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Abstract

Let R be a ring with involution containing a nontrivial symmetric
idempotent element e. Let δ : R→ R be a mapping such that δ(ab) =
δ(b)a∗ + b∗δ(a) for all a, b ∈ R, we call δ a ∗−reverse derivable map
on R. In this paper, our aim is to show that under some suitable
restrictions imposed on R, every ∗−reverse derivable map of R is
additive.
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1. Introduction

Let R be a ring, an additive map δ : R→ R such that δ(ab) = δ(a)b+aδ(b)
for all a, b ∈ R, is called a derivation. A derivation which is not nec-
essarily additive is said to be a multiplicative derivation or a derivable
map. A mapping δ : R → R is known as multiplicative Jordan deriva-
tion of R if δ(ab + ba) = δ(a)b + aδ(b) + δ(b)a + bδ(a) for all a, b ∈ R.
In addition, δ is called n-multiplicative derivation of R if δ(a1a2 · · · an) =Pn

i=1 a1a2 · · · δ(ai) · · · an for all a1, a2, · · · , an ∈ R. A mapping F : R → R
(not necessarily additive) associated with a derivation d is called multiplica-
tive generalized derivation if F (xy) = F (x)y + xd(y) for all x, y ∈ R (see

[4]). In [14], Herstein introduced a mapping “†” satisfying (a+b)† = a†+b†
and (ab)† = b†a+ ba† called a reverse derivation, which is certainly not a
derivation. Moreover, a mapping δ : R→ R satisfying δ(ab) = δ(b)a+bδ(a)
for all a, b ∈ R is called a multiplicative reverse derivation or reverse deriv-
able map of R. A mapping ψ : R → R is said to be a left (resp. right)
centralizer if ψ(ab) = ψ(a)b (resp. ψ(ab) = aψ(b)) for all a, b ∈ R. More-
over, if ψ is left and right centralizer, then it is called centralizer of R.
A left (resp. right) centralizer which is not necessarily additive is called
multiplicative left (resp. right) centralizer. By involution, we mean an
anti-automorphism ∗ : R → R such that (x∗)∗ = x for all x, y ∈ R. An
element s ∈ R satisfying s∗ = s is called a symmetric element of R.

Let e be an idempotent element of R such that e 6= 0, 1. Then R can
be decomposed as follows:

R = eRe
L

eR(1− e)
L
(1− e)Re

L
(1− e)R(1− e)

This decomposition of R is called two-sided Peirce decomposition rela-
tive to e ([15], see pg. 48). It is easy to see that the components of this
decomposition are the subrings of R and for our convenience, we denote
R11 = eRe,R12 = eR(1−e), R21 = (1−e)Re and R22 = (1−e)R(1−e). For
any r ∈ R, we denote the elements of Rij by rij for all i, j ∈ {1, 2}.We use
the notation e1 := e and define e2:R→ R and e02:R→ R by e2a = a− e1a
and e02a = a−ae1. We shall denote e

0
2a by ae2. Note that R need not have

an identity element: the operation x(1 − y) for x, y ∈ R is understood as
x− xy.

The present study is motivated by various additivity theorems proved
by several well-known algebraists (viz. [3, 4, 5, 16, 18, 19]). Studying
the interrelationship between the multiplicative and additive structure of
rings is a quite interesting subject nowadays. The pursuit of this line of
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investigation is inspired by a surprising result of Martindale [18], which
exhibits that how multiplicative structure of a ring determines its additive
structure. Precisely, Martindale [18] proved the following:

Theorem 1.1. Let R be a ring containing a family {eλ : λ ∈ Λ} of idem-
potents which satisfies:

(1) xR = 0 implies x = 0.

(2) If eλRx = 0 for each λ ∈ Λ, then x = 0 (and hence Rx = 0 implies
x = 0).

(3) For each λ ∈ Λ, eλxeλR(1− eλ) = 0, implies eλxeλ = 0.

Then any multiplicative bijective map from a ring R into an arbitrary ring
S is additive.

Since then, this set of conditions has been used by a number of authors
in order to obtain the additivity of some specific mappings of rings and
algebras. In 1991, Daif [3] figured out that Martindale’s conditions can also
assure the additivity of multiplicative derivations. In this vein, with the
same set of conditions, Li and Lu [17] obtained the additivity of maps M :
R → R0 and M∗ : R0 → R that are surjective and satisfy M(xM∗(y)z) =
M(x)yM(z) and M∗(yM(x)u) =M∗(y)xM∗(u) for all x, z ∈ R and y, u ∈
R0. Moreover, in 2009, Wang [19] extended the results of Martindale and
Daif simultaneously, and gave a short proof of [17, Theorem 2.1].

Besides from the Martindale’s set of conditions, there are also some
studies available in the literature that investigate the additivity of certain
mappings of rings. For instance, in a systematic paper [5], Eremita and
Iliševic proved the additivity of multiplicative left centralizers that are de-
fined from R into a bimodule M over R and gave a number of applications
of the main result. Precisely, they proved the following:

Theorem 1.2. Let R be a ring and M be a bimodule over R. Further,
let e1 ∈ R be a nontrivial idempotent (and 1− e1 = e2) such that for any
m ∈M 0 = {m ∈M : mZ(R) = (0)}, where Z(R) denotes the center of R,

(i) e1me1Re2 = (0) implies e1me1 = 0,

(ii) e1me2Re1 = (0) implies e1me2 = 0,
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(iii) e1me2Re2 = (0) implies e1me2 = 0,

(iv) e2me1Re2 = (0) implies e2me1 = 0,

(v) e2me2Re1 = (0) implies e2me2 = 0,

(vi) e2me2Re2 = (0) implies e2me2 = 0.

Then every left centralizer φ : R→M is additive.

In 2007, Daif and Tammam-El-Sayiad [4] studied the additivity of multi-
plicative generalized derivations with slight modifications in conditions of
Martindale. In a recent paper, Jing and Lu [16] examined the additivity of
multiplicative Jordan derivations and obtained the following result:

Theorem 1.3. Let R be a ring containing a nontrivial idempotent and
satisfying the following conditions for i, j, k ∈ {1, 2}:

(P1) If aijxjk = 0 for all xjk ∈ Rjk, then aij = 0;

(P2) If xijajk = 0 for all xij ∈ Rij , then ajk = 0;

(P2) If aiixii + xiiaii = 0 for all xii ∈ Rii, then aii = 0.

If δ : R→ R is a mapping satisfies δ(ab+ba) = δ(a)b+aδ(b)+δ(b)a+bδ(a)
for all a, b ∈ R, then δ is additive.

This sort of problems and their solutions are not limited only to the
class associative rings. For the case of non-associative rings and algebras
having nontrivial idempotents, additivity of various maps defined on them
has already been proved in the literature. In alternative rings, we can
mention the works in [6, 7, 8, 9, 10, 11, 12, 13].

In 1957, Herstein [14] introduced the notion of reverse derivation, and
proved that if R is a prime ring and d is a reverse derivation of R, then R
is a commutative integral domain, and hence d is an ordinary derivation of
R. Later, this result has been extended by Brešar and Vukman [1, 2]. The
notion of reverse derivation is related to some generalization of derivation,
for instance, every reverse derivation is a Jordan derivation. Therefore,
under the hypothesis taken by Jing and Lu [16, Theorem 1.2], every reverse
derivation is additive.
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In view of the above discussion, in this study we object to investigate
the additivity of a mapping δ : R → R satisfies δ(xy) = δ(y)x∗ + y∗δ(x)
for all x, y ∈ R, where ∗ is the involution of R. If δ is additive, then it
is called ∗-reverse derivation, which is clearly neither a derivation nor a
reverse derivation. The basic example of ∗-reverse derivation is a map-
ping x 7→ [a, x∗], where a ∈ R a fixed element, called the inner ∗−reverse
derivation. In addition, one can easily observe from the following example
that the theorem of Herstein [14, Theorem 2.1] does not hold for ∗−reverse
derivations:

Example 1.1. Let R =

(Ã
a b
c d

!
: a, b, c, d ∈ Z

)
, where Z is the ring

of integers. Define a mapping δ : R→ R such that

δ

Ã
a b
c d

!
=

Ã
0 c
−b 0

!

and Ã
a b
c d

!∗
=

Ã
a c
b d

!
the standard involution of R. Clearly, δ is a ∗−reverse derivation and R is
a noncommutative prime ring.

2. Main Results

Definition 2.1. Let R be a ring and 0∗0 be an involution on R. Then a
mapping δ : R→ R (not necessarily additive) is called ∗−reverse derivable
if δ(ab) = δ(b)a∗ + b∗δ(a) for all a, b ∈ R.

The main result of this paper reads as follows:

Theorem 2.1. Let R be a ring with involution containing a nontrivial
symmetric idempotent element e and any element a ∈ R such that the
following conditions are satisfied

(i) If xiiaij = 0 for all xii ∈ Rii, then aij = 0;

(ii) If aiixij = 0 for all xij ∈ Rij with i 6= j, then aii = 0.

Then every ∗−reverse derivable map δ : R→ R is additive.
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It is easy to see that an unital prime ring with a nontrivial symmetric
idempotent e satisfies the conditions (i) and (ii) of the Theorem 2.1, so we
get the following

Corollary 2.1. Let R be an unital prime ring with a nontrivial symmetric
idempotent e. Then every ∗−reverse derivable map of R is additive.

Corollary 2.2. Let R be the ring same as in Theorem 2.1 and

R =
(Ã

r11 r12
r21 r22

!
: rij ∈ Rij

)
∼= R11 ⊕R12 ⊕R21 ⊕R22 = R.

Moreover, R11 ≡
(Ã

r11 0
0 0

!
: r11 ∈ R11

)
. Similarly to other spaces

R12, R21 and R22. Let E =
Ã

e 0
0 0

!
be the non-trivial idempotent in R. Define δ : R→ R such that δ(XY ) =
δ(Y )τ(X)+τ(Y )δ(X) for allX,Y ∈ R, where τ is the transpose map, which
is named transpose reverse derivable map. Under the same conditions of
Theorem 2.1, every transpose reverse derivable map is additive.

It is easy to note that δ(e) = a11+a12+a21+a22. Since δ(e) = δ(e2) =
δ(e)e∗+e∗δ(e), it follows that δ(e) = a12+a21. Define a mapping ℘ : R→ R
such that ℘(x) = [a21 − a12, x

∗]. It is not difficult to check that ℘ is an
additive ∗−reverse derivable map. Thus, we set ∆ = δ −℘, which is also a
∗−reverse derivable map and ∆ is additive if and only if δ is so. Moreover
it is easy to observe that ∆(e) = 0.

We shall use the following fact very frequently in the sequel.

Proposition 2.1. Let s ∈ R (sij ∈ Rij , where i, j ∈ {1, 2}). Then s∗ij =
rji, where r = s∗ ∈ R. Moreover, sij = r∗ji.

Proof. Let s ∈ R be any element. Then for es(1 − e) = s12 ∈ R12,
we have (es(1 − e))∗ = (1 − e)∗s∗e∗ = (1 − e)s∗e. It gives that s∗12 = r21,
where r = s∗. Similarly, one can easily observe that s∗21 = r12, s∗11 = r11
and s∗22 = r22. Moreover, for each sij ∈ R there exists unique r ∈ R such
that r∗ji = sij as ∗ is bijective. 2

Lemma 2.1. ∆(0) = 0.
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Proof. The proof is trivial. 2

Lemma 2.2. ∆(Rij) ⊂ Rji, where i, j = {1, 2}.

Proof. For any x11 ∈ R11, we have ∆(x11) = ∆(ex11e) = ∆(x11e)e
∗ =

e∗∆(x11)e∗ = e∆(x11)e ∈ R11. Hence ∆(R11) ⊂ R11.
For any x22 ∈ R22, ∆(x22) ∈ R, we put ∆(x22) = r11+ r12+ r21+ r22. Now
0 = ∆(ex22) = ∆(x22)e

∗ = (r11 + r12 + r21 + r22)e = r11 + r21. Likewise
0 = ∆(x22e) = e∗∆(x22) = r11 + r12. It implies r11 = r21 = r12 = 0.
Therefore ∆(x22) = r22 and hence ∆(R22) ⊂ R22.
For any x12 ∈ R12, ∆(x12) = b11+b12+b21+b22. Now ∆(x12) = ∆(ex12) =
∆(x12)e

∗ = b11+b21 and 0 = ∆(x12e) = e∗∆(x12) = e(b11+b12+b21+b22) =
b11 + b12. Thus ∆(x12) = b21 and hence ∆(R12) ⊂ R21.
Let be x21 ∈ R21 then ∆(x21) = c11 + c12 + c21 + c22. Now ∆(x21) =
∆(x21e) = e∗∆(x21) = c11+c12 and 0 = ∆(ex21) = ∆(x21)e

∗ = (c11+c12+
c21+ c22)e = c11+ c21. That yields ∆(x21) = c12 and hence ∆(R21) ⊂ R12.
2

The following Steps have the same hypotheses of Theorem 2.1 and we
need these Steps for the proof of the main result.

Step 1: For i 6= j, ∆(aii + aij) = ∆(aii) + ∆(aij) and ∆(aii + aji) =
∆(aii) +∆(aji).
Let us work just with ∆(aii + aij) = ∆(aii) + ∆(aij) because the other
case have a similar proof. Let tii be an element of Rii. First, observe
that, if i 6= j then 0 = ∆(aijtii) = t∗ii∆(aij) + ∆(tii)a

∗
ij which implies

∆(tii)a
∗
ij = −t∗ii∆(aij).

Now,

∆((aii + aij)tii) = t∗ii∆(aii + aij) +∆(tii)(aii + aij)
∗

= t∗ii∆(aii + aij) +∆(tii)a
∗
ii − t∗ii∆(aij).

On the other hand,

∆((aii + aij)tii) = ∆(aiitii) = t∗ii∆(aii) +∆(tii)a
∗
ii(2.1)

Then t∗ii[∆(aii + aij) − ∆(aii) − ∆(aij)] = 0 which implies that, by
condition (i), [∆(aii+aij)−∆(aii)−∆(aij)]ik = 0 for i, k = 1, 2 and hence,

∆(aii + aij) = ∆(aii) +∆(aij).
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Step 2: For i 6= j, ∆(aij + aji) = ∆(aij) +∆(aji).
Let tii be an element of Rii and recall that, if i 6= j, we have ∆(tii)a

∗
ij =

−t∗ii∆(aij). First,

∆((aij + aji)tii) = ∆(ajitii) = t∗ii∆(aji) +∆(tii)a
∗
ji.

On the other hand,

∆((aij + aji)tii) = t∗ii∆(aij + aji) +∆(tii)(aji + aji)
∗.

Then, t∗ii[∆(aij+aji)−∆(aij)−∆(aji)] = 0 which implies that, by condition
(i), [∆(aij + aji)−∆(aij)−∆(aji)]ik = 0 for i, k = 1, 2 and hence,

∆(aij + aji) = ∆(aij) +∆(aji).

Step 3: For i 6= j, ∆(aij + bijcjj) = ∆(aij) +∆(bijcjj).
Notice that (ei + bij)(aij + cjj) = aij + bijcjj . By Step 1, we have

∆((ei + bij)(aij + cjj)) = (aij + cjj)
∗∆(ei + bij) +∆(aij + cjj)(ei + bij)

∗

= (aij + cjj)
∗∆(bij) + (∆(aij) +∆(cjj))(ei + bij)

∗.

Finally, comparing ∆((ei+bij)(aij+cjj)) and ∆(aij+bijcjj), a straight-
forward calculation shows us that

∆(aij + bijcjj) = ∆(aij) +∆(bijcjj).

Step 4: For i 6= j, ∆(aij + biicij) = ∆(aij) +∆(biicij).
Step 4 can be proved as Step 3, using the relation

(aij + bii)(ej + cij) = aii + biicij .

Step 5: For i 6= j, ∆(aij + bij) = ∆(aij) +∆(bij).
For tij ∈ Rjj , using Step 3,
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∆((aij + bij)tjj) = ∆(aijtjj + bijtjj)

= ∆(aijtjj) +∆(bijtjj)

= t∗jj∆(aij) +∆(tjj)a
∗
ij + t∗jj∆(bij) +∆(tjj)b

∗
ij .

On the other hand, we have

∆((aij + bij)tjj) = t∗jj∆(aij + bij) +∆(tjj)(aij + bij)
∗.

Then, t∗jj [∆(aij+bij)−∆(aij)−∆(bij)] = 0, which implies, by condition
(i), [∆(aij + bij)−∆(aij)−∆(bij)]jk = 0. Since, by Lemma 2.2, ∆(Rij) ⊂
Rji, we get

∆(aij + bij) = ∆(aij) +∆(bij).

Step 6: ∆(aii + bii) = ∆(aii) +∆(bii).
For t21 ∈ R21, by Step 5, we have

∆(t21(a11 + b11)) = ∆(t21a11 + t21b11)

= ∆(t21a11) +∆(t21b11)

= a∗11∆(t21) +∆(a11)t
∗
21 + b∗11∆(t21) +∆(b11)t

∗
21.

We also have

∆(t21(a11 + b11)) = (a11 + b11)
∗∆(t21) +∆(a11 + b11)t

∗
21.

Then, we obtain

[∆(a11 + b11)−∆(a11)−∆(b11)]t∗21 = 0,

which implies, by Proposition 2.1, Lemma 2.2 and condition (ii), ∆(a11 +
b11)−∆(a11)−∆(b11) = 0. Now for t12 ∈ R12, by Step 5, we have

∆(t12(a22 + b22)) = ∆(t12a22 + t12b22)

= ∆(t12a22) +∆(t12b22)

= a∗22∆(t12) +∆(a22)t
∗
12 + b∗22∆(t12) +∆(b22)t

∗
12.

We also have

∆(t12(a22 + b22)) = (a22 + b22)
∗∆(t12) +∆(a22 + b22)t

∗
12.
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Then, we obtain

[∆(a22 + b22)−∆(a22)−∆(b22)]t∗12 = 0,

which implies, by Proposition 2.1, Lemma 2.2 and condition (ii), ∆(a22 +
b22)−∆(a22)−∆(b22) = 0.

Step 7: ∆(a11+ b12+ c21+ d22) = ∆(a11)+∆(b12)+∆(c21)+∆(d22) and,
hence, ∆ is additive.
For t11 ∈ R11, we conclude that

∆(t11)(a11 + b12 + c21 + d22)
∗ + t∗11∆(a11 + b12 + c21 + d22)

= ∆((a11 + b12 + c21 + d22)t11)

= ∆(a11t11 + c21t11)

= ∆(a11t11) +∆(c21t11)

= ∆(a11t11) +∆(b12t11) +∆(c21t11) +∆(d22t11)

= ∆(t11)a
∗
11 + t∗11∆(a11) +∆(t11)b

∗
12 + t∗11∆(b12)

+ ∆(t11)c
∗
21 + t∗11∆(c21) +∆(t11)d

∗
22 + t∗11∆(d22).

By condition (i), t∗11[∆(a11+b12+c21+d22)−∆(a11)−∆(b12)−∆(c21)−
∆(d22)] = 0 implies

[∆(a11 + b12 + c21 + d22)−∆(a11)−∆(b12)−∆(c21)−∆(d22)]1k = 0.

By a similar calculation, using t22 ∈ R22, one can conclude that

[∆(a11 + b12 + c21 + d22)−∆(a11)−∆(b12)−∆(c21)−∆(d22)]2k = 0.

Therefore, ∆(a11+b12+c21+d22) = ∆(a11)+∆(b12)+∆(c21)+∆(d22).
The conclusion that ∆ is additive is straightforward now.

We would like to end the article by noting a result on additivity for the
case of multiplicative derivable maps:

Theorem 2.2. Let R be a ring with involution containing a nontrivial
symmetric idempotent element e and the following conditions are satisfied

(i) If xiiaij = 0 for all xii ∈ Rii, then aij = 0;

(ii) If aiixij = 0 for all xij ∈ Rij with i 6= j, then aii = 0.

Then every multiplicative derivable map δ : R→ R is additive.



On ∗-reverse derivable maps 1625

Proof. It is sufficient to note that for a multiplicative derivable map
δ : R→ R, we have that ∗ ◦ δ : R→ R is a ∗-reverse derivable map. So, by
Theorem 2.1 we have the desired result. 2
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