

Proyecciones Journal of Mathematics Vol. 42, N^o 6, pp. 1615-1626, December 2023. Universidad Católica del Norte Antofagasta - Chile

On *-reverse derivable maps

Bruno L. M. Ferreira Federal University of Technology, Brazil and Gurninder S. Sandhu Patel Memorial National College, India Received : February 2023. Accepted : August 2023

Abstract

Let R be a ring with involution containing a nontrivial symmetric idempotent element e. Let $\delta : R \to R$ be a mapping such that $\delta(ab) = \delta(b)a^* + b^*\delta(a)$ for all $a, b \in R$, we call δ a *-reverse derivable map on R. In this paper, our aim is to show that under some suitable restrictions imposed on R, every *-reverse derivable map of R is additive.

2010 Mathematics Subject Classification: 17C27.

Keyword: Additivity, Reverse derivable maps, Involution, Peirce decomposition.

1. Introduction

1616

Let R be a ring, an additive map $\delta: R \to R$ such that $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in R$, is called a *derivation*. A derivation which is not necessarily additive is said to be a *multiplicative derivation* or a *derivable* map. A mapping $\delta : R \to R$ is known as multiplicative Jordan derivation of R if $\delta(ab + ba) = \delta(a)b + a\delta(b) + \delta(b)a + b\delta(a)$ for all $a, b \in R$. In addition, δ is called *n*-multiplicative derivation of R if $\delta(a_1a_2\cdots a_n) =$ $\sum_{i=1}^{n} a_1 a_2 \cdots \delta(a_i) \cdots a_n$ for all $a_1, a_2, \cdots, a_n \in R$. A mapping $F: R \to R$ (not necessarily additive) associated with a derivation d is called multiplicative generalized derivation if F(xy) = F(x)y + xd(y) for all $x, y \in R$ (see [4]). In [14], Herstein introduced a mapping "[†]" satisfying $(a+b)^{\dagger} = a^{\dagger} + b^{\dagger}$ and $(ab)^{\dagger} = b^{\dagger}a + ba^{\dagger}$ called a *reverse derivation*, which is certainly not a derivation. Moreover, a mapping $\delta : R \to R$ satisfying $\delta(ab) = \delta(b)a + b\delta(a)$ for all $a, b \in R$ is called a *multiplicative reverse derivation* or *reverse deriv*able map of R. A mapping $\psi: R \to R$ is said to be a left (resp. right) centralizer if $\psi(ab) = \psi(a)b$ (resp. $\psi(ab) = a\psi(b)$) for all $a, b \in R$. Moreover, if ψ is left and right centralizer, then it is called *centralizer* of R. A left (resp. right) centralizer which is not necessarily additive is called multiplicative left (resp. right) centralizer. By involution, we mean an anti-automorphism $*: R \to R$ such that $(x^*)^* = x$ for all $x, y \in R$. An element $s \in R$ satisfying $s^* = s$ is called a symmetric element of R.

Let e be an idempotent element of R such that $e \neq 0, 1$. Then R can be decomposed as follows:

$$R = eRe \bigoplus eR(1-e) \bigoplus (1-e)Re \bigoplus (1-e)R(1-e)$$

This decomposition of R is called *two-sided Peirce decomposition relative to* e ([15], see pg. 48). It is easy to see that the components of this decomposition are the subrings of R and for our convenience, we denote $R_{11} = eRe, R_{12} = eR(1-e), R_{21} = (1-e)Re$ and $R_{22} = (1-e)R(1-e)$. For any $r \in R$, we denote the elements of R_{ij} by r_{ij} for all $i, j \in \{1, 2\}$. We use the notation $e_1 := e$ and define $e_2 : R \to R$ and $e'_2 : R \to R$ by $e_2 a = a - e_1 a$ and $e'_2 a = a - ae_1$. We shall denote $e'_2 a$ by ae_2 . Note that R need not have an identity element: the operation x(1-y) for $x, y \in R$ is understood as x - xy.

The present study is motivated by various additivity theorems proved by several well-known algebraists (viz. [3, 4, 5, 16, 18, 19]). Studying the interrelationship between the multiplicative and additive structure of rings is a quite interesting subject nowadays. The pursuit of this line of investigation is inspired by a surprising result of Martindale [18], which exhibits that how multiplicative structure of a ring determines its additive structure. Precisely, Martindale [18] proved the following:

Theorem 1.1. Let R be a ring containing a family $\{e_{\lambda} : \lambda \in \Lambda\}$ of idempotents which satisfies:

- (1) xR = 0 implies x = 0.
- (2) If $e_{\lambda}Rx = 0$ for each $\lambda \in \Lambda$, then x = 0 (and hence Rx = 0 implies x = 0).
- (3) For each $\lambda \in \Lambda$, $e_{\lambda} x e_{\lambda} R(1 e_{\lambda}) = 0$, implies $e_{\lambda} x e_{\lambda} = 0$.

Then any multiplicative bijective map from a ring R into an arbitrary ring S is additive.

Since then, this set of conditions has been used by a number of authors in order to obtain the additivity of some specific mappings of rings and algebras. In 1991, Daif [3] figured out that Martindale's conditions can also assure the additivity of multiplicative derivations. In this vein, with the same set of conditions, Li and Lu [17] obtained the additivity of maps M : $R \to R'$ and $M^* : R' \to R$ that are surjective and satisfy $M(xM^*(y)z) =$ M(x)yM(z) and $M^*(yM(x)u) = M^*(y)xM^*(u)$ for all $x, z \in R$ and $y, u \in$ R'. Moreover, in 2009, Wang [19] extended the results of Martindale and Daif simultaneously, and gave a short proof of [17, Theorem 2.1].

Besides from the Martindale's set of conditions, there are also some studies available in the literature that investigate the additivity of certain mappings of rings. For instance, in a systematic paper [5], Eremita and Iliševic proved the additivity of multiplicative left centralizers that are defined from R into a bimodule M over R and gave a number of applications of the main result. Precisely, they proved the following:

Theorem 1.2. Let R be a ring and M be a bimodule over R. Further, let $e_1 \in R$ be a nontrivial idempotent (and $1 - e_1 = e_2$) such that for any $m \in M' = \{m \in M : mZ(R) = (0)\}$, where Z(R) denotes the center of R,

- (i) $e_1me_1Re_2 = (0)$ implies $e_1me_1 = 0$,
- (ii) $e_1 m e_2 R e_1 = (0)$ implies $e_1 m e_2 = 0$,

(iii) $e_1 m e_2 R e_2 = (0)$ implies $e_1 m e_2 = 0$,

1618

- (iv) $e_2me_1Re_2 = (0)$ implies $e_2me_1 = 0$,
- (v) $e_2me_2Re_1 = (0)$ implies $e_2me_2 = 0$,
- (vi) $e_2me_2Re_2 = (0)$ implies $e_2me_2 = 0$.

Then every left centralizer $\phi : R \to M$ is additive.

In 2007, Daif and Tammam-El-Sayiad [4] studied the additivity of multiplicative generalized derivations with slight modifications in conditions of Martindale. In a recent paper, Jing and Lu [16] examined the additivity of multiplicative Jordan derivations and obtained the following result:

Theorem 1.3. Let R be a ring containing a nontrivial idempotent and satisfying the following conditions for $i, j, k \in \{1, 2\}$:

- (P1) If $a_{ij}x_{jk} = 0$ for all $x_{jk} \in R_{jk}$, then $a_{ij} = 0$;
- (P2) If $x_{ij}a_{jk} = 0$ for all $x_{ij} \in R_{ij}$, then $a_{jk} = 0$;
- (P2) If $a_{ii}x_{ii} + x_{ii}a_{ii} = 0$ for all $x_{ii} \in R_{ii}$, then $a_{ii} = 0$.

If $\delta : R \to R$ is a mapping satisfies $\delta(ab+ba) = \delta(a)b + a\delta(b) + \delta(b)a + b\delta(a)$ for all $a, b \in R$, then δ is additive.

This sort of problems and their solutions are not limited only to the class associative rings. For the case of non-associative rings and algebras having nontrivial idempotents, additivity of various maps defined on them has already been proved in the literature. In alternative rings, we can mention the works in [6, 7, 8, 9, 10, 11, 12, 13].

In 1957, Herstein [14] introduced the notion of reverse derivation, and proved that if R is a prime ring and d is a reverse derivation of R, then Ris a commutative integral domain, and hence d is an ordinary derivation of R. Later, this result has been extended by Brešar and Vukman [1, 2]. The notion of reverse derivation is related to some generalization of derivation, for instance, every reverse derivation is a Jordan derivation. Therefore, under the hypothesis taken by Jing and Lu [16, Theorem 1.2], every reverse derivation is additive. In view of the above discussion, in this study we object to investigate the additivity of a mapping $\delta : R \to R$ satisfies $\delta(xy) = \delta(y)x^* + y^*\delta(x)$ for all $x, y \in R$, where * is the involution of R. If δ is additive, then it is called *-reverse derivation, which is clearly neither a derivation nor a reverse derivation. The basic example of *-reverse derivation is a mapping $x \mapsto [a, x^*]$, where $a \in R$ a fixed element, called the inner *-reverse derivation. In addition, one can easily observe from the following example that the theorem of Herstein [14, Theorem 2.1] does not hold for *-reverse derivations:

Example 1.1. Let $R = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbf{Z} \right\}$, where \mathbf{Z} is the ring of integers. Define a mapping $\delta : R \to R$ such that

$$\delta \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \left(\begin{array}{cc} 0 & c \\ -b & 0 \end{array} \right)$$

and

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)^* = \left(\begin{array}{cc}a&c\\b&d\end{array}\right)$$

the standard involution of R. Clearly, δ is a *-reverse derivation and R is a noncommutative prime ring.

2. Main Results

Definition 2.1. Let R be a ring and '*' be an involution on R. Then a mapping $\delta : R \to R$ (not necessarily additive) is called *-reverse derivable if $\delta(ab) = \delta(b)a^* + b^*\delta(a)$ for all $a, b \in R$.

The main result of this paper reads as follows:

Theorem 2.1. Let R be a ring with involution containing a nontrivial symmetric idempotent element e and any element $a \in R$ such that the following conditions are satisfied

- (i) If $x_{ii}a_{ij} = 0$ for all $x_{ii} \in R_{ii}$, then $a_{ij} = 0$;
- (ii) If $a_{ii}x_{ij} = 0$ for all $x_{ij} \in R_{ij}$ with $i \neq j$, then $a_{ii} = 0$.

Then every *-reverse derivable map $\delta : R \to R$ is additive.

It is easy to see that an unital prime ring with a nontrivial symmetric idempotent e satisfies the conditions (i) and (ii) of the Theorem 2.1, so we get the following

Corollary 2.1. Let R be an unital prime ring with a nontrivial symmetric idempotent e. Then every *-reverse derivable map of R is additive.

Corollary 2.2. Let R be the ring same as in Theorem 2.1 and

$$\mathcal{R} = \left\{ \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix} : r_{ij} \in R_{ij} \right\} \cong R_{11} \oplus R_{12} \oplus R_{21} \oplus R_{22} = R.$$

Moreover, $R_{11} \equiv \left\{ \begin{pmatrix} r_{11} & 0 \\ 0 & 0 \end{pmatrix} : r_{11} \in R_{11} \right\}$. Similarly to other spaces R_{12}, R_{21} and R_{22} . Let $\mathcal{E} = \begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix}$

be the non-trivial idempotent in \mathcal{R} . Define $\delta : \mathcal{R} \to \mathcal{R}$ such that $\delta(XY) = \delta(Y)\tau(X) + \tau(Y)\delta(X)$ for all $X, Y \in \mathcal{R}$, where τ is the transpose map, which is named transpose reverse derivable map. Under the same conditions of Theorem 2.1, every transpose reverse derivable map is additive.

It is easy to note that $\delta(e) = a_{11} + a_{12} + a_{21} + a_{22}$. Since $\delta(e) = \delta(e^2) = \delta(e)e^* + e^*\delta(e)$, it follows that $\delta(e) = a_{12} + a_{21}$. Define a mapping $\wp : R \to R$ such that $\wp(x) = [a_{21} - a_{12}, x^*]$. It is not difficult to check that \wp is an additive *-reverse derivable map. Thus, we set $\Delta = \delta - \wp$, which is also a *-reverse derivable map and Δ is additive if and only if δ is so. Moreover it is easy to observe that $\Delta(e) = 0$.

We shall use the following fact very frequently in the sequel.

Proposition 2.1. Let $s \in R$ $(s_{ij} \in R_{ij}, \text{ where } i, j \in \{1, 2\})$. Then $s_{ij}^* = r_{ji}$, where $r = s^* \in R$. Moreover, $s_{ij} = r_{ji}^*$.

Proof. Let $s \in R$ be any element. Then for $es(1-e) = s_{12} \in R_{12}$, we have $(es(1-e))^* = (1-e)^*s^*e^* = (1-e)s^*e$. It gives that $s_{12}^* = r_{21}$, where $r = s^*$. Similarly, one can easily observe that $s_{21}^* = r_{12}$, $s_{11}^* = r_{11}$ and $s_{22}^* = r_{22}$. Moreover, for each $s_{ij} \in R$ there exists unique $r \in R$ such that $r_{ii}^* = s_{ij}$ as * is bijective.

Lemma 2.1. $\Delta(0) = 0$.

Proof. The proof is trivial.

Lemma 2.2. $\Delta(R_{ij}) \subset R_{ji}$, where $i, j = \{1, 2\}$.

Proof. For any $x_{11} \in R_{11}$, we have $\Delta(x_{11}) = \Delta(ex_{11}e) = \Delta(x_{11}e)e^* = e^*\Delta(x_{11})e^* = e\Delta(x_{11})e \in R_{11}$. Hence $\Delta(R_{11}) \subset R_{11}$. For any $x_{22} \in R_{22}$, $\Delta(x_{22}) \in R$, we put $\Delta(x_{22}) = r_{11} + r_{12} + r_{21} + r_{22}$. Now $0 = \Delta(ex_{22}) = \Delta(x_{22})e^* = (r_{11} + r_{12} + r_{21} + r_{22})e = r_{11} + r_{21}$. Likewise $0 = \Delta(x_{22}e) = e^*\Delta(x_{22}) = r_{11} + r_{12}$. It implies $r_{11} = r_{21} = r_{12} = 0$. Therefore $\Delta(x_{22}) = r_{22}$ and hence $\Delta(R_{22}) \subset R_{22}$. For any $x_{12} \in R_{12}$, $\Delta(x_{12}) = b_{11} + b_{12} + b_{21} + b_{22}$. Now $\Delta(x_{12}) = \Delta(ex_{12}) = \Delta(x_{12})e^* = b_{11} + b_{21}$ and $0 = \Delta(x_{12}e) = e^*\Delta(x_{12}) = e(b_{11} + b_{12} + b_{21} + b_{22}) = b_{11} + b_{12}$. Thus $\Delta(x_{12}) = b_{21}$ and hence $\Delta(R_{12}) \subset R_{21}$. Let be $x_{21} \in R_{21}$ then $\Delta(x_{21}) = c_{11} + c_{12} + c_{21} + c_{22}$. Now $\Delta(x_{21}) = \Delta(x_{21}e) = e^*\Delta(x_{21}) = c_{11} + c_{12} + c_{21} + c_{22}$. Now $\Delta(x_{21}) = \Delta(x_{21}e) = e^*\Delta(x_{21}) = c_{11} + c_{12} + c_{21} + c_{22}$. Now $\Delta(x_{21}) = \Delta(x_{21}e) = e^*\Delta(x_{21}) = c_{11} + c_{12} + c_{21} + c_{22}$. Now $\Delta(x_{21}) = \Delta(x_{21}e) = e^*\Delta(x_{21}) = c_{11} + c_{12} + c_{21} + c_{22}$. Now $\Delta(x_{21}) = \Delta(x_{21}e) = e^*\Delta(x_{21}) = c_{11} + c_{12} + c_{21} + c_{22}$. Now $\Delta(x_{21}) = \Delta(x_{21}e) = e^*\Delta(x_{21}) = c_{11} + c_{12} + c_{21} + c_{22}$. Now $\Delta(x_{21}) = \Delta(x_{21}e) = e^*\Delta(x_{21}) = c_{11} + c_{12} + c_{21} + c_{22}$.

The following Steps have the same hypotheses of Theorem 2.1 and we need these Steps for the proof of the main result.

Step 1: For $i \neq j$, $\Delta(a_{ii} + a_{ij}) = \Delta(a_{ii}) + \Delta(a_{ij})$ and $\Delta(a_{ii} + a_{ji}) = \Delta(a_{ii}) + \Delta(a_{ii})$.

Let us work just with $\Delta(a_{ii} + a_{ij}) = \Delta(a_{ii}) + \Delta(a_{ij})$ because the other case have a similar proof. Let t_{ii} be an element of R_{ii} . First, observe that, if $i \neq j$ then $0 = \Delta(a_{ij}t_{ii}) = t_{ii}^*\Delta(a_{ij}) + \Delta(t_{ii})a_{ij}^*$ which implies $\Delta(t_{ii})a_{ij}^* = -t_{ii}^*\Delta(a_{ij})$.

Now,

$$\Delta((a_{ii} + a_{ij})t_{ii}) = t_{ii}^* \Delta(a_{ii} + a_{ij}) + \Delta(t_{ii})(a_{ii} + a_{ij})^*$$

= $t_{ii}^* \Delta(a_{ii} + a_{ij}) + \Delta(t_{ii})a_{ii}^* - t_{ii}^* \Delta(a_{ij}).$

On the other hand,

(2.1)
$$\Delta((a_{ii}+a_{ij})t_{ii}) = \Delta(a_{ii}t_{ii}) = t_{ii}^*\Delta(a_{ii}) + \Delta(t_{ii})a_{ii}^*$$

Then $t_{ii}^*[\Delta(a_{ii} + a_{ij}) - \Delta(a_{ii}) - \Delta(a_{ij})] = 0$ which implies that, by condition (i), $[\Delta(a_{ii} + a_{ij}) - \Delta(a_{ii}) - \Delta(a_{ij})]_{ik} = 0$ for i, k = 1, 2 and hence,

$$\Delta(a_{ii} + a_{ij}) = \Delta(a_{ii}) + \Delta(a_{ij}).$$

1621

Step 2: For $i \neq j$, $\Delta(a_{ij} + a_{ji}) = \Delta(a_{ij}) + \Delta(a_{ji})$. Let t_{ii} be an element of R_{ii} and recall that, if $i \neq j$, we have $\Delta(t_{ii})a_{ij}^* = -t_{ii}^*\Delta(a_{ij})$. First,

$$\Delta((a_{ij} + a_{ji})t_{ii}) = \Delta(a_{ji}t_{ii}) = t_{ii}^*\Delta(a_{ji}) + \Delta(t_{ii})a_{ji}^*$$

On the other hand,

$$\Delta((a_{ij} + a_{ji})t_{ii}) = t_{ii}^* \Delta(a_{ij} + a_{ji}) + \Delta(t_{ii})(a_{ji} + a_{ji})^*.$$

Then, $t_{ii}^*[\Delta(a_{ij}+a_{ji})-\Delta(a_{ij})-\Delta(a_{ji})]=0$ which implies that, by condition (i), $[\Delta(a_{ij}+a_{ji})-\Delta(a_{ij})-\Delta(a_{ji})]_{ik}=0$ for i, k = 1, 2 and hence,

$$\Delta(a_{ij} + a_{ji}) = \Delta(a_{ij}) + \Delta(a_{ji}).$$

Step 3: For $i \neq j$, $\Delta(a_{ij} + b_{ij}c_{jj}) = \Delta(a_{ij}) + \Delta(b_{ij}c_{jj})$. Notice that $(e_i + b_{ij})(a_{ij} + c_{jj}) = a_{ij} + b_{ij}c_{jj}$. By Step 1, we have

$$\begin{aligned} \Delta((e_i + b_{ij})(a_{ij} + c_{jj})) &= (a_{ij} + c_{jj})^* \Delta(e_i + b_{ij}) + \Delta(a_{ij} + c_{jj})(e_i + b_{ij})^* \\ &= (a_{ij} + c_{jj})^* \Delta(b_{ij}) + (\Delta(a_{ij}) + \Delta(c_{jj}))(e_i + b_{ij})^*. \end{aligned}$$

Finally, comparing $\Delta((e_i+b_{ij})(a_{ij}+c_{jj}))$ and $\Delta(a_{ij}+b_{ij}c_{jj})$, a straightforward calculation shows us that

$$\Delta(a_{ij} + b_{ij}c_{jj}) = \Delta(a_{ij}) + \Delta(b_{ij}c_{jj}).$$

Step 4: For $i \neq j$, $\Delta(a_{ij} + b_{ii}c_{ij}) = \Delta(a_{ij}) + \Delta(b_{ii}c_{ij})$. Step 4 can be proved as Step 3, using the relation

$$(a_{ij} + b_{ii})(e_j + c_{ij}) = a_{ii} + b_{ii}c_{ij}.$$

Step 5: For $i \neq j$, $\Delta(a_{ij} + b_{ij}) = \Delta(a_{ij}) + \Delta(b_{ij})$. For $t_{ij} \in R_{jj}$, using Step 3,

$$\begin{aligned} \Delta((a_{ij} + b_{ij})t_{jj}) &= \Delta(a_{ij}t_{jj} + b_{ij}t_{jj}) \\ &= \Delta(a_{ij}t_{jj}) + \Delta(b_{ij}t_{jj}) \\ &= t_{jj}^*\Delta(a_{ij}) + \Delta(t_{jj})a_{ij}^* + t_{jj}^*\Delta(b_{ij}) + \Delta(t_{jj})b_{ij}^*. \end{aligned}$$

On the other hand, we have

$$\Delta((a_{ij}+b_{ij})t_{jj}) = t_{jj}^* \Delta(a_{ij}+b_{ij}) + \Delta(t_{jj})(a_{ij}+b_{ij})^*.$$

Then, $t_{jj}^*[\Delta(a_{ij}+b_{ij})-\Delta(a_{ij})-\Delta(b_{ij})]=0$, which implies, by condition (i), $[\Delta(a_{ij}+b_{ij})-\Delta(a_{ij})-\Delta(b_{ij})]_{jk}=0$. Since, by Lemma 2.2, $\Delta(R_{ij}) \subset R_{ji}$, we get

$$\Delta(a_{ij} + b_{ij}) = \Delta(a_{ij}) + \Delta(b_{ij}).$$

Step 6: $\Delta(a_{ii} + b_{ii}) = \Delta(a_{ii}) + \Delta(b_{ii})$. For $t_{21} \in R_{21}$, by Step 5, we have

$$\begin{aligned} \Delta(t_{21}(a_{11}+b_{11})) &= & \Delta(t_{21}a_{11}+t_{21}b_{11}) \\ &= & \Delta(t_{21}a_{11}) + \Delta(t_{21}b_{11}) \\ &= & a_{11}^*\Delta(t_{21}) + \Delta(a_{11})t_{21}^* + b_{11}^*\Delta(t_{21}) + \Delta(b_{11})t_{21}^* \end{aligned}$$

We also have

$$\Delta(t_{21}(a_{11}+b_{11})) = (a_{11}+b_{11})^*\Delta(t_{21}) + \Delta(a_{11}+b_{11})t_{21}^*$$

Then, we obtain

$$[\Delta(a_{11} + b_{11}) - \Delta(a_{11}) - \Delta(b_{11})]t_{21}^* = 0,$$

which implies, by Proposition 2.1, Lemma 2.2 and condition (ii), $\Delta(a_{11} + b_{11}) - \Delta(a_{11}) - \Delta(b_{11}) = 0$. Now for $t_{12} \in R_{12}$, by Step 5, we have

$$\begin{aligned} \Delta(t_{12}(a_{22}+b_{22})) &= & \Delta(t_{12}a_{22}+t_{12}b_{22}) \\ &= & \Delta(t_{12}a_{22}) + \Delta(t_{12}b_{22}) \\ &= & a_{22}^*\Delta(t_{12}) + \Delta(a_{22})t_{12}^* + b_{22}^*\Delta(t_{12}) + \Delta(b_{22})t_{12}^* \end{aligned}$$

We also have

$$\Delta(t_{12}(a_{22}+b_{22})) = (a_{22}+b_{22})^*\Delta(t_{12}) + \Delta(a_{22}+b_{22})t_{12}^*$$

Then, we obtain

1624

$$[\Delta(a_{22} + b_{22}) - \Delta(a_{22}) - \Delta(b_{22})]t_{12}^* = 0,$$

which implies, by Proposition 2.1, Lemma 2.2 and condition (ii), $\Delta(a_{22} + b_{22}) - \Delta(a_{22}) - \Delta(b_{22}) = 0.$

Step 7: $\Delta(a_{11} + b_{12} + c_{21} + d_{22}) = \Delta(a_{11}) + \Delta(b_{12}) + \Delta(c_{21}) + \Delta(d_{22})$ and, hence, Δ is additive. For $t_{11} \in R_{11}$, we conclude that

$$\begin{aligned} &\Delta(t_{11})(a_{11} + b_{12} + c_{21} + d_{22})^* + t_{11}^*\Delta(a_{11} + b_{12} + c_{21} + d_{22}) \\ &= &\Delta((a_{11} + b_{12} + c_{21} + d_{22})t_{11}) \\ &= &\Delta(a_{11}t_{11} + c_{21}t_{11}) \\ &= &\Delta(a_{11}t_{11}) + \Delta(c_{21}t_{11}) \\ &= &\Delta(a_{11}t_{11}) + \Delta(b_{12}t_{11}) + \Delta(c_{21}t_{11}) + \Delta(d_{22}t_{11}) \\ &= &\Delta(t_{11})a_{11}^* + t_{11}^*\Delta(a_{11}) + \Delta(t_{11})b_{12}^* + t_{11}^*\Delta(b_{12}) \\ &+ &\Delta(t_{11})c_{21}^* + t_{11}^*\Delta(c_{21}) + \Delta(t_{11})d_{22}^* + t_{11}^*\Delta(d_{22}). \end{aligned}$$

By condition (i), $t_{11}^*[\Delta(a_{11}+b_{12}+c_{21}+d_{22})-\Delta(a_{11})-\Delta(b_{12})-\Delta(c_{21})-\Delta(d_{22})] = 0$ implies

$$[\Delta(a_{11} + b_{12} + c_{21} + d_{22}) - \Delta(a_{11}) - \Delta(b_{12}) - \Delta(c_{21}) - \Delta(d_{22})]_{1k} = 0.$$

By a similar calculation, using $t_{22} \in R_{22}$, one can conclude that

$$[\Delta(a_{11} + b_{12} + c_{21} + d_{22}) - \Delta(a_{11}) - \Delta(b_{12}) - \Delta(c_{21}) - \Delta(d_{22})]_{2k} = 0.$$

Therefore, $\Delta(a_{11}+b_{12}+c_{21}+d_{22}) = \Delta(a_{11}) + \Delta(b_{12}) + \Delta(c_{21}) + \Delta(d_{22})$. The conclusion that Δ is additive is straightforward now.

We would like to end the article by noting a result on additivity for the case of multiplicative derivable maps:

Theorem 2.2. Let R be a ring with involution containing a nontrivial symmetric idempotent element e and the following conditions are satisfied

- (i) If $x_{ii}a_{ij} = 0$ for all $x_{ii} \in R_{ii}$, then $a_{ij} = 0$;
- (ii) If $a_{ii}x_{ij} = 0$ for all $x_{ij} \in R_{ij}$ with $i \neq j$, then $a_{ii} = 0$.

Then every multiplicative derivable map $\delta : R \to R$ is additive.

Proof. It is sufficient to note that for a multiplicative derivable map $\delta : R \to R$, we have that $* \circ \delta : R \to R$ is a *-reverse derivable map. So, by Theorem 2.1 we have the desired result.

References

- [1] M. Bres r, and J. Vukman, "Jordan derivations on prime rings", *Bull. Aust. Math. Soc.*, vol. 37, no. 3, pp. 321-322, 1988.
- [2] M. Brešar, and J. Vukman, "Jordan (θ, ϕ) -derivations", *Glas. Mat. Ser. III*, vol. 26, no. 1-2, pp. 13-17, 1991.
- [3] M. N. Daif, "When is a multiplicative derivation additive?", *Internat. J. Math. Math. Sci.*, vol. 14, no. 3, pp. 615-618, 1991.
- [4] M. N. Daif, and M. S. Tammam-El-Sayiad, "Multiplicative generalized derivations which are additive", *East-West J. Math.*, vol. 9, no. 1, pp. 31-37, 2007.
- [5] D. Eremita, and D. Ilisevic, "On additivity of centralisers", *Bull. Aust. Math. Soc.*, vol. 74, pp. 177-184, 2006.
- [6] B. L. M. Ferreira, "Jordan elementary maps on alternative division rings", Serdica Math. Journal, vol. 43, pp. 161-168, 2017.
- [7] R. N. Ferreira, B. L. M. Ferreira, "Jordan derivation on alternative rings", *International Journal of Mathematics, Game Theory, and Algebra*, vol. 25, pp. 435-444, 2017.
- [8] R. N. Ferreira, B. L. M. Ferreira, "Jordan triple derivation on alternative rings", *Proyecciones (Antofagasta)*, vol. 37, pp. 169-178, 2018.
- [9] B. L. M. Ferreira, J. C. M. Ferreira, and H. Guzzo Jr., "Jordan maps on alternative algebras", *JP Journal of Algebra, Number Theory and Applications*, vol. 31, pp. 129-142, 2013.
- [10] B. L. M. Ferreira, J. C. M. Ferreira, and H. Guzzo Jr., "Jordan Triple Elementary Maps on Alternative Rings", *Extracta Mathematicae*, vol. 29, pp. 1-18, 2014.

- [11] B. L. M. Ferreira, J. C. M. Ferreira, and H. Guzzo Jr., "Jordan Triple Maps of Alternative algebras", *JP Journal of Algebra, Number Theory and Applications*, vol. 33, pp. 25-33, 2014.
- [12] J. M. Ferreira, and B. L. M. Ferreira, "Additivity of n–multiplicative maps on alternative rings", *Commun. Algebra*, vol. 44, pp. 1557-1568, 2016.
- [13] B. L. M. Ferreira, and R. Nascimento, "Derivable maps on alternative rings", *Recen*, vol. 16, pp. 1-5, 2014.
- [14] I. N. Herstein, "Jordan derivations of prime rings", Proc. Amer. Math. Soc., vol. 8, pp. 1104-1110, 1957.
- [15] N. Jacobson, *Structure of Rings*. Amer. Math. Soc., U.S.A., 1964.
- [16] W. Jing, and F. Lu, "Additivity of Jordan (triple) derivations on rings", *Commun. Algebra*, vol. 40, pp. 2700-2719, 2012.
- [17] P. Li, and F. Lu, "Additivity of elementary maps on rings", *Commun. Algebra*, vol. 32, no. 10, pp. 3725-3737, 2004.
- [18] W. S. Martindale III, "When are multiplicative mappings additive?", *Proc. Amer. Math. Soc.*, vol. 21, pp. 695-698, 1969.
- [19] Y. Wang, "The additivity of multiplicative maps on rings", *Commun. Algebra*, vol. 37, pp. 2351-2356, 2009.

Bruno L. M. Ferreira Federal University of Technology, Professora Laura Pacheco Bastos Avenue, 800, 85053-510, Guarapuava, Brazil e-mail: brunolmfalg@gmail.com

Corresponding author

and

Gurninder S. Sandhu

Department of Mathematics, Patel Memorial National College, Rajpura 140401, Punjab, India e-mail: gurninder⁻rs@pbi.ac.in