V (Γ)
is {B,R}, where

B = {{1, i}: 2 ≤ i ≤ n},

andR = V (Γ))\B. Note that if x ∈ B, then d(x) = n−2 and if x ∈ R, then
d(x) = 2 (see Figure 3 for an example). Since n ≥ 5, then Γ has exactly n−1
vertices of degree n − 2. Let B = {{1, 2}} and O = {{1, i}: 3 ≤ i ≤ n}.
Clearly {B,O} is a partition of B. Let R = {{2, i}: 3 ≤ i ≤ n} and
G = {{i, j}: 3 ≤ i < j ≤ n}. Clearly R = N({1, 2}) and {R,G} is a
partition of R. In Figure 3 we show the partition {B,O,R,G} of V (Γ).

Now, by Theorem 2.3, Aut(K1,n−1) ≤ Aut(Γ). It is well-known that
Aut(K1,n−1) = Sn−1 and hence it is enough to show that |Aut(Γ)| ≤ (n−1)!

Let x be the vertex {1, 2} in Γ and let Γ1 = ΓhN(x)i. In this case
N(x) = R and Γ1 = Kn−2. Therefore Aut(Γ1) = Sn−2. We have that

Marisol Martínez
f-3
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|O(x)| ≤ n−1 because x has degree n−2 and there are exactly n−1 vertices
in Γ of degree n− 2. If an automorphism f of Γ belongs to Stab(x), then
f(N(x)) = N(x) and hence f |N(x) ∈ Aut(Γ1). Let ϕ: Stab(x) → Aut(Γ1)

be the function defined by ϕ(f) = f |N(x). We will prove that Kerϕ = {id}.
Let f ∈ Kerϕ. We will prove that f(Y ) ⊂ Fix(f), for every Y ∈

{B,O,R,G} in the following order: B,R,O,G. Since f ∈ Stab(x) and
f ∈ Kerϕ, then f({1, 2}) = {1, 2} and f(y) = y, for every y ∈ N(x),
respectively. That is, f(B) ∪ f(R) ⊂ Fix(f). Now we prove that f(O) ⊂
Fix(f). Let w ∈ O, that is w = {1, i}, for some i ∈ {3, . . . , n}. Note that
N({2, i}) = {{1, 2}, {1, i}} and hence {1, i} ∈ N({2, i}). Since f({2, i}) =
{2, i}, then f(N({2, i})) = N({2, i}). But f({1, 2}) = {1, 2} and then
f({1, i}) = {1, i}, for every i ∈ {3, . . . , n}. Then f(O) ⊂ Fix(f). Finally,
let w ∈ G, that is w = {r, s}, with r, s ∈ {3, . . . , n}, r 6= s. We have that
N({r, s}) = {{1, r}, {1, s}}, that is a subset of O. Then N({r, s}) ⊂ Fix(f).
Since |N(y) ∩ N(z)| < 2, for every y, z ∈ R, with y 6= z, then f({r, s}) =
{r, s}, for r, s ∈ {3, . . . , n}, r 6= s. Therefore f(G) ⊂ Fix(f). We conclude
that f = id because {B,O,R,G} is a partition of V (Γ).

In this way Kerϕ = {id} and then |Stab(x)| ≤ (n − 2)!. Now we use
that |Aut(Γ)| = |O(x)||Stab(x)| to obtain that |Aut(Γ)| ≤ (n−1)(n−2)! =
(n− 1)! as desired. 2

The following conjecture is based on experimental results.

Conjecture 4.2. Let n be an integer and 3 ≤ k ≤ n/2. If k 6= n/2
then Aut(Fk(K1,n)) = Aut(K1,n), and if k = n/2, then Aut(Fk(K1,n)) =
S2 ×Aut(K1,n).

Fan graphs

The fan graph A1,n is the joint graph K1 + Pn. The vertices of A1,n are
the disjoint union V (K1) ∪ V (Pn), where V (K1) = {v} and V (Pn) =
{u1, . . . , un}, where ui ∼ ui+1 in Pn, for every 1 ≤ i ≤ n − 1. In Fig-
ure 4 we show F2(A1,7).

It is well-known that Aut(A1,n) ' S2, for n 6= 3. For n ≥ 5, it can be
shown (by Observation 2.1) that the degrees of vertices in F2(A1,n−1) are
as follows:

• d({u1, u2}) = 3, d({u1, ui}) = 5, for 3 ≤ i ≤ n − 1, d({u1, v}) = n,
d({u1, un}) = 4;

• d({ui, uj}) ∈ {4, 6}, for i, j ∈ {2, . . . , n− 1}, i 6= j;
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• d({ui, un}) = 5, for 2 ≤ i ≤ n− 2, d({un−1, un}) = 3, d({un, v}) = n;

• d(ui, v) = n+ 1, for every 2 ≤ i ≤ n− 1.

Figure 4: The 2-token graph of A1,7, where V (A1,7) = {1, . . . , 8} and
d(8) = 7. In the proof of Theorem 4.3, x = {1, 2}, and R is equal to the

set of red and blue vertices.

Therefore, if w ∈ V (F2(A1,n)), then d(w) ∈ {3, 4, 5, 6, n, n + 1}. Note
that for n ≥ 8, there exists exactly two vertices of degree 3 and exactly two
vertices of degree n in F2(A1,n). We obtained that Aut(A1,3) ' S2×S2 by
using Mathematica software.

Theorem 4.3. Let n ≥ 4 be an integer. Then Aut(F2(A1,n)) = Aut(A1,n).

Proof. The proof is by induction on n. The cases for n ∈ {4, . . . , 8}
were obtained by computer. In the rest of the proof n ≥ 9. Assume as
induction hypothesis that the result is true for every 4 ≤ m < n.

Let Γ = F2(A1,n). By Theorem 2.3, Aut(A1,n) ≤ Aut(Γ) and hence it
is enough to prove that |Aut(Γ)| ≤ 2. Let

R = {{w, un} ∈ V (Γ):w ∈ V (A1,n), w 6= un}

and ΓR = ΓhRi. We have that

R = N ({v, un}) ∪ {{v, un}} \ {{v, un−1}}.

Note that ΓR is isomorphic to A1,n−1, where {v, un} is the vertex of
degree n−1 in ΓR. Let ΓR = Γ−R. Note that ΓR = F2(A1,n−1), where the
vertices of A1,n−1 are given by V (K1) = {v} and V (Pn−1) = {u1, . . . , un−1}.

Marisol Martínez
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Let x ∈ V (Γ) be the vertex {u1, u2}. We have that |Orb(x)| ≤ 2 because
d(x) = 3 and there are exactly two vertices of degree 3 in Γ.

Let Γ1 = ΓhN(x)i, where N(x) = {{u1, u3}, {v, u1}, {v, u2}}. Since
the graph Γ1 is isomorphic to P3, then Aut(Γ1) = S2. Let ϕ: Stab(x) →
Aut(Γ1) be the homomorphism given by f 7→ f |N(x). Since the vertices
{u1, u3} and {v, u2} have different degree in Γ, then f |N(x) = id, for every
f ∈ Stab(x). Therefore Im(ϕ) = {id} and hence |Stab(x)| = |Kerϕ|. We
will prove that Kerϕ = {id}.

Let f ∈ Kerϕ. As f ∈ Stab(x) and f |N(x) = id, we have that

{{u1, u2}, {u1, u3}, {v, u1}, {v, u2}} ⊆ Fix(f).

The unique vertices in Γ of degree n are {v, u1} and {v, un}. Therefore
f({v, un}) = {v, un} and this implies that f(N({v, un})) = N({v, un}).
Note that {v, un−1} is the unique vertex of degree n+1 in N({v, un}) and
hence f({v, un−1}) = {v, un−1}. Then f(R) = R and hence f |R ∈ Aut(ΓR)
(remember that R = N ({v, un}) ∪ {{v, un}} \ {{v, un−1}}). This implies
that f |V (Γ

R
) ∈ Aut(ΓR).

Since Aut(ΓR) is isomorphic to Aut(A1,n−1), the image of {u1, un} un-
der f |R has only two possibilities: {u1, un} or {un−1, un}. But f({u1, un}) =
{un−1, un} is imposible because {u1, un} and {un−1, un} have different de-
grees in Γ. Thus f |R = id. Now Aut(ΓR) = Aut(F2(A1,n−1)) and by
induction we have that either f |V (Γ

R
) = id or f |V (Γ

R
) = g, where g is

the automorphism in Aut(F2(A1,n−1)) that moves the vertex {u1, u2}. But
f({u1, u2}) = {u1, u2} and hence f |V (Γ

R
) = id. Therefore f = id. In this

way |Stab(x)| = 1 and hence |Aut(Γ)| ≤ 2 as desired. 2

Conjecture 4.4. Let n be an integer and 3 ≤ k ≤ n/2. If k 6= n/2
then Aut(Fk(A1,n)) = Aut(A1,n) and if k = n/2, then Aut(Fk(A1,n)) =
S2 ×Aut(A1,n).

Wheel graphs

The wheel graph W1,n, n ≥ 3, is defined as the join graph K1 + Cn. In
Figure 5 we show F2(W1,7). It is well-known that Aut(W1,n) ' D2n. We
obtained that Aut(W1,3) ' S2 ×D6 by using Mathematica software.
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Figure 5: The 2-token graph of W1,7, where V (W1,7) = {1, . . . , 8} and
d(8) = 7. In the proof of Theorem 4.5, ΓC is the blue subgraph.

Theorem 4.5. Let n ≥ 4 be integer. Then Aut(F2(W1,n)) = Aut(W1,n).

Proof. In this proof, the vertex set of W1,n is {v, u1, . . . , un}, where
V (K1) = {v} and V (Cn) = {u1, . . . , un}, with u1 ∼ un and ui ∼ ui+1,
1 ≤ i ≤ n in Cn. The cases n ∈ {4, 5} were verified by computer and
hence we suppose that n ≥ 6. Let Γ = F2(W1,n). Let T = {{ui, uj} ∈
V (Γ): 1 ≤ i < j ≤ n} and C = {{ui, v} ∈ V (Γ): 1 ≤ i ≤ n}. Let ΓT =
ΓhT i and ΓC = ΓhCi. We have that ΓT = F2(Cn) and ΓC ' Cn (see
Figure 5 for an example), where an isomorphism between Cn and ΓC is
given by ui 7→ (ui, v). In this proof we use that every automorphism in
Aut(ΓT ) (that is equal to Aut(F2(Cn))) is induced by some automorphism
in Aut(Cn). For the case of Aut(ΓC) we have that every automorphism
θ ∈ Aut(Cn) induces an automorphism g in Aut(ΓC) given by g({ui, v}) =
({θ(ui), v}). We know that Aut(W1,n) ≤ Aut(F2(W1,n)) and we will prove
that Aut(F2(W1,n)) = Aut(W1,n) by showing that every automorphism f
in Aut(F2(W1,n)) is induced by some automorphism θ in Aut(W1,n), i.e.,
f({a, b}) = {θ(a), θ(b)}, for every {a, b} ∈ V (F2(W1,n)).

Let y ∈ V (F2(W1,n)). Note that if y ∈ T , then d(y) ∈ {4, 6}, and if
y ∈ C, then d(y) = n + 1. As n ≥ 6, then d(y) 6∈ {4, 6} when y ∈ C.
Therefore, we have that f |T ∈ Aut(ΓT ) and f |C ∈ Aut(ΓC), for every
f ∈ Aut(F2(W1,n)). As f |T ∈ Aut(F2(Cn)), then there exists α ∈ Aut(Cn)
such that f |T ({a, b}) = {α(a), α(b)}, for any {a, b} ∈ V (ΓT ). For the case
of f |C we have that f |C({a, v}) = {β(a), v}, for some β ∈ Aut(Cn).

We will prove by contradiction that α = β. Suppose that α 6= β.
Without loss of generality, we suppose that α(u1) 6= β(u1).
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Claim 4.6. If α(u1) 6= β(u1), then α(u1) = β(u2), α(u2) = β(u1) and
α(uj) = β(uj), for every j ∈ {3, . . . , n}.

Proof. As {u1, u2} ∼ {u1, v}, then f({u1, u2}) ∼ f({u1, v}), that is
{α(u1), α(u2)} ∼ {β(u1), v}. By the definition of 2-token graph |{α(u1), α(u2)}∩
{β(u1), v}| = 1. But v 6∈ {α(u1), α(u2)} and α(u1) 6= β(u1), and then we
have that α(u2) = β(u1). On the other hand {u1, u2} ∼ {u2, v} and then
f({u1, u2}) ∼ f({u2, v}). That is {α(u1), α(u2)} ∼ {β(u2), v}. But we
have proved that α(u2) = β(u1) and hence {α(u1), β(u1)} ∼ {β(u2), v}.
Similarly as in previous case the equality |{α(u1), β(u1)} ∩ {β(u2), v}| = 1
implies that α(u1) = β(u2).

Now, for j ∈ {3, . . . , n}, we have that {u1, uj} ∼ {uj , v}. Then f({u1, uj}) ∼
f({uj , v}), that is {α(u1), α(uj)} ∼ {β(uj), v}. But α(u1) = β(u2) and
hence {β(u2), α(uj)} ∼ {β(uj), v}. The unique option is that α(uj) = β(uj)
and the proof of the claim is completed. 2

Let a = β(u1) and b = β(u2). Using previous claim, it is easy to
check that αβ−1(a) = b, αβ−1(b) = a, and αβ−1(c) = c, for every c ∈
V (Cn) \ {a, b}. That is, αβ−1 is equal to the transposition (a, b) (written
in cyclic notation). But αβ−1 ∈ Aut(Cn) = D2n and the dihedral group
D2n has not transpositions when n > 3. This contradiction shows that
α = β. Therefore, f is the automorphism induced by θ ∈ Aut(W1,n),
where θ(v) = v and θ(ui) = α(ui), for every i ∈ {1, . . . , n}. 2

Conjecture 4.7. Let n be an integer and 3 ≤ k ≤ n/2. If k 6= n/2
then Aut(Fk(W1,n)) = Aut(W1,n) and if k = n/2, then Aut(Fk(W1,n)) =
S2 ×Aut(W1,n).

5. Proof of Theorem 1.2

In this section we use Pn to denote the path graph with V (Pn) = {1, . . . , n}
and E(Pn) = {{i, i+1}: 1 ≤ i ≤ n−1}. It is well-known that Aut(P1) ' S1
and Aut(Pn) ' S2, for n ≥ 2. Explicitly, if n ≥ 2, then Aut(Pn) = {id, θ},
where

θ = (1, n)(2, n− 1) . . . (n/2, n/2 + 1), when n is even

and

θ = (1, n)(2, n− 1) . . . (dn/2e− 1, dn/2e+ 1)(dn/2e), when n is odd.

(We are writing permutation θ in its cycle notation).
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Our main result in this section is Theorem ?? about the automorphism
group of Fk(Pn), for n 6= 2k. In Figure 6 and 7 we show F2(P6) and F3(P7),
respectively.

Figure 6: The 2-token graph of P6. The red (resp. blue) subgraph is
induced by the set L1 (resp. L2) defined in the proof of Theorem 1.2.

First, we present some auxiliary results. Without loss of generality, we
write the elements of a vertex {a1, . . . , ak} ∈ V (Fk(Pn)) in ascending order,
that is a1 < . . . < ak. Using Observation 2.1 we obtain the following facts
about the vertices in Fk(Pn).

Observation 5.1. Let Pn be a path graph of order n ≥ 3 and let 2 ≤ k ≤
n− 2 be an integer.

1. Let v = {a1, a2, . . . , ak} be a vertex in Fk(Pn). The degree of v is
even if and only if {a1, ak} = {1, n} or {a1, ak} ∩ {1, n} = ∅.

2. The vertices of degree 2 in Fk(Pn) are either of the form {a, a +
1, . . . , a + (k − 1)}, for 2 ≤ a ≤ n − k, or {1, . . . ,m, n − (k − m −
1), n− (k −m), . . . , n}, for 1 ≤ m ≤ k − 1.

3. The graph Fk(Pn) has exactly two vertices of degree one, say {1, . . . , k}
and {n− (k − 1), . . . , n}.

The formula for the graph distance d(u, v) between vertices u and v in
Fk(Pn) is given in the following result.

Lemma 5.2. Let u = {u1, . . . , uk} and v = {v1, . . . , vk} be vertices in
Fk(Pn), where u1 < . . . < uk and v1 < . . . < vk. Then

d(u, v) =
kX
i=1

|vi − ui|.

Marisol Martínez
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Proof. The L1-distance on Zk is defined as

dL1(a, b) =
kX
i=1

|bi − ai|,

for every a = {a1, . . . , ak}, b = {b1, . . . , bk} ∈ Zk. The grid graph Zk is
constructed as follows: two points in Zk are adjacent if their L1-distance is
equal to one. It is well-known (see, e.g., [13, p. 333]) that the L1-distance
is equal to the path distance on the grid graph Zk. The result follows by
observing that Fk(Pn) is a subgraph of the grid graph Zk, where vertex
{ai1 , . . . , aik} in Fk(Pn) correspond to the unique vertex (a1, . . . , ak) in Zk

such that a1 < . . . < ak and {ai1 , . . . , aik} = {a1, . . . , ak}. 2

The proof of previous lemma also follows by using the formula of dis-
tance in [15]. The case for F2(Pn) was also proved in [9]. In the proof of
the following theorem, we use several times the following fact: if H is a
graph, then

d(a, b) = d (g(a), g(b)) ,

for every g ∈ Aut(H) and every a, b ∈ V (H).

Proof. [Proof of Theorem 1.2] If k = 1, then F1(Pn) ' Pn and the
result is trivially true. The cases n ≤ 7, 1 ≤ k ≤ n/2, were verified by
computer and hence we suppose that n ≥ 8. Let Γ = Fk(Pn). By Theorem
2.3, it follows that Aut(Pn) ≤ Aut(Γ) and hence it is enough to prove that
|Aut(Γ)| ≤ 2.

Let x ∈ Γ be the vertex {1, . . . , k}. Note that d(x) = 1 and hence
|O(x)| ≤ 2. In fact, |O(x)| = 2 because the non-identity automorphism, say
φ, in Aut(Pn) induces a non-identity automorphism gφ in Aut(Γ) such that
gφ({1, . . . , k}) = {n− (k−1), . . . , n}. Let Γ1 = ΓhN(x)i. Let ϕ: Stab(x)→
Aut(Γ1) be the function defined by ϕ(f) = f |N(x). As Aut(Γ1) = {id}, we
have that Stab(x) = Kerϕ. We will prove that Kerϕ = {id}, which implies
that |Aut(Γ)| ≤ 2.

First we prove the case k = 2. Suppose by induction that F2(Pm) =
Aut(Pm), for every 5 ≤ m < n. Let L1 = {{a1, a2} ∈ V (Γ): a1 = 1 or a2 =
n} and L2 = V (Γ) \ L1. Let ΓL1 = ΓhL1i and let ΓL2 = ΓhL2i. Note
that ΓL1 ' P2n−3 and, by Proposition 2.2, we have that ΓL2 ' F2(Pn−2)
(see Figure 6 for an example). It is easy to see that, with the exception of
{1, n}, all the vertices in L1 have either degree 1 or degree 3. In fact L1 has
all the vertices of Γ that have degree 1 or 3. Note that {1, n} is the unique
vertex in Γ of degree 2 in with its two neighbors of degree 3. Consequently,
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if f ∈ Aut(Γ), then f(L1) = L1 and hence f |L1 ∈ Aut(ΓL1). Now, let
f ∈ Kerϕ. Since Aut(L1) ' Aut(P2n−3) and f({1, 2}) = {1, 2}, we have
that f |L1 = id which shows that f(L1) ⊂ Fix(f). Using this, the proof that
f(L2) ⊂ Fix(f) follows immediately by induction because ΓL2 ' F2(Pn−2)
and n− 2 ≥ 6 (see Figure 6 for an example).

Now we prove the case 3 ≤ k < n/2. The proof is by induction on n.
As bases cases, we have proved the result for F2(Pn), for every n ≥ 5, and
for n = 8, we have verified every k ∈ {2, 3} by computer. We suppose that
the result is true for any graph Pn0 with n0 < n. That is, Aut(F 0k(Pn0)) =
Aut(Pn0), for 2 ≤ k0 < n0/2 < n/2.

Let f ∈ Kerϕ. Since f ∈ Stab(x), we have that f({1, . . . , k−1, k+1}) =
({1, . . . , k−1, k+1} and f({n−(k−1), . . . , n−1, n}) = ({n−(k−1), . . . , n−
1, n}) (the grey vertices in the example in Figure 7).

We define the following subsets of V (Γ)

A = {{a1, . . . , ak} ∈ V (Γ): ak = n}
B = {{b1, . . . , bk} ∈ V (Γ): b1 = 1}
C = {{c1, . . . , ck} ∈ V (Γ): c1 6= 1, ck 6= n}

Note that C = V (Γ) \ (A ∪B). Let ΓA = ΓhAi, ΓB = ΓhBi and ΓC =
ΓhCi. We will prove that if f in Kerϕ, then f is the identity permutation
by showing that X ⊂ Fix(f), for every X ∈ {A,B,C}. We do this in
four steps: first we prove that if f ∈ Kerϕ, then f({1, . . . , k − 1, n}) =
({1, . . . , k− 1, n} (Claim 5.4), second we work the case of A, third the case
of B and finally the case of C. In Figure 7, we use colors to illustrate the
four steps.

Figure 7: The 3-token graph of P7. In the proof of Theorem 1.2, for
f ∈ Kerϕ, we prove that f(v) = v, for every v ∈ V (Γ), in the following

order: grey, black, red, blue and green vertices.
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We need the following:

Claim 5.3. Let y be the vertex {1, . . . , k − 1, n}.

1. If 3 ≤ a ≤ n− k − 1, then {a, a+ 1, . . . , a+ (k − 1)} 6∈ O(y),

2. If 2 ≤ m ≤ k−2, then {1, . . . ,m, n−(k−m−1), n−(k−m), . . . , n} 6∈
O(y).

Proof. The elements in O(y) should be vertices of degree 2. We will
use the fact that if g ∈ Aut(Γ), then N(g(v)) = g(N(v)), for every v ∈
V (Γ). Note that N(y) = {y1, y2}, where y1 = {1, . . . , k − 2, k, n} and
y2 = {1, . . . , k − 1, n − 1}. The condition k ≥ 3 implies that d(y1) = 4
and d(y2) = 3. Proof of (1). Let w = {a, a + 1, . . . , a + (k − 1)}, with
3 ≤ a ≤ n−k−1, then N(w) = {w1, w2}, where w1 = {a−1, a+1, . . . , a+
(k − 1)}, w2 = {a, a + 1, . . . , a + (k − 2), a + k}, d(w1) = d(w2) = 4.
Therefore f(y) 6= w. Proof of (2). Let z = {1, . . . ,m, n − (k − m −
1), n − (k − m), . . . , n}, with 2 ≤ m ≤ k − 2. Then N(z) = {z1, z2},
where z1 = {{1, . . . ,m − 1,m + 1, n − (k − m − 1), n − (k − m), . . . , n},
z2 = {1, . . . ,m, n−(k−m−1)−1, n−(k−m), . . . , n} and d(z1) = d(z2) = 4
(here we are using that k < n/2). Therefore f(y) 6= z. 2

Step 1. We prove the following fact.

Claim 5.4. Let y be the vertex {1, . . . , k−1, n}. If f ∈ Kerϕ, then f(y) =
y.

Proof. By Observation 5.1(2) and Claim 5.3 we have that f(y) has only
the following options:

1. {2, 3, . . . , k + 1},

2. {n− k, n− (k − 1), . . . , n− 1},

3. {1, n− (k − 2), . . . , n}

4. {1, . . . , k − 1, n},

Now we use several times the fact that d(a, b) = d (g(a), g(b)), for every
g ∈ Aut(Γ) and every a, b ∈ V (Γ).

Case 1. Suppose that f({1, . . . , k − 1, n}) = {2, 3, . . . , k + 1}. Then
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d({1, 2, . . . , k}, {1, . . . , k − 1, n}) = d({1, 2, . . . , k}, {2, 3, . . . , k + 1})
n− k = k

which implies that n = 2k, a contradiction.
Case 2. Suppose that f({1, . . . , k− 1, n}) = {n− k, n− (k− 1), . . . , n− 1}.
Then

d({1, 2, . . . , k}, {1, . . . , k − 1, n}) = d({1, 2, . . . , k}, {n− k, n− (k − 1), . . . , n− 1})

n− k =
kX
i=1

(n− i)−
kX
i=1

i

From which we obtain k2 − nk + n = 0. The discriminant of equation
x2 − nx+ n = 0 is D = n2 − 4n. As n ≥ 7, D is positive and not a square
number. Therefore x2 − nx + n = 0 has not integer solutions, which is a
contradiction.
Case 3. Suppose that f({1, . . . , k− 1, n}) = {1, n− (k− 2), . . . , n}}. Then

d({1, 2, . . . , k}, {1, . . . , k − 1, n}) = d({1, 2, . . . , k}, {1, n− (k − 2), . . . , n})

n− k =
k−2X
i=0

(n− i)−
kX
i=2

i

n− k = (n− k)(k − 1)

As n 6= k, then k = 2, a contradiction that k ≥ 3.
Therefore, the unique option is that f(y) = y as desired. 2

In Figure 7 we show an example where vertex {1, . . . , k−1, n} is colored
black.
Step 2. We will prove that f(A) ⊂ Fix(f) (the red vertices in the example
in Figure 7).

First we prove that f(A) = A. Let v = {a1, . . . , ak−1, n} be a vertex in
A. Suppose that f(v) = {c1, . . . , ck}. Then

d({1, 2, . . . , k}, {a1, . . . , ak−1, n}) = d({1, 2, . . . , k}, {c1, . . . , ck}),

from which follows that
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n+ a1 + . . .+ ak−1 = c1 + c2 + . . .+ ck(1)

Now, by Claim 5.4, f({1, . . . , k − 1, n}) = {1, . . . , k − 1, n}. Then

d({1, . . . , k − 1, n}, {a1, . . . , ak−1, n}) = d({1, . . . , k − 1, n}, {c1, . . . , ck}),

from which follows that

a1 + . . .+ ak−1 = n− ck + (c1 + c2 + . . .+ ck−1)(2)

Combining equations (1) and (2) we obtain that ck = n and hence
f(v) ∈ A. Then f(A) ⊆ A. In fact, f(A) = A because f is a bijection.
Therefore f |A ∈ Aut(ΓA).

Notice that ΓA is isomorphic to Fk−1(Pn−1) (see Figure 8 for the case of
F3(P7)), with an isomorphism given by {a1, . . . , ak−1, n} 7→ {a1, . . . , ak−1}.
The inequality 3 ≤ k < n/2, implies that 2 ≤ k − 1 < (n − 1)/2. By the
induction hypothesis, Aut(Fk−1(Pn−1)) = S2. The unique option is that
f |A = id because {n− (k− 1), . . . , n− 1, n} is the unique vertex in A with
degree 1 simultaneously in ΓA and Fk(Pn) (see Figure 8 for an example).

Figure 8: The 3-token graph of P7. The red subgraph H is isomorphic to
F2(P6). Note that the vertex {1, 2, 7} has degree one in H but degree two

in F3(P7).

Step 3. We will prove that f(B) ⊂ Fix(f) (the blue vertices in the example
in Figure 7).

First, we prove that f(B) = B. Let v = {1, v2, . . . , vk} ∈ B. We have
two cases: vk = n or vk 6= n. If vk = n, then v ∈ A and hence f(v) ∈ B,
because we have proved that f(v) = v, for every v ∈ A. Suppose now that
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vk 6= n, that is v 6∈ A. By Observation 5.1(1) it follows that d(v) is odd and
hence d(f(v)) should be odd. Also by Observation 5.1(1), f(v) has only
two options. The first one is f(v) = {1, . . . , dk}, with dk 6= n, in which case
f(v) ∈ B as desired. The second option is f(v) = {a1, . . . , n}, with a1 6= 1.
In this case f(v) ∈ A and hence f(v) = v ∈ A, a contradiction.

Therefore, f(B) ⊆ B and hence f(B) = B because f is a bijection.
As B ' Fk−1(Pn−1), with an isomorphism given by {1, b2, . . . , bk} 7→
{b2, . . . , bk}, then Aut(ΓB) ' S2 and hence f |B = id as in the case of
ΓA. Therefore f(A ∪B) ⊂ Fix(f).
Step 4. We will prove that f(C) ⊂ Fix(f) (the green vertices in the
example in Figure 7).

It is easy to see that ΓhCi ' Fk(Pn−2). However, we can not apply the
induction hypothesis on C because it is possible that k ≥ (n − 2)/2 (for
example, if n = 10 and k = 4). We solve this inconvenient by using the
graph distance in Γ.

Suppose that f({c1, . . . , ck}) = {d1, . . . , dk}.

d({1, c2, . . . , ck}, {c1, c2, . . . , ck}) = d({1, c2, . . . , ck}, {d1, . . . , dk})

c1 − 1 = d1 − 1 +
kX
i=2

|di − ci|

and this implies that c1 ≥ d1. Now

d({1, d2, . . . , dk}, {c1, c2, . . . , ck}) = d({1, d2, . . . , dk}, {d1, . . . , dk})

c1 − 1 +
kX
i=2

|di − ci| = d1 − 1

and this implies that d1 ≥ c1. Therefore, d1 = c1. Now we will prove that
dk = ck.

d({c1, c2, . . . , ck−1, n}, {c1, . . . , ck}) = d({c1, c2, . . . , ck−1, n}, {d1, . . . , dk})

n− ck = n− dk +
k−1X
i=1

|di − ci|

and this implies that dk ≥ ck. Now
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d({d1, d2, . . . , dk−1, n}, {c1, c2, . . . , ck}) = d({d1, d2, . . . , dk−1, n}, {d1, . . . , dk})

n− ck +
k−1X
i=1

|di − ci| = n− dk

and this implies that dk ≤ ck. Therefore, dk = ck.
Finally we prove that ci = di, for every 2 ≤ i ≤ k − 1. We have

proved that if c = {c1, c2, . . . , ck−1, ck}, then f(c) = {c1, d2, . . . , dk−1, ck}.
Therefore

d({1, d2, . . . , dk−1, n}, {c1, c2, . . . , ck−1, ck}) = d({1, d2, . . . , dk−1, n},
{c1, d2, . . . , dk−1, ck})

n− ck + c1 − 1 +
k−1X
i=2

|di − ci| = n− ck + c1 − 1

From which we obtain that
Pk−1

i=2 |di − ci| = 0. But as every |di − ci|
is non negative, then |di − ci| = 0, for every i ∈ {2, . . . , k − 1} and hence
di = ci, for every i ∈ {2, . . . , k − 1}. So we have that f(c) = c, for every
c ∈ C.

Therefore f = id and the proof of the theorem is completed. 2

We finish this paper with the following:

Conjecture 5.5. Let n be an even integer. Then Aut(Fn/2(Pn)) ' S2×S2.
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