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Abstract

In this work, we will give a novel method to construct a continu-
ous approximation of the Exponential, Logistic, and Gaussian func-
tions that allow us to do a handmade drawing of their graphs for which
there is no accuracy of drawing at elementary levels (even at advanced
ones!). This method arises from solving the elementary ordinary dif-
ferential equation x0(t) = ax(t) combined with a suitable piecewise
constant argument. The proposed approximation will allow us to gen-
erate several numerical schemes in an elementary way, generalizing
the classical ones as, Euler’s schemes. No sophisticated mathematical
tools are needed.
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1. Introduction

It is so strange when someone ask for drawing the graphs of the Exponential

function f(t) = et and the Logistic function g(t) =
1

1 + e−t

Figure 1: Graphs of f(t) = et and g(t) = 1/(1 + e−t).

Actually, we just know some guide points and some asymptotic behavior
for drawing such functions. The mentioned points and behaviors are (0, 1),
(1, e) and f(t) → 0 as t → −∞, f(t) → ∞ as t → ∞ for the case of the
exponential function and (0, 1), g(t) → 0 as t → −∞, g(t)→ 1 as t →∞,
for the Logistic function. In simple words they know almost nothing about
to sketch an acceptable graph or such functions, because of their lack of
basic knowledge. Using some elementary calculus, we can know how to
draw the graph of a function locally using some approximations given by, for
example, Taylor’s series with a certain error. In the case of the exponential
function, from elementary calculus, a good approximation near t = 0 is
given by

lim
t→0

et − 1
t

= 1.(1.1)

The expression given in (1.1) allows us to write

et ≈ 1 + t, as t is small enough.(1.2)
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Figure 2: f(t) = et vs r(t) = 1 + t.

The lack of this situation is that we have only a local approximation of
the function f(t) = et, so the graph is restricted just in a neighborhood of
t = 0. Due to this reason, using a such local approximation is not a very
useful method for drawing the exponential function.

Aiming to fill this gap, we will propose a very simple and elementary
numerical scheme for handmade drawings of the Exponential and Logistic
functions using straight lines.

2. Preliminaries

In the following, if x(t) is a function, we denote its derivative by the sym-
bols dx

dt or x
0(t).

Now, we will show the main tools used in this work: first-order ordinary
differential equations with constant coefficients and the Logistic ordinary
differential equation.

2.1. First order ordinary differential equations with constant co-
efficients

The cleric and scholar Thomas R. Malthus claimed that under favorable
conditions, a human population experiences exponential growth. This can
be explained by the differential equation

Marisol Martínez
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x0(t) = ax(t), a ∈ R,(2.1)

where x(t) is the size of the population at time t. It is not hard to see the
exponential nature of x(t). By integrating it on [t0, t], we obtain that

x(t) = x(t0)e
a(t−t0),

where t0 is an initial value for the time t = t0 and x(t0) is the initial
population.

Notice that a is the constant of proportionality or per capita rate of the
population (a = x0/x). In other words, the rate of growth of a population
is directly proportional to its magnitude. It has not only been used for
human populations but for many kinds of living organisms. Many authors
use a as the difference between the per capita rates of birth b and of death
d. So,

x0(t) = (b− d)x(t),

Notice that we can consider that the rate of death is directly propor-
tional to the total population, i.e d = mx(t). Then we get

x0(t) = bx(t)−mx(t)2.

In the following, we study these kinds of equations. If m · x(t) > 0 is
small enough for t in a suitable small interval [t0, t1], we have that (2.2)
can be approximated to

x0(t) ≈ ax(t)

and it would be reasonably expected that its solution satisfies that x(t) ≈
x(t0)e

a(t−t0) for t is in [t0, t1].

In 1838, Pierre Franois Verhulst published the equation

y0(t) = ay(t)− cy(t)2,

where y(t) represents number of individuals at time t, a the rate of growth
and α the density. He called, in 1845, the solution of the equation a Logistic
equation. Subsequently, this equation was popularized by Raymond Pearl

and Lowell Reed this equation with c =
a

K
, where the maximum number

of individuals that the environment can support. So, the logistic equation
is
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y0(t) = ay(t)

µ
1− y(t)

K

¶
.(2.2)

The last equation is called Logistic differential equation, where a,K > 0
for biological reasons. This example will be very important in the rest of
the work.
Before solving the equation (2.2), we deal with

y0(t) = ay(t) + c, a, c ∈ R(2.3)

Using the well-known variation of parameters formula, the solution of
(2.3) is

y(t) = ea(t−t0)y(t0)−
c

a

³
1− e−a(t−t0)

´
.(2.4)

Now, (2.2) corresponds to a differential equation of the family of Bernoulli’s

type. Hence, we make the change of variable of the form u(t) =
1

y(t)
. By

differentiation we have y0(t) = − 1

u2(t)
u0(t). So, by applying the last change

of variables to (2.2), we have

− 1

u2(t)
u0(t)− a

u(t)
+

a

K

1

u2(t)
= 0,

i.e.
u0(t) = −au(t) + a

K
.(2.5)

Notice that (2.5), is a particular case of 2.3. Then we can apply to (2.5)
the constant variation formula (2.4). So,

u(t) = e−a(t−t0)u(t0) +
1

K

³
1− e−a(t−t0)

´
.

For the solution of (2.2), we have

y(t) =
y(t0)Kea(t−t0)

K + y(t0)(ea(t−t0) − 1)
,(2.6)

since y(t) =
1

u(t)
.

When 0 < y(t0) < K, y(t) is an increasing function and y(t) → K as
t→ +∞. In other words, the population grows and it can be so close to K
as we want if t is as large as we need.



1658 Ricardo Torres Naranjo, Samuel Castillo and Manuel Pinto

Particularly, if t0 = 0, a = K = 1, and y(0) = 1/2 we have the Logistic

function g(t) =
et

et + 1
or g(t) =

1

1 + e−t
. Note that g(t) is increasing and

g(t)→ 1 as t → +∞. If we indicate that g(t) is the number of millions of
individuals, y(0) = 500 individuals and the maximum number of individuals
that the environment can support is one million individuals.

For the reader interested in ordinary differential equations, we very
recommend the excellent elementary introductions given by [1] and [2].

2.2. Piecewise constant argument of generalized type

The reader may be familiarized with the function [·], which denotes the
floor or greatest integer function. Most exactly, [t] gives as output the
greatest integer less than or equal to t. This is equivalent to say

[t] = n⇔ n ≤ t < n+ 1, n ∈ Z.

It is not difficult to see that the greatest integer function has jump
discontinuities at Z, the set of integer numbers.
Now, we can see that

[t/h]h = nh⇒ nh ≤ t < (n+ 1)h, ∀n ∈ Z, h > 0,(2.7)

and (2.7) has also jump discontinuities at points {nh : n ∈ Z}. The great-
est integer function is an example of a family of locally constant functions
called piecewise constant functions. More precisely, γ(t) is a piece-
wise constant function, if there are sequences of real numbers (tn)n∈Z and
(ζn)n∈Z such that tn < tn+1 ,∀n ∈ Z, lim

n→±∞
tn = ±∞ and

γ(t) = ζn(t) ∈ [tn(t), tn(t)+1], if t ∈ In(t) =
h
tn(t), tn(t)+1

´
.

In this work, we use the notation n(t) for the unique integer number such
that t ∈ In(t) = [tn(t), tn(t)+1). Below, we will denote n(t) as n, except in
the situations where we need to clarify the dependence of t.

In simple words, γ(t) is a function that is constant in every set of some
family of disjoint intervals (In)n∈Z which cover the field of real numbers;
this is the reason why the use of the name “piecewise constant”; every in-
terval In is a “piece” of R.
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The use of such γ divides every interval In into two parts: an advanced
part and an retarded one with respect to the function f(t) = t, i.e In =
I+n
S
I−n , where

I+n = [tn, ζn] and I−n = [ζn, tn+1).

As we have seen before, γ(t) = [t] has a constant value in every interval
of the form In = [n, n+1). In this case tn = ζn = n and it has discontinuities
at t = n, where n ∈ Z.
Consider now, the step function

γ(t) =

∙
t

h

¸
h+ βh,(2.8)

where β ∈ [0, 1] and h > 0.
This step function is constant, with value γ(t) = (n + β)h in every

interval of the form In(t) = [nh, (n+ 1)h).
If t ∈ In, then

γ (t)− t ≥ 0 ⇔ t ≤ (n+ β)h

γ (t)− t ≤ 0 ⇔ t ≥ (n+ β)h.

So, I+n = [nh, (n+ β)h) and I−n = [(n+ β)h, (n+ 1)h).

Remark 1.

1. If β = 0, then I+n = φ and if β = 1, then I−n = φ.

Figure 3: γ(t) = [t/h]h+ βh with h = 0.5 = β vs f(t) = t.

Marisol Martínez
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Figure 4: Approximation of the identity function by the piecewise
constant argument γ(t) = [t/h]h+ βh with β = 0.5, h = 0.3 and h = 0.6

h=0.6 h=0.3 f(t)=t.

2.3. Differential equations with a piecewise constant argument
(DEPCA)

In the ’70s, the Ukrainian mathematician A.D.Myshkis proposed a new
type of differential equations

x0(t) = f(t, x(t), x(ρ(t)));

where ρ(t) corresponds to particular cases of piecewise constant functions
or deviated arguments as, for example, ρ(t) = [t] (see [3]). These equations
are called Differential Equations with Piecewise Constant Argu-
ments (in short DEPCA). The exhaustive study of this type of equation
began in the ’80s with the works of S. Busenberg and K.L. Cooke. Those
authors worked DEPCA in models of vertically transmitted diseases (see
[3]). Subsequently, new authors applied DEPCA to several branches of
knowledge, for example, ecology, medicine, and engineering (see [5], [6]).
In the 2000s, the also Ukrainian mathematician M.U. Akhmet generalized
the Myshkis’ works by defining the systems

x0(t) = f(t, x(t), x(γ(t))),(2.9)

where γ(t) is a piecewise constant argument of generalized type.
These equations were called Differential Equations with Piecewise Constant

Marisol Martínez
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Argument of Generalized Type (in short DEPCAG). Now, we will give a
definition of a solution of a DEPCAG:

Definition 1. A function x(t) is understood to be a solution of the DE-
PCAG (2.9) if:

(a) x(t) is continuous on R+0 . In particular, x is continuous on every
interval In, ∀n ∈N0.

(b) The derivative
dx

dt
of x exists with the possible exception in t = tn

for n ∈ N0, where the unilateral derivative exists;

(c) On each interval In, the ordinary differential equation

dx

dt
= f(t, x(t), x(ζn))

is satisfied, where γ(t) = ξn, ∀t ∈ In.

DEPCAGs are quite special, since they have continuous solutions, even
though γ(t) is discontinuous. At both ends of each constancy interval of γ,
a recursive law is produced and it defines a finite difference equation. Due
to this attribute, DEPCAGs are also called Hybrid Equations. This means
that they combine discrete and continuous dynamics.

2.3.1. An elementary and illustrative example of DEPCA

Consider the following DEPCA

x0(t) = ax([t]),(2.10)

with a ∈ R. If t ∈ [n, n + 1) for some n ∈ Z, we can rewrite last equation
as

x0(t) = ax(n).(2.11)

For simplicity, we will assume t0 = 0. Then, integrating on [n, n + 1)
from n to t is easy to see that

x(t) = x(n)(1 + a(t− n)).(2.12)

Assuming continuity at t = n+ 1 we can see that

x(n+ 1) = (1 + a)x(n).
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This is a so-called finite-difference equation. It also can be easily solved by
simple induction getting

x(n) = (1 + a)nx(0).(2.13)

Now, we can replace (2.13) in (2.12) in order to solve it. Hence we have

x(t) = (1 + a)[t](1 + a(t− [t]))x(0).(2.14)

From (2.14) taking into account, for example, |1+a| < 1, we can deduce
the behavior of the solutions. The case a = −1 is left as an exercise.
Interested readers in Difference equations can see the excellent book [7]
and for DEPCA we recommend [8, 9].

Behavior of solutions Condition

x(t)→ 0 exponentially as t→ +∞ −2 < a < 0
x(t)→ 0 exponentially and oscillatory as t→ +∞ −2 < a < −1

x(t) is oscillatory a < −1
x(t) is periodic a = −2

x(t) = x(0) is constant a = 0
x(t)→ +∞ exponentially as t→ +∞ a > 0
x(t)→ +∞ exponentially as t→ +∞ −2 6= a < −1, t = 2n, n ∈ Z.
x(t)→ −∞ exponentially as t→ +∞ −2 6= a < −1, t = 2n+ 1, n ∈ Z.

Table 2.1: Behavior of solutions of (2.14)
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Figure 5: Solution of (2.14) with a = −1.8.

2.4. Approximation of solutions of differential equations

A simple and natural question arises at this moment: what happens if we
can not solve a differential equation? If there is no known method for
solving it, we can construct approximations of the solutions. This is the
starting point of the motivation for this work.

The next step is to replace the original equation with a simpler equa-
tion that involves only arithmetic operations. In this way, we can obtain
an approximate solution by means of paper-and-pencil calculations, with a
slide rule.

Consider now the following ordinary differential equation

x0(t) = g(t, x(t)), x(τ) = x0(2.15)

Finding an explicit solution x(t) for (2.15) is, in general, an impossible
task. This is the starting point for approximating solutions of differential
equations like (2.15).
An amazing idea was conceived by L. Euler known as Euler’s Polygonal
Paths, published in his work called Institutiones calculi integralis (1768-
1770).
Euler proposed the following approximation scheme for the solution of
(2.15):

Marisol Martínez
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ϕ (τ) = x0,

ϕ(t) = ϕ(tk) + g(tk, ϕ(tk))(t− tk),(2.16)

tk ≤ t ≤ tk+1, k = 1, 2, . . . n− 1, ∀t ∈ [t0, tn], τ = t0,

or its discrete version

ϕ (τ) = x0,
ϕ(tk+1) = ϕ(tk) + g(tk, ϕ(tk))(tk+1 − tk),
tk ≤ t ≤ tk+1, k = 1, 2, . . . n− 1, ∀tk ∈ [t0, tn], τ = t0.
(2.17)

For more details, the reader can see the first pages of [10]).

2.4.1. A useful property about the approximating piecewise con-
stant argument

Next, we will illustrate the importance of the piecewise constant argument
defined in (2.8):

γ(t) =

∙
t

h

¸
h+ βh, h > 0, β ∈ [0, 1].

It has the very interesting property∙
t

h

¸
h+ βh→ t, uniformly as h→ 0.

In fact, ¯̄̄̄
t−

µ∙
t

h

¸
h+ βh

¶¯̄̄̄
= |t− (k + β)h| < (1− β)h

if t ∈ Ik = [kh, (k + 1)h]. Hence

lim
h→0

|t− γ(t)| = 0.

Let the case when β = 0. Following the idea of Euler, we consider the
following DEPCA:

x0 = g ([t/h]h, x ([t/h]h)) , t ∈ [nh, (n+ 1)h),(2.18)

x0 = x(nh),
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where n ∈ Z and h > 0 is fixed. h is known as discretization.
If t ∈ In = [nh, (n+ 1)h], we have that (2.18) can be rewritten as

x0(t) = g (nh, x(nh)) .

Integrating the last expression on In we have

x(t) = x(nh) + g (nh, x(nh)) (t− nh).(2.19)

Finally, assuming continuity at t = (n+ 1)h we get

x((n+ 1)h) = x(nh) + hg (nh, x(nh)) .(2.20)

Remark 2. DEPCA equation (2.18) can be considered as an approxima-
tion for solutions of (2.15), recovering the scheme proposed by Euler in
(2.16) and (2.17). Notice the similarity between (2.16)-(2.17) and (2.19)-
(2.20). This is a very remarkable fact. Hence, the piecewise constant
argument can be used widely in approximation theory.

2.4.2. Some new approximation schemes using γ(t) = [t/h]h+ βh

In general, by using γ(t) as defined on (2.8), we can construct the following
approximating system

ϕ0 = f ([t/h]h+ βh, ϕ ([t/h]h+ βh)) , t ∈ [nh, (n+ 1)h)

I.e, if t ∈ [nh, (n+ 1)h[, we have

ϕ0(t) = f ((n+ β)h, ϕ ((n+ β)h)) , t ∈ [nh, (n+ 1)h).(2.21)

Integrating over the advanced and delayed intervals, we have that for
t ∈ I+n = [nh, (n+ β)h)

ϕ(t) = ϕ(nh) + (t− nh)f ((n+ β)h, ϕ ((n+ β)h)) ,

Applying continuity at t = (n+ β)h we have

ϕ((n+ β)h) = ϕ(nh) + (βh)f ((n+ β)h, ϕ ((n+ β)h)) ,(2.22)

In the same way for the delayed interval, I.e t ∈ I−n = t ∈ [(n +
β)h, (n+ 1)h),

ϕ(t) = ϕ((n+ β)h) + (t− (n+ β)h)f ((n+ β)h,ϕ ((n+ β)h))
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Applying, again, continuity at t = (n+ 1)h

ϕ((n+1)h) = ϕ((n+β)h)+((1−β)h)f ((n+ β)h,ϕ ((n+ β)h)) .
(2.23)

Using (2.22) in (2.23) we have

ϕ((n+ 1)h) = ϕ(nh) + hf ((n+ β)h, ϕ ((n+ β)h)) .

The last expression allows us to construct several numerical approximation
schemes for (2.15).

The interested reader in the approximation of solutions using piecewise
constant arguments can see [11].

3. Main results

3.1. A model for drawing the Exponential function using straight
lines

Let the following homogeneous linear differential equation

x0(t) = ax(t)(3.1)

The function f(t) = eat is the only solution of the differential equation

x0(t) = ax(t), a ∈ R, x(0) = 1.(3.2)

Hence, any numerical scheme for solving (3.2) will approximate with
certain accuracy eat.
Consider now the DEPCA

x0h(t) = axh
¡£ t

h

¤
h+ hβ

¢
(3.3)

where h > 0, a 6= 0 and β ∈ [0, 1].

Here, In = [nh, (n+ β)h], I+n = [nh, (n+ β)h] and I−n = [(n+ β)h, (n+
1)h].

It seems very reasonable to think about a close relationship between

solutions of (3.2) and (3.3), because t −
µ∙

t

h

¸
h+ βh

¶
→ 0, as h → 0. I,e
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we can wonder if the solutions of (3.2) are approximated by the solutions
of (3.3) :

x0h(t) = axh

µ∙
t

h

¸
h+ hβ

¶
→ x0(t) = ax, as h→ 0.

In the following, actually, we will show that the solutions of (3.1) can be
approximated by the solutions of the DEPCA (3.3).

I.e, we will show that

µ
1 + (1− β)ha

1− βha

¶[ th ]
≈ eat(1 + ha)(3.4)

when h > 0 is small.

The proposed scheme for drawing the function f(t) = eat with pencil-
and-paper is given by the following theorem:

Theorem 1. Let h > 0, β ∈ [0, 1], a ∈ R and

1− βha 6= 0, 1 + (1− β)ha 6= 0.(3.5)

Then, the function f(t) = eat can be discretely approximated by

xh(nh) =

µ
1 + (1− β)ha

1− βha

¶n−n0
xh(n0h), n0 =

£ t0
h

¤
.(3.6)

for all t ∈ {nh : n ∈ Z}.
Moreover, the continuous approximation for all t ∈ [t0,∞) is given by

xh(t) =

Ã
1 +

a
¡
t−

£ t
h

¤
h
¢

1− βha

!µ
1 + (1− β)ha

1− βha

¶[ th ]−£ t0h ¤
xh(n0h),(3.7)

Proof. In the following, we will solve (3.3) in order to prove the theorem.
First, integrating (3.3) on t ∈ I+n = [nh, (n+ β)h] we get

xh(t) = xh(nh) + a(t− nh)xh((n+ β)h).(3.8)

Assuming continuity at t = (n+ β)h we have

xh((n+ β)h) = xh(nh) + aβh · xh((n+ β)h).
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Then, if 1− βha 6= 0, we have

xh((n+ β)h) =

µ
1

1− βha

¶
xh(nh).(3.9)

Now, analogously for t ∈ I−n = [(n+ β)h, (n+ 1)h] we get
xh(t) = xh((n+ β)h) + (t− (n+ β)h)a · xh((n+ β)h).
Assuming continuity at t = (n+ 1)h we have
xh((n+ 1)h) = xh((n+ β)h) + (1− β)ha · xh((n+ β)h).

I.e
xh((n+ 1)h) = (1 + (1− β)ha)xh((n+ β)h).

Again, if 1 + (1− β)ha 6= 0 we have

xh((n+ β)h) =

µ
1

1 + (1− β)ha

¶
xh((n+ 1)h).(3.10)

Now, by (3.9) and (3.10) we conclude that

xh((n+ 1)h) =

µ
1 + (1− β)ha

1− βha

¶
xh(nh).(3.11)

Hence, we obtained a finite-differences equation, where

xh(nh) =

µ
1 + (1− β)ha

1− βha

¶n−n0
xh(n0h), n0 =

£ t0
h

¤
.(3.12)

The last expression corresponds to the discrete solution of (3.3).
Finally, applying (3.9),(3.12) in (3.8) we have

xh(t) =

Ã
1 +

a
¡
t−

£ t
h

¤
h
¢

1− βha

!µ
1 + (1− β)ha

1− βha

¶[ th ]−£ t0h ¤
xh(n0h),(3.13)

with h > 0, β ∈ [0, 1] and

1− βha 6= 0, 1 + (1− β)ha 6= 0.(3.14)

The expressions given in (1.1) and (1.2) allow us to write

e−aβh ≈ 1− aβh⇒ eaβh ≈ 1

1− βah
, e(1−β)ah ≈ 1 + (1− β)ah.

Keeping in mind the solution of (3.3), it easy to see thatµ
1 + (1− β)ha

1− βha

¶[ th ]
≈
³
eaβhe(1−β)ah

´[ th ] = eaβ[
t
h ]he(1−β)a[

t
h ]h.
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for every fixed value of t.
Hence, the expression µ

1 + (1− β)ha

1− βha

¶[ th ]
which corresponds to the solution of (3.3) naturally approximates the solu-
tion of (3.1) uniformly on [0,∞). The last fact and the error of convergence
can be seen as follows:

¯̄̄̄
¯̄eat − µ1 + (1− β)ha

1− βha

¶[ th ] ¯̄̄̄¯̄ ≈ ¯̄̄
eat − eaβ[

t
h ]he(1−β)a[

t
h ]h
¯̄̄
=
¯̄̄
eat − ea[

t
h ]h
¯̄̄
=

eat
¯̄̄
1− e−a(t−[

t
h ]h)

¯̄̄
≈ eat

¯̄̄̄
1−

µ
1− a

µ
t−

∙
t

h

¸
h

¶¶¯̄̄̄
≈

eat|a|h

(3.15)

for a fixed value of t, where
¯̄
t−

£
t
h

¤
h
¯̄
= |t−nh| < (n+1)h−nh = h, t ∈

[nh, (n+ 1)h). 2
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Figure 6: Approximation of the solutions of (3.3) by solutions of system
(3.1) with β = 0, a = 0.1 and h = 0.6

Approximating system (3.3) Approximated system (3.1).

Remark 3. As we have seen, the stability of the linear approximated sys-
tem (represented by the coefficient a ∈ R in (3.2)) is very important in
order to approximate the solutions uniformly in terms of the parameter
h > 0 for t ∈ [t0,∞[, because the error of approximation grows exponen-
tially if a > 0. Nevertheless, if a ≤ 0 or a = a(t) ∈ L1[t0,∞[1, we have
uniform approximation over [t0,∞[ .

Remark 4. Conditions given by (3.5) correspond to a particular case of
more general existence conditions for linear DEPCA (see [9]). In our case,
they are always satisfied with h > 0 small enough.

As our main results, next, we will give the numerical scheme to draw
the graph of the Exponential function f(t) = et with a pencil and a ruler
using straight lines:

Corollary 1. Let h > 0, β ∈ [0, 1], a ∈ R and 1− βh 6= 0.
Then, the function f(t) = et can be discretely approximated, for t ≥ 0, by

xh(nh) =

µ
1 + (1− β)h

1− βh

¶n
,

1The space of all absolutely integrable real valued functions f defined on [t0,∞). I.e

such that satisfy

Z ∞

t0

|f(s)|ds <∞.

Marisol Martínez
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for all {nh : n ∈N}, where xh(0) = 1.
Moreover, the continuous approximation for all t ∈ [0,∞) is given by

xh(t) =

Ã
1 +

¡
t−

£
t
h

¤
h
¢

1− βh

!µ
1 + (1− β)h

1− βh

¶[ th ]
.

In simple words, we can draw in accuracy and an elementary way the
graph of f(t) = et on [t0,∞) joining every point of the following expression
end-to-end by a straight line:

xh(nh) =

µ
1 + (1− β)h

1− βh

¶n−n0
xh(n0h), where n0 =

£ t0
h

¤
, n =

£
t
h

¤
and

x(n0h) = en0h.

Remark 5. Also, from the last expression we can recover some classical
discrete numerical schemes of approximation of f(t) = et for all t ∈ [t0,∞)
using some values of β:

1. β = 0 (Euler’s classical delayed scheme):

xh(nh) = (1 + h)n−n0 xh(n0h),(3.16)

2. β = 1 (Euler’s classical advanced scheme):

xh(nh) =

µ
1

1− h

¶n−n0
xh(n0h),

3. β = 1
2 (Trapezoidal classical scheme):

xh(nh) =

Ã
1 + h

2

1− h
2

!n−n0
xh(n0h),

where n0 =
£ t0
h

¤
, n =

£ t
h

¤
and x(n0h) = en0h.
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Figure 7: Approximations of f(t) = et with h = 0.87 and a = 1.
Euler delayed scheme f(t) = et, Euler advanced scheme trapezoidal

scheme.

Remark 6. By (3.15), we can see that if a < 0, we have a uniform ap-
proximation over the entire semiaxes [t0,∞). The parameters h and a are
very useful in order to get a good approximation because in this case, the
approximation will depend on the time and the smallness of the parameter
h.
On the other hand, if a > 0 the approximation obtained is very robust and,
for practical uses, is very useful, despite the fact that it will not converge
uniformly over the entire semiaxes [t0,∞), due to the exponential growth
of the error of approximation.

3.2. A model for drawing the Logistic function using straight lines

In the following, we will conclude a way for drawing by pencil-and-ruler the
Logistic function g(t) = 1

1+e−t which is a solution of the logistic differential
equation (2.2).

3.2.1. The construction of the handmade graph of the Logistic
function

Now, we are going to present one of our main results concerning the approx-
imation of solutions of (2.2) (i.e an approximation of (2.6)) using DEPCA:

Marisol Martínez
f-4
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u0h(t) = −auh
µ∙

t

h

¸
h+ βh

¶
+

a

K
.(3.17)

Theorem 2. Let h > 0, β ∈ [0, 1], a ∈ R+ and

1 + aβh 6= 0.(3.18)

Then, the Logistic function (2.6) can be discretely approximated by

yh(nh) =
1

uh(nh)
, where

uh(nh) =

µ
1− a(1− β)h

1 + aβh

¶n−n0
uh(n0h)+

1

K

Ã
1−

µ
1− a(1− β)h

1 + aβh

¶n−n0!
.

(3.19)

with n ∈ Z+. Moreover, the continuous approximation for all t ∈ [0,∞) is
given by yh(t) =

1

uh(t)
, where

uh(t) =

µ
1 + aβh− a(t− [t/h]h)

1 + aβh

¶µ
1− a(1− β)h

1 + aβh

¶[t/h]−[t0/h]
uh([t0/h]h)

+
1

K

µ
1 + aβh− a(t− [t/h]h)

1 + aβh

¶Ã
1−

µ
1− a(1− β)h

1 + aβh

¶[t/h]−[t0/h]!

+
1

K

µ
a(t− [t/h]h)
1 + aβh

¶
.(3.20)

Proof. If t ∈ In = [nh, (n+ 1)h[, (3.17) can be rewritten as

u0h(t) = −auh ((n+ β)h) +
a

K
.(3.21)

Integrating last expression on t ∈ I+n = [nh, (n+ β)h], we get

uh(t) = −a(t− nh)uh((n+ β)h) + u(nh) +
a

K
(t− nh).(3.22)

Now, assuming continuity at t = (n+ β)h we have

uh((n+ β)h) = −aβhuh((n+ β)h) + u(nh) +
aβh

K
.

Next, as (3.18) holds, we have
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uh((n+ β)h) =

µ
1

1 + aβh

¶µ
uh(nh) +

aβh

K

¶
(3.23)

Similarly, integrating (3.21) over I−n = [(n+ β)h, (n+ 1)h[ we have

uh(t) = (1− a(t− (n+ β)h))uh((n+ β)h) +
a

K
(t− (n+ β)h).

Assuming again continuity at t = (n+ 1)h, we have

uh((n+ 1)h) = (1− a(1− β)h)uh((n+ β)h) +
a

K
(1− β)h.

Applying (3.23) in last equation we get

uh((n+ 1)h) =

µ
1− a(1− β)h

1 + aβh

¶
uh(nh) +

ah

K(1 + aβh)
.(3.24)

By induction, it is easy to see that the solution of the last finite differ-
ence equation is

uh(nh) =

µ
1− a(1− β)h

1 + aβh

¶n−n0
uh(n0h) +

1

K

Ã
1−

µ
1− a(1− β)h

1 + aβh

¶n−n0!
.

Now, applying (3.23) in (3.22) we get

uh(t) =

µ
1− a(t− nh)

1 + aβh

¶
uh(nh) +

1

K

µ
a(t− nh)

1 + aβh

¶
Hence, applying (3.25) to last expression and considering nh = [t/h]h,

we get

uh(t) =

µ
1 + aβh− a(t− [t/h]h)

1 + aβh

¶µ
1− a(1− β)h

1 + aβh

¶[t/h]−[t0/h]
uh(n0h)

+
1

K

µ
1 + aβh− a(t− [t/h]h)

1 + aβh

¶Ã
1−

µ
1− a(1− β)h

1 + aβh

¶[t/h]−[t0/h]!

+
1

K

µ
a(t− [t/h]h)
1 + aβh

¶
,(3.25)

Finally, in view of the following estimations
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µ
1− a(1− β)h

1 + aβh

¶[t/h]
≈ e−a(1−β)[t/h]he−aβ[t/h]h

= e−a[t/h]h → e−at as h→ 0,µ
1 + aβh− a (t− [t/h]h)

1 + aβh

¶
≈ eaβh−a(t−[t/h]h)e−aβh

= e−a(t−[t/h]h) → 1 as h→ 0,
1

K(1 + aβh)

µ
t−

∙
t

h

¸
h

¶
≈ 1

K
e−aβhh→ 0 as h→ 0,(3.26)

1−
µ
1− a(1− β)h

1 + aβh

¶[t/h]
≈ 1− e−a[

t
h ]h → 1− e−at as h→ 0,(3.27)

by (3.28), comparing (3.26) with (2.6),

we have

|u(t)− uh(t)|→ 0 as h→ 0 uniformly in t.

2

Finally, we can give the numerical scheme to draw the graph of the
Logistic function g(t) = 1/(1+e−t) with a pencil and a ruler using straight
lines:

Corollary 2. Let (2.6) with a = 1, K = 1, t0 = 0, y(0) = 1/2 and
β = [0, 1]. From (3.20) we define the following numerical scheme of ap-

proximation of g(t) =
1

1 + e−t
for t ∈ [0,∞) considering yh(t) = 1/uh(t)

and uh(0) = 2, where

uh(t) =

µ
1 + βh− (t− [t/h]h)

1 + βh

¶µ
1− (1− β)h

1 + βh

¶[t/h]
uh(0)

+

µ
1 + βh− (t− [t/h]h)

1 + βh

¶Ã
1−

µ
1− (1− β)h

1 + βh

¶[t/h]!

+

µ
(t− [t/h]h)
1 + βh

¶
,(3.28)

or

uh(nh) =

µ
1− (1− β)h

1 + βh

¶n−n0
uh(n0h) +

Ã
1−

µ
1− (1− β)h

1 + βh

¶n−n0!
.
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In simple words, we can draw in accuracy and an elementary way
the graph of g(t) = 1/(1 + e−t) on [t0,∞) joining every point of uh(nh)
end-to-end by a straight line, where n0 =

£ t0
h

¤
, n =

£ t
h

¤
and uh(n0h) =

1

(1/(1 + e−n0h))
= 1 + e−n0h.

Remark 7. Also, from the last expression we can recover some classical
discrete numerical schemes of approximation of g(t) = 1/(1 + e−t) for all
t ∈ [t0,∞) using some values of β:

1. β = 0 (Euler’s classical delayed scheme):

uh(nh) = (1− h)n−n0 uh(n0h) +
³
1− (1− h)n−n0

´
.

2. β = 1 (Euler’s classical advanced scheme):

uh(nh) =

µ
1

1 + h

¶n−n0
uh(n0h) +

Ã
1−

µ
1

1 + h

¶n−n0!
.

3. β = 1/2 (Trapezoidal classical scheme):

uh(nh) =

Ã
1− h

2

1 + h
2

!n−n0
uh(n0h) +

⎛⎝1−Ã1− h
2

1 + h
2

!n−n0
⎞⎠ ,

where n0 =
£ t0
h

¤
, n =

£
t
h

¤
and uh(n0h) =

1

1/(1 + e−n0h)
= 1 + e−n0h.
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Figure 8: Solution of (2.2) approximated by solutions of (3.20) with
β = 0.8, a = 1, y(0) = 0.5, K = 1 and h = 0.55

Approximating system (3.20) Approximated system (2.2).

4. A simple approximation scheme for r(t) = e−t
2
.

In this last and additional section, we will show a drawing scheme for
r(t) = e−t

2
.

Consider the non-autonomous first-order ordinary differential equation

x0(t) = −2tx(t).(4.1)

The last equation is very simple to solve. In fact, it belongs to the

variable separable family. Assuming that x(t) 6= 0,∀t ∈ R, we have x
0(t)

x(t)
=

−2t. Integrating last expression in s ∈ [t0, t], we getZ t

t0

x0(s)

x(s)
ds = −2

Z t

t0
sds.

Then, easily we have ln

µ
x(t)

x(t0)

¶
= −(t2 − t20). Hence, the solution of (4.1)

is

Marisol Martínez
f-8
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x(t) = Ke−t
2
, K = x(t0)e

t20 .(4.2)

If we consider x(t0) = 1 and t0 = 0, we get the famous Gaussian func-
tion r(t) = e−t

2
. As done before, we will approximate the solution of (4.1)

with γ(t) considered in (2.8) in order to get a scheme for drawing its graph
by straight lines.

Let the following DEPCA

z0h(t) = −2t zh
¡£

t
h

¤
h+ βh

¢
.(4.3)

If t ∈ [nh, (n+ 1)h), the last expression can be rewritten as

z0h(t) = −2t zh ((n+ β)h) .

By integrating for t ∈ I+n = [nh, (n+ β)h) we get

zh(t) = zh(nh)(1− (t2 − (nh)2)).(4.4)

Assuming continuity at t = (n+ β)h we get

zh((n+ β)h) = zh(nh)(1− βh2(2n+ β)).(4.5)

Now, integrating (4.3) for t ∈ I−n = [(n+ β)h, (n+ 1)h) we get

zh(t) = zh((n+ β)h)(1− (t2 − ((n+ β)h)2)).

Again, assuming continuity at t = (n+ 1)h we get

zh((n+ 1)h) = zh((n+ β)h)(1− (1− β)h2(2n+ 1 + β)).(4.6)

Replacing (4.5) in (4.6) we get

zh((n+1)h) = zh(nh)(1−βh2(2n+β))(1−(1−β)h2(2n+1+β)).
(4.7)

The solution of the last finite-differences equation is

zh(nh) =

⎛⎝n−1Y
i=n0

(1− βh2(2i+ β))(1− (1− β)h2(2i+ 1 + β))

⎞⎠ zh(n0h).

(4.8)
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This expression corresponds to a non-autonomous finite-difference equa-
tion (see [7]). Applying (4.8) in (4.4) we have

zh(t) =

⎛⎝[t/h]−1Y
n=n0

(1− βh2(2i+ β))(1− (1− β)h2(2i+ 1 + β))

⎞⎠
·
³
1−

³
t2 −

¡£
t
h

¤
h
¢2´´

zh(n0h).(4.9)

where n =
£
t
h

¤
, n0 =

£ t0
h

¤
and zh(n0h) = e−(n0h)

2
. Hence, if we consider

t0 = 0 and zh(0) = 1, we get a drawing scheme for r(t) = e−t
2
for t ∈ [0,∞):

zh(t) =

⎛⎝[t/h]−1Y
n=0

(1− βh2(2i+ β))(1− (1− β)h2(2i+ 1 + β))

⎞⎠
·
³
1−

³
t2 −

¡£ t
h

¤
h
¢2´´

.(4.10)

Finally, using (4.9) with t0 = −3 and β = 0 we present the scheme for
r(t) = e−t

2
:

Figure 9: Drawing scheme using h = 0.0011.

Drawing scheme (4.10) Solution of (4.2).

Marisol Martínez
f-9
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Remark 8. 1. The case β = 0 shows a very simple discrete scheme of
approximation (Euler’s classical delayed scheme):

zh(nh) =

Ã
n−1Y
i=0

(1− h2(2i+ 1))

!
.

2. The drawing scheme presented corresponds to a uniform approxima-
tion of the solution of (4.2) for all t ∈ [t0,∞) due to the asymptotic
behavior of this function.

3. The rate of approximation is slower than the others examples pre-
sented in this work. This is because a term t2 has to be defeated by
([t/h]h)2. Hence, very small values of h must be considered to sketch
a good graph.

4. If we put our attention now on (4.8) with β = 0, h = 1/1000 and
recalling that

1√
π

Z ∞
−∞

e−x
2
dx = 1;

Z 3

−3
e−t

2
dt = 2

Z 3

0
e−t

2
dt,

we compute the following estimation 2Z 3

−3
e−t

2
dt − 2

Z 3

0

⎛⎝[t/0.001]−1Y
n=0

(1− 0.0012(2n+ 1))

⎞⎠³
1−

³
t2 −

¡£ t
0.001

¤
0.001

¢2´´
dt

≈ 0.000665727.
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