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Abstract

Let R be a ring with involution containing a nontrivial symmetric
idempotent element e. Let 6 : R — R be a mapping such that §(ab) =
d(b)a* +b*5(a) for all a,b € R, we call 6 a x—reverse derivable map
on R. In this paper, our aim is to show that under some suitable
restrictions imposed on R, every x—reverse derivable map of R is
additive.
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1. Introduction

Let R be a ring, an additive map ¢ : R — R such that d(ab) = d(a)b+ad(b)
for all a,b € R, is called a derivation. A derivation which is not nec-
essarily additive is said to be a multiplicative derivation or a derivable
map. A mapping § : R — R is known as multiplicative Jordan deriva-
tion of R if d(ab + ba) = d6(a)b + ad(b) + o(b)a + bd(a) for all a,b € R.
In addition, ¢ is called n-multiplicative derivation of R if §(ajaz---ayn) =
Yoieqatag---0(a;) - ay for all a1, ag,---,a, € R. A mapping F': R — R
(not necessarily additive) associated with a derivation d is called multiplica-
tive generalized derivation if F(zxy) = F(x)y + xd(y) for all z,y € R (see
[4]). In [14], Herstein introduced a mapping «fr satisfying (a—l—b)Jr —af bt
and (ab)]L = bla+ bal called a reverse derivation, which is certainly not a
derivation. Moreover, a mapping ¢ : R — R satisfying d(ab) = d(b)a+bd(a)
for all a,b € R is called a multiplicative reverse derivation or reverse deriv-
able map of R. A mapping ¥ : R — R is said to be a left (resp. right)
centralizer if 1 (ab) = ¥ (a)b (resp. ¥(ab) = arp(b)) for all a,b € R. More-
over, if ¢ is left and right centralizer, then it is called centralizer of R.
A left (resp. right) centralizer which is not necessarily additive is called
multiplicative left (resp. right) centralizer. By involution, we mean an
anti-automorphism * : R — R such that (z*)* = z for all z,y € R. An
element s € R satisfying s* = s is called a symmetric element of R.

Let e be an idempotent element of R such that e # 0,1. Then R can
be decomposed as follows:

R=cRe@eR(1—¢e)P(1 —e)ReP(1 —e)R(1 —¢)

This decomposition of R is called two-sided Peirce decomposition rela-
tive to e ([15], see pg. 48). It is easy to see that the components of this
decomposition are the subrings of R and for our convenience, we denote
Ri1 = eRe,Riz2 = eR(1—e), Ro1 = (1—e)Re and Ryy = (1—e)R(1—e). For
any r € R, we denote the elements of R;; by r;; for all 7,5 € {1,2}. We use
the notation e; := e and define e3: R — R and €5: R — R by esa = a — e1a
and e4a = a — ae;. We shall denote eha by aez. Note that R need not have
an identity element: the operation z(1 — y) for z,y € R is understood as
T — zY.

The present study is motivated by various additivity theorems proved
by several well-known algebraists (viz. [3, 4, 5, 16, 18, 19]). Studying
the interrelationship between the multiplicative and additive structure of
rings is a quite interesting subject nowadays. The pursuit of this line of
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investigation is inspired by a surprising result of Martindale [18], which
exhibits that how multiplicative structure of a ring determines its additive
structure. Precisely, Martindale [18] proved the following:

Theorem 1.1. Let R be a ring containing a family {e) : A € A} of idem-
potents which satisfies:

(1) xR = 0 implies z = 0.

(2) If exRx = 0 for each A € A, then © = 0 (and hence Rz = 0 implies
x=0).

(3) For each A € A, exzeyR(1 —ey) =0, implies eyzey = 0.

Then any multiplicative bijective map from a ring R into an arbitrary ring
S is additive.

Since then, this set of conditions has been used by a number of authors
in order to obtain the additivity of some specific mappings of rings and
algebras. In 1991, Daif [3] figured out that Martindale’s conditions can also
assure the additivity of multiplicative derivations. In this vein, with the
same set of conditions, Li and Lu [17] obtained the additivity of maps M :
R — R’ and M* : R' — R that are surjective and satisfy M (zM*(y)z) =
M(z)yM(z) and M*(yM (z)u) = M*(y)aM*(u) for all z,z € R and y,u €
R’. Moreover, in 2009, Wang [19] extended the results of Martindale and
Daif simultaneously, and gave a short proof of [17, Theorem 2.1].

Besides from the Martindale’s set of conditions, there are also some
studies available in the literature that investigate the additivity of certain
mappings of rings. For instance, in a systematic paper [5|, Eremita and
Ilisevic proved the additivity of multiplicative left centralizers that are de-
fined from R into a bimodule M over R and gave a number of applications
of the main result. Precisely, they proved the following:

Theorem 1.2. Let R be a ring and M be a bimodule over R. Further,
let e1 € R be a nontrivial idempotent (and 1 — ey = eg) such that for any
mée M ={me M:mZ(R) = (0)}, where Z(R) denotes the center of R,

(i) exmeiRey = (0) implies eyme; = 0,

(ii)) eymeaRe; = (0) implies eymey = 0,



1618 Bruno L. M. Ferreira and Gurninder S. Sandhu

(iii) eymeaRes = (0) implies e;mes = 0,

(0)
(iv) eame;Rea = (0) implies eame; = 0,
(v) eameaRe; = (0) implies eames = 0,
(0)

(vi) eameaRes = (0) implies eameg = 0.

Then every left centralizer ¢ : R — M is additive.

In 2007, Daif and Tammam-El-Sayiad [4] studied the additivity of multi-
plicative generalized derivations with slight modifications in conditions of
Martindale. In a recent paper, Jing and Lu [16] examined the additivity of
multiplicative Jordan derivations and obtained the following result:

Theorem 1.3. Let R be a ring containing a nontrivial idempotent and
satisfying the following conditions for i, j, k € {1,2}:

(P1) If ajjxji, = 0 for all xj;, € Rjy, then a;; = 0;
(P2) If zijjaj, = 0 for all ;; € R;j;, then aj;, = 0;
(P2) If ajzy + xiia,; = 0 for all x;; € Ry;, then a;; = 0.

If§ : R — R is a mapping satisfies 6(ab+ba) = 6(a)b+ad(b)+0(b)a+bd(a)
for all a,b € R, then ¢ is additive.

This sort of problems and their solutions are not limited only to the
class associative rings. For the case of non-associative rings and algebras
having nontrivial idempotents, additivity of various maps defined on them
has already been proved in the literature. In alternative rings, we can
mention the works in [6, 7, 8, 9, 10, 11, 12, 13].

In 1957, Herstein [14] introduced the notion of reverse derivation, and
proved that if R is a prime ring and d is a reverse derivation of R, then R
is a commutative integral domain, and hence d is an ordinary derivation of
R. Later, this result has been extended by Bresar and Vukman [1, 2]. The
notion of reverse derivation is related to some generalization of derivation,
for instance, every reverse derivation is a Jordan derivation. Therefore,
under the hypothesis taken by Jing and Lu [16, Theorem 1.2], every reverse
derivation is additive.
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In view of the above discussion, in this study we object to investigate
the additivity of a mapping 0 : R — R satisfies §(zy) = d(y)x* + y*d(z)
for all z,y € R, where % is the involution of R. If ¢ is additive, then it
is called *-reverse derivation, which is clearly neither a derivation nor a
reverse derivation. The basic example of *-reverse derivation is a map-
ping x — [a,x*], where a € R a fixed element, called the inner x—reverse
derivation. In addition, one can easily observe from the following example
that the theorem of Herstein [14, Theorem 2.1] does not hold for x—reverse
derivations:

a b
d

of integers. Define a mapping 6 : R — R such that

(2i)-(5%5)
() =(5s)

the standard involution of R. Clearly, § is a x—reverse derivation and R is
a noncommutative prime ring.

Example 1.1. Let R = ra,bye,de Z}, where Z is the ring

and

2. Main Results

Definition 2.1. Let R be a ring and '+’ be an involution on R. Then a
mapping 6 : R — R (not necessarily additive) is called x—reverse derivable
if 6(ab) = 6(b)a* + b*§(a) for all a,b € R.

The main result of this paper reads as follows:

Theorem 2.1. Let R be a ring with involution containing a nontrivial
symmetric idempotent element e and any element a € R such that the
following conditions are satisfied

(i) If zj;a;; = 0 for all z;; € Ry;, then a;; = 0;
(ZZ) If Qi Ti5 = 0 for all T € Rij with i # j, then ay; = 0.

Then every x—reverse derivable map 6 : R — R is additive.



1620 Bruno L. M. Ferreira and Gurninder S. Sandhu

It is easy to see that an unital prime ring with a nontrivial symmetric
idempotent e satisfies the conditions (7) and (i7) of the Theorem 2.1, so we
get the following

Corollary 2.1. Let R be an unital prime ring with a nontrivial symmetric
idempotent e. Then every x—reverse derivable map of R is additive.

Corollary 2.2. Let R be the ring same as in Theorem 2.1 and

R = {( iz ) F T ERij} = Ri1 ® Ri12® Ra1 © Ro2 = R.
T21 T2

0 0

e 0

00

be the non-trivial idempotent in R. Define 6 : R — R such that 6(XY) =
IY)T(X)+7(Y)o(X) forall X, Y € R, where T is the transpose map, which
is named transpose reverse derivable map. Under the same conditions of
Theorem 2.1, every transpose reverse derivable map is additive.

Moreover, Ri1 = {( rn 0 ) 1T € RH}. Similarly to other spaces

Ri2, Ro1 and Ros. Let £ =

It is easy to note that &(e) = a1y + a12 + as1 + age. Since §(e) = 6(e?) =
d(e)e*+e*d(e), it follows that §(e) = a12+ag;. Define a mapping p : R — R
such that p(x) = [ag1 — a12,z*]. It is not difficult to check that p is an
additive x—reverse derivable map. Thus, we set A = § — p, which is also a
x—reverse derivable map and A is additive if and only if § is so. Moreover
it is easy to observe that A(e) = 0.

We shall use the following fact very frequently in the sequel.

Proposition 2.1. Let s € R (sij € Rij, where i,j € {1,2}). Then s}; =
rji, where r = s* € R. Moreover, s;; = 7’;‘1
Proof. Let s € R be any element. Then for es(1 —e) = s12 € Rjo,
we have (es(1 —e))* = (1 —e)*s*e* = (1 — e)s™e. It gives that sj, = ra1,
where r = s*. Similarly, one can easily observe that s3; = 712, s7; = ru1
and s35 = 792. Moreover, for each s;; € R there exists unique r € R such
that r7; = s;; as * is bijective. a

Lemma 2.1. A(0) =0.
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Proof. The proof is trivial. |

Lemma 2.2. A(R;;) C Rj;, where1,j = {1,2}.

Proof. For any x1; € Ry, we have A(z11) = A(exi1e) = A(z1€)e* =
e*A(z11)e* = eA(x11)e € Ry1. Hence A(Ry1) C Rys.
For any x93 € Raz, A(w22) € R, we put A(xaz) = r11 +712 + 721 +722. Now
0= A(ewgg) = A(ZL‘QQ)e* = (7“11 =+ 719 + 121 + 7“22)6 = r11 + 791. Likewise
0= A(xgge) = G*A(.xgg) = 711 + T12- It implies T11 = 721 = T'12 = 0.
Therefore A(zag2) = 722 and hence A(Ra2) C Rao.
For any x12 € Ri2, A(x12) = b11 +b12 +ba1 +baa. Now A(z12) = A(ex1) =
A(z12)e® = bi1+b2; and 0 = A(z12e) = e*A(z12) = e(b11+b12+b21+b22) =
b11 4+ b12. Thus A(a?lg) = bs1 and hence A(ng) C Ros.
Let be x91 € Ro; then A(xa1) = c11 + c12 + 21 + c22. Now A(zgy) =
A(zgre) = e*A(xo1) = c11+c12 and 0 = A(exar) = A(za1)e* = (c11+c12+
co1 + ca2)e = c11 + ¢21. That yields A(x21) = c12 and hence A(Ra21) C Ria.
O

The following Steps have the same hypotheses of Theorem 2.1 and we
need these Steps for the proof of the main result.

Step 1: For ¢ 75 7, A(am + az-j) = A(a“) + A(aij) and A(aii + aﬂ-) =
A(au) + A(aji).

Let us work just with A(ai; + aij) = A(ay) + A(asj) because the other
case have a similar proof. Let t;; be an element of R;. First, observe
that, if ¢ # j then 0 = A(ajjti;) = t;;Aaij) + A(ti;)af; which implies
Atii)a; = —t5;A(ag;).

Now,
A(ai + aij)ti) = t;A(ai + aig) + Ati) (0 + aij)”
= ;A + aij) + A(ti)ag; — t5;A(aij).

On the other hand,

(21) A((au + aij)tii) = A(au u) (au) + A( ’L’L)

Then t;[A(aii + aij) — Aay) — Ala ])] = 0 which implies that, by
condition (1), [A(ai +aij) — A(ai) — A(aij)lik = 0 for 4,k = 1,2 and hence,
)

A(au + af’Lj) (au + A(a/lj)
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Step 2: For i # j, Aai; + aji) = Alaij) + Alaj;).
Let t;; be an element of R;; and recall that, if 4 # j, we have A(t;;)aj; =
—t5A(a;5). First,
A((ai; + aji)ti) = Majiti) = ;M azi) + Ati)aj;.
On the other hand,
A((aij + aji)tii) = t;Z'A(aij + aji) + A(tii)(aﬁ + aji)*'

Then, t}[A(a;j+aj;) —A(ai;) —A(aj;)] = 0 which implies that, by condition

) Y

(1), [A(aij + aji) — A(aij) — A(aj;)]ir = 0 for 4,k = 1,2 and hence,

Aaij + aji) = Alaiz) + Alagi).

Step 3: For i 75 7, A(ai]’ + bijij) = A(aij) + A(bijij).
Notice that (e; + bij)(aij + ¢j;) = aij + bijcjj. By Step 1, we have

A((ei +bij)(aij +¢j5)) = (aij +¢j5)"Alei + bij) + Alaij + cj5)(ei + bij)*
(aij + ¢j5)"A(bij) + (Alaiy) + Alcjj)) (i + bij)*.

Finally, comparing A((e;+b;j)(aij+cj;)) and A(a;;+bijcj;), a straight-
forward calculation shows us that

Alaij + bijcj;) = Alaiz) + A(bijcjj).

Step 4: For 1 75 j, A(aij + bz‘iCz‘j) = A(aij) + A(bzzczj)
Step 4 can be proved as Step 3, using the relation

(aij + bii)(ej + cij) = aii + biicij.

Step 5: For ¢ 75 7, A(aij + sz) = A(aij) + A(b”)
For ¢;; € Rj;, using Step 3,
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A((aij +big)ty;) = Alaijtjj + bijtj;)
= A(aiitj;) + Abijtss)
= t;‘jA(aij) + A(tjj)a;}- + t;jA(bij) + A(t]‘j)b;}-.
On the other hand, we have
A((aij + bij)tiz) = t5;A(aij + bij) + A(ts;)(aij + bij)*.

Then, t7;[A(aij +bij) — Alaij) — A(bij)] = 0, which implies, by condition
(i), [A(aij + bl]) — A(aij) — A(bw)]ﬂg =0. Since, by Lemma 2.2, A(RU) C
Rj;, we get

A(aij + bij) = Alaij) + A(byy).

Step 6: A(ai + bii) = Alai) + A(bi).
For t91 € Ro1, by Step 5, we have

Alto1(air +b11)) = A(terair + t21bi1)
= A(ta1a11) + A(t21b11)
= a]1A(to1) + A(a11)ts; + b11A(t21) + A(b11)t5,.

We also have
A(tor(a11 + b11)) = (@11 + b11)*A(ta1) + A(arr + b11)t5;-
Then, we obtain
[A(a11 +b11) — Aar) — A(bn)]t3, =0,

which implies, by Proposition 2.1, Lemma 2.2 and condition (ii), A(a11 +
bi1) — A(a11) — A(b11) = 0. Now for t12 € Rya, by Step 5, we have

A(tia(age +b22)) = A(tigags + ti12b22)
A(t12a22) + A(t12b92)
a5 A(t12) + Alagz)tis + b32A(t12) + A(ba2)t]s.

We also have

A(tlg(agg + 522)) = (CL22 + bgz)*A(tlg) + A(agg + 522)5{2.
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Then, we obtain
[A(ag2 + b22) — A(aga) — A(b2a)]t]y = 0,

which implies, by Proposition 2.1, Lemma 2.2 and condition (ii), A(ag +
bgg) — A(agg) - A(bgg) =0.

Step 7: A(all +b12 +co1 + dgg) = A(all) + A(blz) + A(Cgl) + A(dgg) and,
hence, A is additive.
For t11 € Ri1, we conclude that

A(t11)(a11 + b1z + co1 + da2)* + t11A(a11 + b1z + co1 + da2)
= A((a11 + bi2 + c21 + d22)t11)
Aaiitin + ca1ti)

(
(
(
A(aitin) + A(carta)
(
(

Aaritin) + A(bitin) + A(eatin) + A(daatin)
= A(ti)aj; +t11A(a1) + Atin)bis + t1A(b12)
+  A(ti1)esy + 11 A(car) + A(t)dse + 17 A(d22).

By condition (i), t§;[A(a11+bi2+c21 +d22) — A(a11) — A(b12) — A(ea1) —
A(da2)] = 0 implies

[A(all + big + co1 + dgg) — A(all) — A(blg) — A(Cgl) — A(dgg)]lk =0.

By a similar calculation, using too € Rao, one can conclude that
[A(a11 + b1z + co1 + da2) — A(a11) — A(b12) — A(ca1) — A(d2z)]ar = 0.

Therefore, A(all +big+co1+ d22) = A(all) + A(blz) + A(Cgl) + A(dgg).
The conclusion that A is additive is straightforward now.

We would like to end the article by noting a result on additivity for the
case of multiplicative derivable maps:

Theorem 2.2. Let R be a ring with involution containing a nontrivial
symmetric idempotent element e and the following conditions are satisfied

(1) If x5;a;; = 0 for all x;; € Ry, then a;; = 0;
(i1) If aj;zi; = 0 for all x;; € R;; with i # j, then a;; = 0.

Then every multiplicative derivable map ¢ : R — R is additive.
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Proof. It is sufficient to note that for a multiplicative derivable map
0 : R — R, we have that x0d : R — R is a x-reverse derivable map. So, by
Theorem 2.1 we have the desired result. O
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