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Abstract

In this paper we investigate the Hyers-Ulam-Rassias stability of a
perturbed nonlinear second order ordinary differential equation using
Gronwall-Bellman-Bihari type integral inequalities. Further, the pa-
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cases of a perturbed nonlinear second order differential equation.
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1. Introduction

There has been continuous interest in the investigation of Hyers-Ulam sta-
bility of both linear and nonlinear ordinary differential equations since Ulam
[26] started with the stability of functional equation in 1940 during his talk
before a mathematical colloquium at the University of Wincosin, Maidison.
Hyers continued where Ulam stopped and extended his result to investigate
Hyers-Ulam stability [8], which was later extended again to Hyers-Ulam-
Rassias stability by Rassias [21] in 1978. In these articles [1, 7, 10, 11, 12,
13, 14, 15, 16, 25, 27] researchers investigated the Hyers-Ulam stability of
linear differential equations, while in [2, 4, 5, 6, 17, 18, 19, 20, 23, 24, 22] oth-
ers considered Hyers-Ulam stability of nonlinear differential equations. In
this paper we investigate the Hyers-Ulam-Rassias stability of the following
nonlinear second order ordinary differential equation which are perturbed
and of the form:£
r(t)φ(u(t))u0(t)

¤0
+g(t, u(t), u0(t))u0(t)+α(t)h(u(t)) = p(t, u(t), u0(t)), ∀t > 0

(1.1)
with the initial conditions:

u(t0) = u0(t0) = 0,(1.2)

where r, α, φ, : R+ → R+, g, p : R+ ×R2 → R are continuous functions.
The four variants of equation (1.1) considered are as follows:

i p(t, u(t), u0(t)) = g(t, u(t), u0(t)),

ii p(t, u(t), u0(t)) 6= g(t, u(t), u0(t)),

iii g(t, u(t), u0(t)) = 0,

iv p(t, u(t), u0(t)) = 0,

and they are new in the literature. The result obtained extends the previous
results by other researchers.

2. Preliminary

The following definitions, lemma and theorems are necessary for subsequent
proofs.
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Definition 1. Equation (1.1) has Hyers-Ulam-Rassias stability, if there
exists a positive constant Cϕ and a positive function ϕ : R+ → R+ with
the following property: for every solution u(t) ∈ C2(R+), of¯̄̄£
r(t)φ(u(t))u0(t)

¤0
+ g(t, u(t), u0(t))u0(t) + α(t)h(u(t))− p(t, u(t), u0(t))

¯̄̄
≤ ϕ(t)

(2.1)
satisfying the initial condition (1.2), so that we can find a solution u0(t) ∈
C2(R+) of the equation (1.1), such that

|u(t)− u0(t)| ≤ Cϕϕ(t)(2.2)

where Cϕ is independent of ϕ(t) and u(t).

Definition 2. A function ω : [0,∞) → [0,∞) is said to belong to a class
S if

i ω(u) is nondecreasing and continuous for u ≥ 0,

ii (1v )ω(u) ≤ ω(uv ) for all u and v ≥ 1,

iii there exist a function φ, continuous on [0,∞) with ω(αu) ≤ φ(α)ω(u)
for α ≥ 0.

Theorem 1. [3]Let

i u(t), r(t), h(t) : R+ → R+ and be continuous,

ii f, ω ∈ S,

If

u(t) ≤ K +

Z t

t0
r(s)f(u(s))ds+

Z t

t0
h(s)ω(u(s))ds,(2.3)

then

u(t) ≤ Ω−1
µ
Ω(K) +

Z t

t0
h(s)ω

³
F−1 (F (1)

+

Z s

t0
r(δ)dδ

¶¶
ds

¶
F−1

µ
F (1) +

Z t

t0
r(s)ds

¶
, t ∈ R+(2.4)

where (0, b) ⊂ (0,∞),

F (u) =

Z u

u0

ds

β(s)
, 0 < u0 ≤ u(2.5)
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and

Ω(u) =

Z u

u0

dt

ω(t)
, 0 < u0 < u(2.6)

for F−1, Ω−1 inverses of F, Ω respectively and t is in the subinterval (0, b) ∈
R+, so that

F (1) +

Z t

t0
r(s)ds ∈ Dom(F−1)(2.7)

and

Ω(K) +

Z t

t0
h(s)ω

µ
exp

µZ s

t0
r(δ)dδ

¶¶
ds ∈ Dom(Ω−1).(2.8)

Lemma 1. [9]Let r(t) be an integrable function, then the n-successive in-
tegration of r over the interval [t0, t] is given byZ t

t0
. . .

Z t

t0
r(s)dsn =

1

(n− 1)!

Z t

t0
(t− s)n−1r(s)ds.(2.9)

3. Nonlinear Integral Inequalities

In this section, we will exhibit the development of Gronwall-Bellman-Bihari
type inequalities for our results.

Theorem 1. Let u, r, h be defined as in Theorem 1 and p(t), ω(u), f(u) be
nonnegative, monotonic, nondecreasing, continuous functions on R+ and
ω(u) be submultiplicative for u > 0.
If

u(t) ≤ p(t) +A

Z t

t0
r(s)f(u(s))ds+B

Z t

t0
h(s)ω(u(s))ds,(3.1)

for positive constants A and B, then

u(t) ≤ p(t)T (t)E(t),(3.2)

where

T (t) = Ω−1
µ
Ω(1) +B

Z t

t0
h(s)ω (E(s)) ds

¶
,

E(t) = F−1
µ
F (1) +A

Z t

t0
r(s)ds

¶
t ∈ R+,
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with Ω and F as defined in equation (2.5) and (2.6) respectively and F−1,
Ω−1 the inverses of F, Ω respectively for t in the subinterval (0, b) ⊂ R+ so
that

F (1) +A

Z t

t0
r(s)ds ∈ Dom(F−1)(3.3)

and

Ω(1) +B

Z t

t0
h(s)ω (E(s)) ds ∈ Dom(Ω−1).(3.4)

Proof. Since p(t) is nonnegative, monotonic, nondecreasing onR+, with
ω ∈ S, we then write equation (3.1) as

u(t)

p(t)
≤ 1 +A

Z t

t0
r(s)f

µ
u(s)

p(t)

¶
ds+B

Z t

t0
h(s)ω

µ
u(s)

p(t)

¶
ds.(3.5)

Setting
u(t)

p(t)
= z(t)(3.6)

and using equation (3.6) in equation (3.5) we obtain

z(t) ≤ 1 +A

Z t

t0
r(s)z(s)ds+B

Z t

t0
h(s)ω(z(s))ds.(3.7)

Applying Theorem 1 to equation (3.7), for K = 1, we arrive at

z(t) ≤ T (t)E(t).(3.8)

Substituting equation (3.6) into equation (3.8), we then arrive at the
result (3.2). 2

The next result is an extension of the result in Theorem 1.

Theorem 2. Let u, r, h, g and b be as in Theorem 1 and ω(u), f(u), γ(u)
be nonnegative, monotonic, nondecreasing continuous functions. Let γ(u)
be submultiplicative for u > 0. If

u(t) ≤ K+A

Z t

t0
r(s)f(u(s))ds+B

Z t

t0
h(s)ω(u(s))ds+L

Z t

t0
g(s)γ(u(s))ds,

(3.9)



1162 Ilesanmi Fakunle and Peter Olutola Arawomo

for positive constants K, A, B and L and t ∈ R+, then

u(t) ≤ G−1
∙
G(K) + L

Z t

t0
g(s)γ [T (s)E(s)] ds

¸
T (t)E(t),(3.10)

where T (t) and E(t) are as defined in Theorem 1, Ω and F are as defined
in Theorem 2.1. For

G(r) =

Z t

t0

ds

γ(s)
, 0 < r0 ≤ r,

F−1, Ω−1 and G−1 inverses of F, Ω, G respectively with t in the subinter-
val (0, b) ⊂ (R+), so that

G(K) + L

Z t

t0
g(s)γ [T (s)E(s)] ds ∈ Dom(G−1).

Proof. Define

n(t) = K + L

Z t

t0
g(s)γ(u(s))ds, t ∈ R+.(3.11)

We re-write (3.9) as

u(t) ≤ n(t) +A

Z t

t0
r(s)f(u(s))ds+B

Z t

t0
h(s)ω(u(s))ds.

Since, n(t) is monotonic, nondecreasing on R+ by applying Theorem 1, we
have

u(t) ≤ n(t)T (t)E(t).

Hence,
γ(u(t)) ≤ γ [n(t)T (t)E(t)] , t ∈ I.

Since γ(u) is submultiplicative, we have

γ(u(t)) ≤ γ(n(t))γ [T (t)E(t)]

and it follows that
γ(u(t))

γ(n(t))
≤ γ [T (t)E(t)] .

For L, g(t) > 0, we get

γ(u(t))

γ(n(t))
Lg(t) ≤ Lg(t)γ [T (t)E(t)] .(3.12)
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Using (3.12) gives

dG(n(t))

dt
≤ Lg(t)γ [T (t)E(t)] .(3.13)

Integrating (3.13), yields

G(n(t)) ≤ G(n(t0)) + L

Z t

t0
g(s)γ [T (s)E(s)] ds,

and using (3.11) we have

G(n(t)) ≤ G(K) + L

Z t

t0
g(s)γ [T (s)E(s)] ds.

Hence,

n(t) ≤ G−1
∙
G(K) + L

Z t

t0
g(s)γ [T (s)E(s)] ds

¸
.(3.14)

Substituting for n(t) in (3.14) we arrive at the result in (3.10). 2

Theorem 3. Let u, r, h, g, β and b be as in Theorem 1 and ω(u), f(u), γ(u)
be nonnegative, monotonic, nondecreasing continuous functions. Let γ(u)
be submultiplicative for u > 0. If

u(t) ≤ β(t)+A

Z t

t0
r(s)f(u(s))ds+B

Z t

t0
h(s)ω(u(s))ds+L

Z t

t0
g(s)γ(u(s))ds,

(3.15)

for positive constants: K, A, B and L, then

u(t) ≤ β(t)G−1
∙
G(K) + L

Z t

t0
g(s)γ [T (s)E(s)] ds

¸
T (t)E(t),(3.16)

where T (t) and E(t) are defined in Theorem 1, F and Ω are defined in
Theorem 1 and G(r) is given in (3.11), further more, F−1, Ω−1 and G−1 are
the inverses of F, Ω, and G respectively, t is in the subinterval (0, b) ∈ (I).
So that

G(K) + L

Z t

t0
g(s)γ [T (s)E(s)] ds ∈ Dom(G−1).
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Proof. Since β(t) is a monotonic, nondecreasing and nonnegative con-
tinuous function, we rewrite equation (3.15) as:

u(t)

β(t)
≤ 1+A

Z t

t0
r(s)f(

u(s)

β(s)
)ds+B

Z t

t0
h(s)ω(

u(s)

β(s)
)ds+L

Z t

t0
g(s)γ(

u(s)

β(s)
)ds.

(3.17)

Equation (3.17) is in the form of equation (3.9). Therefore, by carefully
following the proof of Theorem 3.2, we arrive at the result in (3.16). 2

4. Application of Integral Inequalities to Hyers-Ulam-Rassias
Stability

In this section we apply the integral inequalities of section 3 in investigat-
ing the Hyers-Ulam-Rassias stability of equation (1.1) with different cases
mentioned in section 1.

First, we consider equation (1.1) when g(t, u(t), u0(t)) = p(t, u(t), u0(t)).

Theorem 1. Let r(t) > 0 be a polynomial function of degree n, n ∈ N,
that is continuous on R+, if u(t) ∈ C2(R+) is a solution of (2.1) and
p(t, u(t), u0(t)) = g(t, u(t), u0(t)), then the problem (1.1) is stable in the
sense of Hyers-Ulam-Rassias, provided:

i R(u(t)) =

Z u(t)

u(t0)
φ(s)ds,

ii |g(t, u(t), u0(t))| = |p(t, u(t), u0(t))| ≤ κ(t)ω(|u(t)|) |u0(t)| ,

iii
R t
t0
ϕ(s)ds ≤ ϕ(t),

with Hyers-Ulam-Rassias constant:

Cϕ = TE,(4.1)

where
T = Ω−1

³
Ω(1) +m(η + η2)ω (E)

´
and

E = F−1 (F (1) + l) .
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Proof. From inequality (2.1), we get

−ϕ(t) ≤
£
r(t)φ(u(t))u0(t)

¤0
+g(t, u(t), u0(t))u0(t) + α(t)h(u(t))− p(t, u(t), u0(t)) ≤ ϕ(t).(4.2)

Integrating (4.2) twice and using Lemma 1, we obtain

−t
R t
t0
ϕ(ds) ≤ r(t)

R t
t0
φ(u(s))u0(s)ds+ t

R t
t0
g(s, u(s), u0(s))u0(s)ds

+t
R t
t0
α(s)h(u(s))ds− t

R t
t0
P (s, u(s), u0(s))ds ≤ t

R t
t0
ϕ(s)ds.

Since t > 0, considering the upper inequality, we have
r(t)
t

R t
t0
φ(u(s))u0(s) +

R t
t0
g(s, u(s), u0(s))u0(s)ds

+
R t
t0
α(s)h(u(s))−

R t
t0
P (s, u(s), u0(s))ds ≤

R t
t0
ϕ(s)ds.

By applying condition (i) of Theorem 1, we obtain
r(t)
t

R t
t0

d
dsR(u(t))ds+

R t
t0
g(s, u(s), u0(s))u0(s)ds

+
R t
t0
α(s)h(u(s))−

R t
t0
p(s, u(s), u0(s))ds ≤

R t
t0
ϕ(s)ds.

Evaluating first term using the condition (1.2) we obtain
r(t)
t R(u(t)) +

R t
t0
g(s, u(s), u0(s))u0(s)ds+

R t
t0
α(s)h(u(s))

−
R t
t0
p(s, u(s), u0(s))ds ≤

R t
t0
ϕ(s)ds,

rearranging and taking absolute value, we have

r(t)
t |R(u(t))| ≤

R t
t0
ϕ(s)ds+

R t
t0
|g(s, u(s), u0(s))| |u0(s)| ds

+
R t
t0
α(s) |h(u(s))|+

R t
t0
|p(s, u(s), u0(s))| ds.

Using the condition (ii), we obtain
r(t)
t |R(u(t))| ≤

R t
t0
ϕ(s)ds+

R t
t0
κ(s)ω(|u(s)|)|u0(s)|2ds+

R t
t0
α(s)h(|u(s)|)+R t

t0
κ(s)ω(|u(s)|)|u0(s)|ds

and factorising we get

r(t)
t |R(u(t))| ≤

R t
t0
ϕ(s)ds

+
R t
t0
α(s)h(|u(s)|) +

R t
t0
(|u0(s)|+ |u0(s)|2)κ(s)ω(|u(s)|)ds.

It follows that
r(t)
t |R(u(t))| ≤

R t
t0
ϕ(s)ds

+
R t
t0
α(s)h(|u(s)|) + (|u0(s)|+ |u0(t)|2)

R t
t0
κ(s)ω(|u(s)|)ds,
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setting
r(t)

t
|R(u(t)| ≥ |u(t)| and |u0(t)| ≤ η, for η > 0, we have

|u(t)| ≤
Z t

t0
ϕ(s)ds+

Z t

t0
α(s)h(|u(s)|) + (η + η2)

Z t

t0
κ(s)ω(|u(s)|)ds.

Applying Theorem 1 we get

|u(t)| ≤ T (t)E(t)

Z t

t0
ϕ(s)ds,

where

T (t) = Ω−1
µ
Ω(1) + (η + η2)

Z t

t0
κ(s)ω (E(s)) ds

¶
,

E(t) = F−1
µ
F (1) +

Z t

t0
α(s)ds

¶
,

and B = η + η2, A = 1.

SettingZ t

t0
ϕ(s)ds ≤ ϕ(t), lim

t→∞

Z t

t0
κ(s)ds = m <∞

and limt→∞

Z t

t0
α(s)ds = l <∞, for l, m > 0, it follows that

|u(t)| ≤ ϕ(t)TE.

Therefore,
|u(t)− u0(t)| ≤ |u(t)|

and hence,
|u(t)− u0(t)| ≤ ϕ(t)TE.

2

Example 1. Consider Hyers-Ulam-Rassias stability of the second order
nonlinear differential equationh

(t3 + t2 + 1)u2(t)u0(t)
i0
+
1

t2
u2(t)u03(t) +

1

t4
u2(t) =

1

t2
u2(t)u02(t)

where r(t) = t3 + t2 + 1, that is a polynomial of degree 3, φ(u(t)) =
u2(t), ; g(t, u(t), u0(t)) = 1

t2u
2(t)u03(t), P (t, u(t), u0(t)) = 1

t2u
2(t)u02(t) by

conditions in the Theorem 1 and the conditions analysed in the proof of
Theorem 1, the nonlinear differential equation is Hyers-Ulam-Rassias stable
for Ω−1 and F−1 are finite.
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In the next theorem we consider the case g(t, u(t), u0(t)) 6= p(t, u(t), u0(t))
in equation (1.1).

Theorem 2. Let r(t) possess the same features as in Theorem 1, if u(t) ∈
C2(R+) is a solution of (2.1) and p(t, u(t), u0(t)) 6= g(t, u(t), u0(t)) are con-
tinuous functions on (I×R2). Then the problem (1.1) satisfies the Hyers-
Ulam-Rassias stability, provided:

(ii)’ |g(t, u(t), u0(t))| ≤ κ(t)ω(|u(t)|) |u0(t)| ,

(iii)’ |p(t, u(t), u0(t))| ≤ g(t)γ(|u(t)|) |u0(t)|n for n ∈N,

and
|u(t)− u(t0)| ≤ Cϕϕ(t),

where Cϕ is Hyers-Ulam-Rassias constant.

Proof. From equation (2.1), it follows that
−ϕ(t) ≤ [r(t)φ(u(t))u0(t)]0
+g(t, u(t), u0(t))u0(t) + α(t)h(u(t))− p(t, u(t), u0(t)) ≤ ϕ(t).

Integrating twice and using the Lemma 1, we have
−t
R t
t0
ϕ(ds) ≤ r(t)

R t
t0
φ(u(s))u0(s)ds+ t

R t
t0
g(s, u(s), u0(s))u0(s)ds

+t
R t
t0
α(s)h(u(s))ds− t

R t
t0
p(s, u(s), u0(s))ds ≤ t

R t
t0
ϕ(s)ds.

It follows that
r(t)t

R t
t0
φ(u(s))u0(s) +

R t
t0
g(s, u(s), u0(s))u0(s)ds

+
R t
t0
α(s)h(u(s))−

R t
t0
P (s, u(s), u0(s))ds ≤

R t
t0
ϕ(s)ds

and by condition(i) of Theorem 1, we have

r(t)t R(u(t))≤
R t
t0
ϕ(s)ds−

R t
t0
g(s, u(s), u0(s))u0(s)ds

-
R t
t0
α(s)h(u(s)) +

R t
t0
P (s, u(s), u0(s))ds.

Taking the absolute value of both sides, using conditions (ii)0 and (iii)0

we have

r(t)

t
|R(u(t))| ≤

Z t

t0
|ϕ(s)| ds+

Z t

t0
α(s)h(|u(s)|) +

Z t

t0
κ(s)ω(|u(s)|)

¯̄
u0(s)

¯̄2
ds

+

Z t

t0
g(s)γ(|u(s)|)

¯̄
u0(s)

¯̄n
ds.(4.3)

Since |u(t)| ≤ r(t)
t |R(u(t)) and |u0(t)| ≤ η, equation (4.3) becomes
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|u(t)| ≤
R t
t0
|ϕ(s)| ds+

R t
t0
α(s)h(|u(s)|) + η2

R t
t0
κ(s)ω(|u(s)|)ds

+ηn
R t
t0
g(s)γ(|u(s)|)ds

and the application of Theorem 3, gives

|u(t)| ≤
Z t

t0
|ϕ(s)| dsG−1

∙
G(K) + ηn

Z t

t0
g(s)γ [T (s)E(s)] ds

¸
T (t)E(t),

where

T (t) = Ω−1
µ
Ω(1) + η2

Z t

t0
κ(s)ω (E(s)) ds

¶
and B = η2.
Let the limit of integrals be as in the proof of Theorem 1 and let lim

t→∞Z t

t0
g(s)ds ≤ K, we obtain

|u(t)| ≤ ϕ(t)G−1 [G(K) + kηnγ [TE]]TE,

where we define

T = Ω−1
³
Ω(1) +mη2ω (E)

´
,

and

E = F−1 (F (1) + l) .

Thus,

|u(t)− u0(t0)| ≤ |u(t)| ≤ Cϕϕ(t),

and therefore,

|u(t)− u0(t)| ≤ ϕ(t)G−1 [G(K) + kηnγ [TE]]TE,

where

Cϕ = G−1 [G(K) + kηnγ [TE]]TE.

2

Example 2. Investigate the Hyers-Ulam-Rassias stability of the second
order nonlinear differential equationh
(t4 + t3 + t2 + 1)tu2(t)u0(t)

i0
+
1

t2
u2(t)u03(t) +

1

t4
u4(t) =

1

t2
u3(t)u04(t)

where

r(t) = (t3 + t2 + 1)t, φ(u(t)) = u4(t),



Hyers-Ulam-Rassias stability of some perturbed ... 1169

g(t, u(t), u0(t)) =
1

t2
u2(t)u02(t) and P (t, u(t), u0(t)) =

1

t2
u3(t)u04(t).

By the conditions in Theorem 2 and the conditions analysed in the proof
of the Theorem, the nonlinear differential equation is Hyers-Ulam-Rassias
stable for finite Ω−1 and F−1.

In the third result we consider the case g(t, u(t), u0(t)) = 0.

Theorem 3. If u(t) ∈ C2(R+) is a solution of (2.1) when g(t, u(t), u
0(t)) =

0, then there exists a solution u0(t) ∈ C2(R+) problem (1.1) such that

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕϕ(t),

therefore equation (1.1) is stable in the sense of Hyers-Ulam-Rassias with
the Hyers-Ulam-Rassias constant Cϕ = HE, where

H = G−1 (G(1) +mηnγ (E))

and
E = F−1 (F (1) + l) .

Proof. From equation (2.1), it follows that

− ϕ(t) ≤
£
r(t)φ(u(t))u0(t)

¤0
+ α(t)h(u(t))− p(t, u(t), u0(t)) ≤ ϕ(t).(4.4)

Integrating (4.4) twice and using Lemma 2.2, we get

−
R t
t0
(t− s)ϕ(ds) ≤

R t
t0
r(s)φ(u(s))u0(s)ds

+
R t
t0
(t− s)α(s)h(u(s))ds−

R t
t0
(t− s)p(s, u(s), u0(s))ds ≤

R t
t0
(t− s)ϕ(s)ds.

It follows that
r(t)t

R t
t0
φ(u(s))u0(s)ds

+
R t
t0
α(s)h(u(s))ds−

R t
t0
p(s, u(s), u0(s))ds ≤

R t
t0
ϕ(s)ds.

Using the definition of R(u(t)) in Theorem 4.1 we get

r(t)

t
R(u(t)) +

Z t

t0
α(s)h(u(s))ds−

Z t

t0
p(s, u(s), u0(s))ds ≤

Z t

t0
ϕ(s)ds.

Recall that |u(t)| ≤ r(t)
t |R(u(t)), using this we obtain

|u(t)| ≤
Z t

t0
|ϕ(s)| ds+

Z t

t0
α(s) |h(u(s))| ds+

Z t

t0

¯̄
p(s, u(s), u0(s))

¯̄
ds.
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Let |p(t, u(t), u0(t))| ≤ g(t)γ(|u(t)|) |u0(t)|n where n ∈ N, then we have

u(t)| ≤
Z t

t0
|ϕ(s)| ds+

Z t

t0
α(s)h(|u(s)|)ds+

Z t

t0
g(s)γ(|u(s)|)

¯̄
u0(s)

¯̄n
ds.

It follows that

|u(t)| ≤
Z t

t0
|ϕ(s)| ds+

Z t

t0
α(s)h(|u(s)|)ds+ (

¯̄
u0(t)

¯̄n Z t

t0
g(s)γ(|u(s)|)ds.

Applying Theorem 2, we get

|u(t)| ≤
Z t

t0
|ϕ(s)| dsH(t)E(t),

where

H(t) = G−1
µ
G(1) + ηn

Z t

t0
g(s)γ (E(s)) ds

¶
,

and

E(t) = F−1
µ
f(1) +

Z t

t0
α(s)ds

¶
.

Let the limit of the integrals be as in the proof of Theorems 3 and 1, then
we obtain

|u(t)| ≤ ϕ(t)HE.

Therefore,
|u(t)− u0(t)| ≤ |u(t)| ≤ ϕ(t)HE.

Hence,

|u(t)− u0(t)| ≤ ϕ(t)HE.

2

Example 3. Investigate the Hyers-Ulam-rassias stability of the following
differential equation using conditions of the Theorem 3h

(t4 + t3 + t2 + 1)u2(t)u0(t)
i0
+
1

t2
u3(t) =

1

t3
u3(t)u04(t)

where r(t) = (t4 + t2 + 1), that is, a polynomial of degree 4, φ(u(t)) =
u2(t), α(t)h(t) = 1

t2u
3(t) P (t, u(t), u0(t)) = 1

t3u
3(t)u04(t) by the conditions

of Theorem 3 and the conditions analysed in the proof of the Theorem, the
nonlinear differential equation is Hyers-Ulam-Rassias stable.
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In this last result we investigate the Hyers-Ulam-Rassias stability of
equation (1.1) for p(t, u(t), u0(t)) = 0

Theorem 4. If u(t) ∈ C2(R+) is a solution of (2.1) when p(t, u(t), u
0(t)) =

0. Then the initial valued problem (1.1) is stable in the sense of Hyers-Ulam-
Rassias, provided there exists a solution u0(t) ∈ C2(R+) of equation(1.1)
such that

|u(t)− u0(t)| ≤ |u(t)| ≤ Cϕϕ(t)

where Cϕ is the Hyers-Ulam-Rassias constant.

Proof. From equation (2.1), it follows that

− ϕ(t) ≤
£
r(t)φ(u(t))u0(t)

¤0
+ α(t)h(u(t)) + g(t, u(t), u0(t))u0(t) ≤ ϕ(t).(4.5)

Integrating (4.5) twice and using Lemma 1 we get

−
R t
t0
(t− s)ϕ(ds) ≤

R t
t0
r(s)φ(u(s))u0(s)ds

+
R t
t0
(t− s)α(s)h(u(s))ds+

R t
t0
(t− s)g(s, u(s), u0(s))u0(s)ds

≤
R t
t0
(t− s)ϕ(s)ds.

It follows that
r(t)t

R t
t0
φ(u(s))u0(s)ds

+
R t
t0
α(s)h(u(s))ds+

R t
t0
g(s, u(s), u0(s))u0(s)ds ≤

R t
t0
ϕ(s)ds.

By the application of condition(i) of Theorem 1 we get

r(t)

t
R(u(t)) +

Z t

t0
α(s)h(u(s))ds+

Z t

t0
g(s, u(s), u0(s))u0(s)ds ≤

Z t

t0
ϕ(s)ds.

It follows that

r(t)

t
R(u(t)) ≤

Z t

t0
ϕ(s)ds−

Z t

t0
α(s)h(u(s))ds−

Z t

t0
g(s, u(s), u0(s))u0(s)ds,

and taking the absolute value of both sides, we get

r(t)

t
|R(u(t))| ≤

Z t

t0
|ϕ(s)|ds+

Z t

t0
α(s)|h(u(s))|ds+

Z t

t0
|g(s, u(s), u0(s))||u0(s)|ds.

With |g(t, u(t), u0(t))| ≤ κ(t)ω(|u(t)|) |u0(t)|2 we have

r(t)

t
|R(u(t))| ≤

Z t

t0
|ϕ(s)|ds+

Z t

t0
α(s)h(|u(s)|)ds+

Z t

t0
κ(s)ω(|u(s)|)|u0(s)|2ds.
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Thus, it follows that

r(t)

t
|R(u(t))| ≤

Z t

t0
|ϕ(s)|ds+

Z t

t0
α(s)h(|u(s)|)ds+(|u0(t)|2

Z t

t0
κ(s)ω(|u(s)|)ds.

If
r(t)

t
|R(u(t))| ≥ |u(t)|, applying Theorem 1 gives

|u(t)| ≤ T (t)E(t)

Z t

t0
|ϕ(s)|ds,

where

T (t) = Ω−1
µ
Ω(1) + η2

Z t

t0
κ(s) (E(s)) ds

¶
and

E(t) = F−1
µ
F (1) +

Z t

t0
α(s)ds

¶
.

Following the definition of the limit of integrals in the previous results we
have

|u(t)| ≤ ϕ(t)TE,

T = (Ω−1
³
Ω(1) +mη2ω (E)

´
,

and
E = F−1 (F (1) + l) .

Therefore,
|u(t)− u0(t)| ≤ |u(t)| ≤ ϕ(t)TE

and hence,
|u(t)− u0(t)| ≤ ϕ(t)ϕ(t)TE.

2

Example 4. Investigate the Hyers-Ulam-Rassias stability of the second
order nonlinear differential equation:h

(t4 + t3 + t2 + 1)u2(t)u0(t)
i0
+
1

t2
u2(t)u03(t) +

1

t2
u3(t) = 0

where r(t) = (t4 + t3 + t2 + 1), that is, a polynomial of degree 4, φ(u(t)) =
u2(t), g(t, u(t), u0(t)) = 1

t2
u2(t)u03(t) and α(t)h(u(t)) = 1

t2
u3(t). By con-

ditions of Theorem 4 and the conditions analysed in the proof of the last
Theorem, the nonlinear differential equation is Hyers-Ulam-Rassias stable
for finite Ω−1 and F−1.
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