Proyecciones Journal of Mathematics
Vol. 42, N ${ }^{o}$ 6, pp. 1615-1626, December 2023.
Universidad Católica del Norte
Antofagasta - Chile

On *-reverse derivable maps

Bruno L. M. Ferreira (D)
Federal University of Technology, Brazil
and
Gurninder S. Sandhu
Patel Memorial National College, India
Received: February 2023. Accepted: August 2023

Abstract

Let R be a ring with involution containing a nontrivial symmetric idempotent element e. Let $\delta: R \rightarrow R$ be a mapping such that $\delta(a b)=$ $\delta(b) a^{*}+b^{*} \delta(a)$ for all $a, b \in R$, we call $\delta a *-$ reverse derivable map on R. In this paper, our aim is to show that under some suitable restrictions imposed on R, every *-reverse derivable map of R is additive.

2010 Mathematics Subject Classification: 17C27.

Keyword: Additivity, Reverse derivable maps, Involution, Peirce decomposition.

1. Introduction

Let R be a ring, an additive map $\delta: R \rightarrow R$ such that $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in R$, is called a derivation. A derivation which is not necessarily additive is said to be a multiplicative derivation or a derivable map. A mapping $\delta: R \rightarrow R$ is known as multiplicative Jordan derivation of R if $\delta(a b+b a)=\delta(a) b+a \delta(b)+\delta(b) a+b \delta(a)$ for all $a, b \in R$. In addition, δ is called n-multiplicative derivation of R if $\delta\left(a_{1} a_{2} \cdots a_{n}\right)=$ $\sum_{i=1}^{n} a_{1} a_{2} \cdots \delta\left(a_{i}\right) \cdots a_{n}$ for all $a_{1}, a_{2}, \cdots, a_{n} \in R$. A mapping $F: R \rightarrow R$ (not necessarily additive) associated with a derivation d is called multiplicative generalized derivation if $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$ (see [4]). In [14], Herstein introduced a mapping " \dagger " satisfying $(a+b)^{\dagger}=a^{\dagger}+b^{\dagger}$ and $(a b)^{\dagger}=b^{\dagger} a+b a^{\dagger}$ called a reverse derivation, which is certainly not a derivation. Moreover, a mapping $\delta: R \rightarrow R$ satisfying $\delta(a b)=\delta(b) a+b \delta(a)$ for all $a, b \in R$ is called a multiplicative reverse derivation or reverse derivable map of R. A mapping $\psi: R \rightarrow R$ is said to be a left (resp. right) centralizer if $\psi(a b)=\psi(a) b$ (resp. $\psi(a b)=a \psi(b))$ for all $a, b \in R$. Moreover, if ψ is left and right centralizer, then it is called centralizer of R. A left (resp. right) centralizer which is not necessarily additive is called multiplicative left (resp. right) centralizer. By involution, we mean an anti-automorphism $*: R \rightarrow R$ such that $\left(x^{*}\right)^{*}=x$ for all $x, y \in R$. An element $s \in R$ satisfying $s^{*}=s$ is called a symmetric element of R .

Let e be an idempotent element of R such that $e \neq 0,1$. Then R can be decomposed as follows:

$$
R=e R e \bigoplus e R(1-e) \bigoplus(1-e) R e \bigoplus(1-e) R(1-e)
$$

This decomposition of R is called two-sided Peirce decomposition relative to $e([15]$, see pg. 48). It is easy to see that the components of this decomposition are the subrings of R and for our convenience, we denote $R_{11}=e R e, R_{12}=e R(1-e), R_{21}=(1-e) R e$ and $R_{22}=(1-e) R(1-e)$. For any $r \in R$, we denote the elements of $R_{i j}$ by $r_{i j}$ for all $i, j \in\{1,2\}$. We use the notation $e_{1}:=e$ and define $e_{2}: R \rightarrow R$ and $e_{2}^{\prime}: R \rightarrow R$ by $e_{2} a=a-e_{1} a$ and $e_{2}^{\prime} a=a-a e_{1}$. We shall denote $e_{2}^{\prime} a$ by $a e_{2}$. Note that R need not have an identity element: the operation $x(1-y)$ for $x, y \in R$ is understood as $x-x y$.

The present study is motivated by various additivity theorems proved by several well-known algebraists (viz. [3, 4, 5, 16, 18, 19]). Studying the interrelationship between the multiplicative and additive structure of rings is a quite interesting subject nowadays. The pursuit of this line of
investigation is inspired by a surprising result of Martindale [18], which exhibits that how multiplicative structure of a ring determines its additive structure. Precisely, Martindale [18] proved the following:

Theorem 1.1. Let R be a ring containing a family $\left\{e_{\lambda}: \lambda \in \Lambda\right\}$ of idempotents which satisfies:
(1) $x R=0$ implies $x=0$.
(2) If $e_{\lambda} R x=0$ for each $\lambda \in \Lambda$, then $x=0$ (and hence $R x=0$ implies $x=0)$.
(3) For each $\lambda \in \Lambda, e_{\lambda} x e_{\lambda} R\left(1-e_{\lambda}\right)=0$, implies $e_{\lambda} x e_{\lambda}=0$.

Then any multiplicative bijective map from a ring R into an arbitrary ring S is additive.

Since then, this set of conditions has been used by a number of authors in order to obtain the additivity of some specific mappings of rings and algebras. In 1991, Daif [3] figured out that Martindale's conditions can also assure the additivity of multiplicative derivations. In this vein, with the same set of conditions, Li and $\mathrm{Lu}[17]$ obtained the additivity of maps M : $R \rightarrow R^{\prime}$ and $M^{*}: R^{\prime} \rightarrow R$ that are surjective and satisfy $M\left(x M^{*}(y) z\right)=$ $M(x) y M(z)$ and $M^{*}(y M(x) u)=M^{*}(y) x M^{*}(u)$ for all $x, z \in R$ and $y, u \in$ R^{\prime}. Moreover, in 2009, Wang [19] extended the results of Martindale and Daif simultaneously, and gave a short proof of [17, Theorem 2.1].

Besides from the Martindale's set of conditions, there are also some studies available in the literature that investigate the additivity of certain mappings of rings. For instance, in a systematic paper [5], Eremita and Iliševic proved the additivity of multiplicative left centralizers that are defined from R into a bimodule M over R and gave a number of applications of the main result. Precisely, they proved the following:

Theorem 1.2. Let R be a ring and M be a bimodule over R. Further, let $e_{1} \in R$ be a nontrivial idempotent (and $1-e_{1}=e_{2}$) such that for any $m \in M^{\prime}=\{m \in M: m Z(R)=(0)\}$, where $Z(R)$ denotes the center of R,
(i) $e_{1} m e_{1} R e_{2}=(0)$ implies $e_{1} m e_{1}=0$,
(ii) $e_{1} m e_{2} R e_{1}=(0)$ implies $e_{1} m e_{2}=0$,
(iii) $e_{1} m e_{2} R e_{2}=(0)$ implies $e_{1} m e_{2}=0$,
(iv) $e_{2} m e_{1} R e_{2}=(0)$ implies $e_{2} m e_{1}=0$,
(v) $e_{2} m e_{2} R e_{1}=(0)$ implies $e_{2} m e_{2}=0$,
(vi) $e_{2} m e_{2} R e_{2}=(0)$ implies $e_{2} m e_{2}=0$.

Then every left centralizer $\phi: R \rightarrow M$ is additive.
In 2007, Daif and Tammam-El-Sayiad [4] studied the additivity of multiplicative generalized derivations with slight modifications in conditions of Martindale. In a recent paper, Jing and $\mathrm{Lu}[16]$ examined the additivity of multiplicative Jordan derivations and obtained the following result:

Theorem 1.3. Let R be a ring containing a nontrivial idempotent and satisfying the following conditions for $i, j, k \in\{1,2\}$:
(P1) If $a_{i j} x_{j k}=0$ for all $x_{j k} \in R_{j k}$, then $a_{i j}=0$;
(P2) If $x_{i j} a_{j k}=0$ for all $x_{i j} \in R_{i j}$, then $a_{j k}=0$;
(P2) If $a_{i i} x_{i i}+x_{i i} a_{i i}=0$ for all $x_{i i} \in R_{i i}$, then $a_{i i}=0$.
If $\delta: R \rightarrow R$ is a mapping satisfies $\delta(a b+b a)=\delta(a) b+a \delta(b)+\delta(b) a+b \delta(a)$ for all $a, b \in R$, then δ is additive.

This sort of problems and their solutions are not limited only to the class associative rings. For the case of non-associative rings and algebras having nontrivial idempotents, additivity of various maps defined on them has already been proved in the literature. In alternative rings, we can mention the works in $[6,7,8,9,10,11,12,13]$.

In 1957, Herstein [14] introduced the notion of reverse derivation, and proved that if R is a prime ring and d is a reverse derivation of R, then R is a commutative integral domain, and hence d is an ordinary derivation of R. Later, this result has been extended by Brešar and Vukman [1, 2]. The notion of reverse derivation is related to some generalization of derivation, for instance, every reverse derivation is a Jordan derivation. Therefore, under the hypothesis taken by Jing and Lu [16, Theorem 1.2], every reverse derivation is additive.

In view of the above discussion, in this study we object to investigate the additivity of a mapping $\delta: R \rightarrow R$ satisfies $\delta(x y)=\delta(y) x^{*}+y^{*} \delta(x)$ for all $x, y \in R$, where $*$ is the involution of R. If δ is additive, then it is called $*$-reverse derivation, which is clearly neither a derivation nor a reverse derivation. The basic example of $*$-reverse derivation is a mapping $x \mapsto\left[a, x^{*}\right]$, where $a \in R$ a fixed element, called the inner $*-$ reverse derivation. In addition, one can easily observe from the following example that the theorem of Herstein [14, Theorem 2.1] does not hold for $*$-reverse derivations:

Example 1.1. Let $R=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbf{Z}\right\}$, where \mathbf{Z} is the ring of integers. Define a mapping $\delta: R \rightarrow R$ such that

$$
\delta\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
0 & c \\
-b & 0
\end{array}\right)
$$

and

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{*}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

the standard involution of R. Clearly, δ is a $*-$ reverse derivation and R is a noncommutative prime ring.

2. Main Results

Definition 2.1. Let R be a ring and ' ${ }^{\prime}$ ' be an involution on R. Then a mapping $\delta: R \rightarrow R$ (not necessarily additive) is called $*-$ reverse derivable if $\delta(a b)=\delta(b) a^{*}+b^{*} \delta(a)$ for all $a, b \in R$.

The main result of this paper reads as follows:
Theorem 2.1. Let R be a ring with involution containing a nontrivial symmetric idempotent element e and any element $a \in R$ such that the following conditions are satisfied
(i) If $x_{i i} a_{i j}=0$ for all $x_{i i} \in R_{i i}$, then $a_{i j}=0$;
(ii) If $a_{i i} x_{i j}=0$ for all $x_{i j} \in R_{i j}$ with $i \neq j$, then $a_{i i}=0$.

Then every $*$-reverse derivable map $\delta: R \rightarrow R$ is additive.

It is easy to see that an unital prime ring with a nontrivial symmetric idempotent e satisfies the conditions (i) and (ii) of the Theorem 2.1, so we get the following

Corollary 2.1. Let R be an unital prime ring with a nontrivial symmetric idempotent e. Then every *-reverse derivable map of R is additive.

Corollary 2.2. Let R be the ring same as in Theorem 2.1 and

$$
\mathcal{R}=\left\{\left(\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{array}\right): r_{i j} \in R_{i j}\right\} \cong R_{11} \oplus R_{12} \oplus R_{21} \oplus R_{22}=R .
$$

Moreover, $R_{11} \equiv\left\{\left(\begin{array}{cc}r_{11} & 0 \\ 0 & 0\end{array}\right): r_{11} \in R_{11}\right\}$. Similarly to other spaces R_{12}, R_{21} and R_{22}. Let $\mathcal{E}=\left(\begin{array}{cc}e & 0 \\ 0 & 0\end{array}\right)$
be the non-trivial idempotent in \mathcal{R}. Define $\delta: \mathcal{R} \rightarrow \mathcal{R}$ such that $\delta(X Y)=$ $\delta(Y) \tau(X)+\tau(Y) \delta(X)$ for all $X, Y \in \mathcal{R}$, where τ is the transpose map, which is named transpose reverse derivable map. Under the same conditions of Theorem 2.1, every transpose reverse derivable map is additive.

It is easy to note that $\delta(e)=a_{11}+a_{12}+a_{21}+a_{22}$. Since $\delta(e)=\delta\left(e^{2}\right)=$ $\delta(e) e^{*}+e^{*} \delta(e)$, it follows that $\delta(e)=a_{12}+a_{21}$. Define a mapping $\wp: R \rightarrow R$ such that $\wp(x)=\left[a_{21}-a_{12}, x^{*}\right]$. It is not difficult to check that \wp is an additive $*-$ reverse derivable map. Thus, we set $\Delta=\delta-\wp$, which is also a *-reverse derivable map and Δ is additive if and only if δ is so. Moreover it is easy to observe that $\Delta(e)=0$.

We shall use the following fact very frequently in the sequel.
Proposition 2.1. Let $s \in R\left(s_{i j} \in R_{i j}\right.$, where $\left.i, j \in\{1,2\}\right)$. Then $s_{i j}^{*}=$ $r_{j i}$, where $r=s^{*} \in R$. Moreover, $s_{i j}=r_{j i}^{*}$.

Proof. Let $s \in R$ be any element. Then for $e s(1-e)=s_{12} \in R_{12}$, we have $(e s(1-e))^{*}=(1-e)^{*} s^{*} e^{*}=(1-e) s^{*} e$. It gives that $s_{12}^{*}=r_{21}$, where $r=s^{*}$. Similarly, one can easily observe that $s_{21}^{*}=r_{12}, s_{11}^{*}=r_{11}$ and $s_{22}^{*}=r_{22}$. Moreover, for each $s_{i j} \in R$ there exists unique $r \in R$ such that $r_{j i}^{*}=s_{i j}$ as $*$ is bijective.

Lemma 2.1. $\Delta(0)=0$.

Proof. The proof is trivial.
Lemma 2.2. $\Delta\left(R_{i j}\right) \subset R_{j i}$, where $i, j=\{1,2\}$.
Proof. For any $x_{11} \in R_{11}$, we have $\Delta\left(x_{11}\right)=\Delta\left(e x_{11} e\right)=\Delta\left(x_{11} e\right) e^{*}=$ $e^{*} \Delta\left(x_{11}\right) e^{*}=e \Delta\left(x_{11}\right) e \in R_{11}$. Hence $\Delta\left(R_{11}\right) \subset R_{11}$.
For any $x_{22} \in R_{22}, \Delta\left(x_{22}\right) \in R$, we put $\Delta\left(x_{22}\right)=r_{11}+r_{12}+r_{21}+r_{22}$. Now $0=\Delta\left(e x_{22}\right)=\Delta\left(x_{22}\right) e^{*}=\left(r_{11}+r_{12}+r_{21}+r_{22}\right) e=r_{11}+r_{21}$. Likewise $0=\Delta\left(x_{22} e\right)=e^{*} \Delta\left(x_{22}\right)=r_{11}+r_{12}$. It implies $r_{11}=r_{21}=r_{12}=0$. Therefore $\Delta\left(x_{22}\right)=r_{22}$ and hence $\Delta\left(R_{22}\right) \subset R_{22}$.
For any $x_{12} \in R_{12}, \Delta\left(x_{12}\right)=b_{11}+b_{12}+b_{21}+b_{22}$. Now $\Delta\left(x_{12}\right)=\Delta\left(e x_{12}\right)=$ $\Delta\left(x_{12}\right) e^{*}=b_{11}+b_{21}$ and $0=\Delta\left(x_{12} e\right)=e^{*} \Delta\left(x_{12}\right)=e\left(b_{11}+b_{12}+b_{21}+b_{22}\right)=$ $b_{11}+b_{12}$. Thus $\Delta\left(x_{12}\right)=b_{21}$ and hence $\Delta\left(R_{12}\right) \subset R_{21}$.
Let be $x_{21} \in R_{21}$ then $\Delta\left(x_{21}\right)=c_{11}+c_{12}+c_{21}+c_{22}$. Now $\Delta\left(x_{21}\right)=$ $\Delta\left(x_{21} e\right)=e^{*} \Delta\left(x_{21}\right)=c_{11}+c_{12}$ and $0=\Delta\left(e x_{21}\right)=\Delta\left(x_{21}\right) e^{*}=\left(c_{11}+c_{12}+\right.$ $\left.c_{21}+c_{22}\right) e=c_{11}+c_{21}$. That yields $\Delta\left(x_{21}\right)=c_{12}$ and hence $\Delta\left(R_{21}\right) \subset R_{12}$.

The following Steps have the same hypotheses of Theorem 2.1 and we need these Steps for the proof of the main result.

Step 1: For $i \neq j, \Delta\left(a_{i i}+a_{i j}\right)=\Delta\left(a_{i i}\right)+\Delta\left(a_{i j}\right)$ and $\Delta\left(a_{i i}+a_{j i}\right)=$ $\Delta\left(a_{i i}\right)+\Delta\left(a_{j i}\right)$.
Let us work just with $\Delta\left(a_{i i}+a_{i j}\right)=\Delta\left(a_{i i}\right)+\Delta\left(a_{i j}\right)$ because the other case have a similar proof. Let $t_{i i}$ be an element of $R_{i i}$. First, observe that, if $i \neq j$ then $0=\Delta\left(a_{i j} t_{i i}\right)=t_{i i}^{*} \Delta\left(a_{i j}\right)+\Delta\left(t_{i i}\right) a_{i j}^{*}$ which implies $\Delta\left(t_{i i}\right) a_{i j}^{*}=-t_{i i}^{*} \Delta\left(a_{i j}\right)$.

Now,

$$
\begin{aligned}
\Delta\left(\left(a_{i i}+a_{i j}\right) t_{i i}\right) & =t_{i i}^{*} \Delta\left(a_{i i}+a_{i j}\right)+\Delta\left(t_{i i}\right)\left(a_{i i}+a_{i j}\right)^{*} \\
& =t_{i i}^{*} \Delta\left(a_{i i}+a_{i j}\right)+\Delta\left(t_{i i}\right) a_{i i}^{*}-t_{i i}^{*} \Delta\left(a_{i j}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{equation*}
\Delta\left(\left(a_{i i}+a_{i j}\right) t_{i i}\right)=\Delta\left(a_{i i} t_{i i}\right)=t_{i i}^{*} \Delta\left(a_{i i}\right)+\Delta\left(t_{i i}\right) a_{i i}^{*} \tag{2.1}
\end{equation*}
$$

Then $t_{i i}^{*}\left[\Delta\left(a_{i i}+a_{i j}\right)-\Delta\left(a_{i i}\right)-\Delta\left(a_{i j}\right)\right]=0$ which implies that, by condition (i), $\left[\Delta\left(a_{i i}+a_{i j}\right)-\Delta\left(a_{i i}\right)-\Delta\left(a_{i j}\right)\right]_{i k}=0$ for $i, k=1,2$ and hence,

$$
\Delta\left(a_{i i}+a_{i j}\right)=\Delta\left(a_{i i}\right)+\Delta\left(a_{i j}\right) .
$$

Step 2: For $i \neq j, \Delta\left(a_{i j}+a_{j i}\right)=\Delta\left(a_{i j}\right)+\Delta\left(a_{j i}\right)$.
Let $t_{i i}$ be an element of $R_{i i}$ and recall that, if $i \neq j$, we have $\Delta\left(t_{i i}\right) a_{i j}^{*}=$ $-t_{i i}^{*} \Delta\left(a_{i j}\right)$. First,

$$
\Delta\left(\left(a_{i j}+a_{j i}\right) t_{i i}\right)=\Delta\left(a_{j i} t_{i i}\right)=t_{i i}^{*} \Delta\left(a_{j i}\right)+\Delta\left(t_{i i}\right) a_{j i}^{*} .
$$

On the other hand,

$$
\Delta\left(\left(a_{i j}+a_{j i}\right) t_{i i}\right)=t_{i i}^{*} \Delta\left(a_{i j}+a_{j i}\right)+\Delta\left(t_{i i}\right)\left(a_{j i}+a_{j i}\right)^{*} .
$$

Then, $t_{i i}^{*}\left[\Delta\left(a_{i j}+a_{j i}\right)-\Delta\left(a_{i j}\right)-\Delta\left(a_{j i}\right)\right]=0$ which implies that, by condition (i), $\left[\Delta\left(a_{i j}+a_{j i}\right)-\Delta\left(a_{i j}\right)-\Delta\left(a_{j i}\right)\right]_{i k}=0$ for $i, k=1,2$ and hence,

$$
\Delta\left(a_{i j}+a_{j i}\right)=\Delta\left(a_{i j}\right)+\Delta\left(a_{j i}\right) .
$$

Step 3: For $i \neq j, \Delta\left(a_{i j}+b_{i j} c_{j j}\right)=\Delta\left(a_{i j}\right)+\Delta\left(b_{i j} c_{j j}\right)$.
Notice that $\left(e_{i}+b_{i j}\right)\left(a_{i j}+c_{j j}\right)=a_{i j}+b_{i j} c_{j j}$. By Step 1, we have

$$
\begin{aligned}
\Delta\left(\left(e_{i}+b_{i j}\right)\left(a_{i j}+c_{j j}\right)\right) & =\left(a_{i j}+c_{j j}\right)^{*} \Delta\left(e_{i}+b_{i j}\right)+\Delta\left(a_{i j}+c_{j j}\right)\left(e_{i}+b_{i j}\right)^{*} \\
& =\left(a_{i j}+c_{j j}\right)^{*} \Delta\left(b_{i j}\right)+\left(\Delta\left(a_{i j}\right)+\Delta\left(c_{j j}\right)\right)\left(e_{i}+b_{i j}\right)^{*} .
\end{aligned}
$$

Finally, comparing $\Delta\left(\left(e_{i}+b_{i j}\right)\left(a_{i j}+c_{j j}\right)\right)$ and $\Delta\left(a_{i j}+b_{i j} c_{j j}\right)$, a straightforward calculation shows us that

$$
\Delta\left(a_{i j}+b_{i j} c_{j j}\right)=\Delta\left(a_{i j}\right)+\Delta\left(b_{i j} c_{j j}\right)
$$

Step 4: For $i \neq j, \Delta\left(a_{i j}+b_{i i} c_{i j}\right)=\Delta\left(a_{i j}\right)+\Delta\left(b_{i i} c_{i j}\right)$.
Step 4 can be proved as Step 3, using the relation

$$
\left(a_{i j}+b_{i i}\right)\left(e_{j}+c_{i j}\right)=a_{i i}+b_{i i} c_{i j} .
$$

Step 5: For $i \neq j, \Delta\left(a_{i j}+b_{i j}\right)=\Delta\left(a_{i j}\right)+\Delta\left(b_{i j}\right)$.
For $t_{i j} \in R_{j j}$, using Step 3,

$$
\begin{aligned}
\Delta\left(\left(a_{i j}+b_{i j}\right) t_{j j}\right) & =\Delta\left(a_{i j} t_{j j}+b_{i j} t_{j j}\right) \\
& =\Delta\left(a_{i j} t_{j j}\right)+\Delta\left(b_{i j} t_{j j}\right) \\
& =t_{j j}^{*} \Delta\left(a_{i j}\right)+\Delta\left(t_{j j}\right) a_{i j}^{*}+t_{j j}^{*} \Delta\left(b_{i j}\right)+\Delta\left(t_{j j}\right) b_{i j}^{*}
\end{aligned}
$$

On the other hand, we have

$$
\Delta\left(\left(a_{i j}+b_{i j}\right) t_{j j}\right)=t_{j j}^{*} \Delta\left(a_{i j}+b_{i j}\right)+\Delta\left(t_{j j}\right)\left(a_{i j}+b_{i j}\right)^{*}
$$

Then, $t_{j j}^{*}\left[\Delta\left(a_{i j}+b_{i j}\right)-\Delta\left(a_{i j}\right)-\Delta\left(b_{i j}\right)\right]=0$, which implies, by condition (i), $\left[\Delta\left(a_{i j}+b_{i j}\right)-\Delta\left(a_{i j}\right)-\Delta\left(b_{i j}\right)\right]_{j k}=0$. Since, by Lemma 2.2, $\Delta\left(R_{i j}\right) \subset$ $R_{j i}$, we get

$$
\Delta\left(a_{i j}+b_{i j}\right)=\Delta\left(a_{i j}\right)+\Delta\left(b_{i j}\right) .
$$

Step 6: $\Delta\left(a_{i i}+b_{i i}\right)=\Delta\left(a_{i i}\right)+\Delta\left(b_{i i}\right)$.
For $t_{21} \in R_{21}$, by Step 5, we have

$$
\begin{aligned}
\Delta\left(t_{21}\left(a_{11}+b_{11}\right)\right) & =\Delta\left(t_{21} a_{11}+t_{21} b_{11}\right) \\
& =\Delta\left(t_{21} a_{11}\right)+\Delta\left(t_{21} b_{11}\right) \\
& =a_{11}^{*} \Delta\left(t_{21}\right)+\Delta\left(a_{11}\right) t_{21}^{*}+b_{11}^{*} \Delta\left(t_{21}\right)+\Delta\left(b_{11}\right) t_{21}^{*}
\end{aligned}
$$

We also have

$$
\Delta\left(t_{21}\left(a_{11}+b_{11}\right)\right)=\left(a_{11}+b_{11}\right)^{*} \Delta\left(t_{21}\right)+\Delta\left(a_{11}+b_{11}\right) t_{21}^{*} .
$$

Then, we obtain

$$
\left[\Delta\left(a_{11}+b_{11}\right)-\Delta\left(a_{11}\right)-\Delta\left(b_{11}\right)\right] t_{21}^{*}=0
$$

which implies, by Proposition 2.1, Lemma 2.2 and condition (ii), $\Delta\left(a_{11}+\right.$ $\left.b_{11}\right)-\Delta\left(a_{11}\right)-\Delta\left(b_{11}\right)=0$. Now for $t_{12} \in R_{12}$, by Step 5 , we have

$$
\begin{aligned}
\Delta\left(t_{12}\left(a_{22}+b_{22}\right)\right) & =\Delta\left(t_{12} a_{22}+t_{12} b_{22}\right) \\
& =\Delta\left(t_{12} a_{22}\right)+\Delta\left(t_{12} b_{22}\right) \\
& =a_{22}^{*} \Delta\left(t_{12}\right)+\Delta\left(a_{22}\right) t_{12}^{*}+b_{22}^{*} \Delta\left(t_{12}\right)+\Delta\left(b_{22}\right) t_{12}^{*}
\end{aligned}
$$

We also have

$$
\Delta\left(t_{12}\left(a_{22}+b_{22}\right)\right)=\left(a_{22}+b_{22}\right)^{*} \Delta\left(t_{12}\right)+\Delta\left(a_{22}+b_{22}\right) t_{12}^{*} .
$$

Then, we obtain

$$
\left[\Delta\left(a_{22}+b_{22}\right)-\Delta\left(a_{22}\right)-\Delta\left(b_{22}\right)\right] t_{12}^{*}=0
$$

which implies, by Proposition 2.1, Lemma 2.2 and condition (ii), $\Delta\left(a_{22}+\right.$ $\left.b_{22}\right)-\Delta\left(a_{22}\right)-\Delta\left(b_{22}\right)=0$.

Step 7: $\Delta\left(a_{11}+b_{12}+c_{21}+d_{22}\right)=\Delta\left(a_{11}\right)+\Delta\left(b_{12}\right)+\Delta\left(c_{21}\right)+\Delta\left(d_{22}\right)$ and, hence, Δ is additive.
For $t_{11} \in R_{11}$, we conclude that

$$
\begin{aligned}
& \Delta\left(t_{11}\right)\left(a_{11}+b_{12}+c_{21}+d_{22}\right)^{*}+t_{11}^{*} \Delta\left(a_{11}+b_{12}+c_{21}+d_{22}\right) \\
= & \Delta\left(\left(a_{11}+b_{12}+c_{21}+d_{22}\right) t_{11}\right) \\
= & \Delta\left(a_{11} t_{11}+c_{21} t_{11}\right) \\
= & \Delta\left(a_{11} t_{11}\right)+\Delta\left(c_{21} t_{11}\right) \\
= & \Delta\left(a_{11} t_{11}\right)+\Delta\left(b_{12} t_{11}\right)+\Delta\left(c_{21} t_{11}\right)+\Delta\left(d_{22} t_{11}\right) \\
= & \Delta\left(t_{11}\right) a_{11}^{*}+t_{11}^{*} \Delta\left(a_{11}\right)+\Delta\left(t_{11}\right) b_{12}^{*}+t_{11}^{*} \Delta\left(b_{12}\right) \\
+ & \Delta\left(t_{11}\right) c_{21}^{*}+t_{11}^{*} \Delta\left(c_{21}\right)+\Delta\left(t_{11}\right) d_{22}^{*}+t_{11}^{*} \Delta\left(d_{22}\right) .
\end{aligned}
$$

By condition (i), $t_{11}^{*}\left[\Delta\left(a_{11}+b_{12}+c_{21}+d_{22}\right)-\Delta\left(a_{11}\right)-\Delta\left(b_{12}\right)-\Delta\left(c_{21}\right)-\right.$ $\left.\Delta\left(d_{22}\right)\right]=0$ implies

$$
\left[\Delta\left(a_{11}+b_{12}+c_{21}+d_{22}\right)-\Delta\left(a_{11}\right)-\Delta\left(b_{12}\right)-\Delta\left(c_{21}\right)-\Delta\left(d_{22}\right)\right]_{1 k}=0 .
$$

By a similar calculation, using $t_{22} \in R_{22}$, one can conclude that

$$
\left[\Delta\left(a_{11}+b_{12}+c_{21}+d_{22}\right)-\Delta\left(a_{11}\right)-\Delta\left(b_{12}\right)-\Delta\left(c_{21}\right)-\Delta\left(d_{22}\right)\right]_{2 k}=0
$$

Therefore, $\Delta\left(a_{11}+b_{12}+c_{21}+d_{22}\right)=\Delta\left(a_{11}\right)+\Delta\left(b_{12}\right)+\Delta\left(c_{21}\right)+\Delta\left(d_{22}\right)$. The conclusion that Δ is additive is straightforward now.

We would like to end the article by noting a result on additivity for the case of multiplicative derivable maps:

Theorem 2.2. Let R be a ring with involution containing a nontrivial symmetric idempotent element e and the following conditions are satisfied
(i) If $x_{i i} a_{i j}=0$ for all $x_{i i} \in R_{i i}$, then $a_{i j}=0$;
(ii) If $a_{i i} x_{i j}=0$ for all $x_{i j} \in R_{i j}$ with $i \neq j$, then $a_{i i}=0$.

Then every multiplicative derivable map $\delta: R \rightarrow R$ is additive.

Proof. It is sufficient to note that for a multiplicative derivable map $\delta: R \rightarrow R$, we have that $* \circ \delta: R \rightarrow R$ is a $*$-reverse derivable map. So, by Theorem 2.1 we have the desired result.

References

[1] M. Bresăr, and J. Vukman, "Jordan derivations on prime rings", Bull. Aust. M ath. Soc., vol. 37, no. 3, pp. 321-322, 1988.
[2] M. Brešar, and J. Vukman, "Jordan (θ, ϕ)-derivations", Glas. M at. Ser. III, vol. 26, no. 1-2, pp. 13-17, 1991
[3] M . N. Daif, "W hen is a multiplicative derivation additive?", Internat. J. M ath. Math. Sci., vol. 14, no. 3, pp. 615-618, 1991
[4] M. N. Daif, and M. S. Tammam-El-Sayiad, "M ultiplicative generalized derivations which are additive", East-West J. Math., vol. 9, no. 1, pp. 31-37, 2007.
[5] D. Eremita, and D. Ilisevic, "On additivity of centralisers", Bull. Aust. M ath. Soc., vol. 74, pp. 177-184, 2006.
[6] B. L. M . Ferreira, "Jordan elementary maps on alternative division rings", Serdica M ath. Journal, vol. 43, pp. 161-168, 2017.
[7] R. N. Ferreira, B. L. M. Ferreira, "Jordan derivation on alternative rings", International Journal of Mathematics, Game Theory, and Algebra, vol. 25, pp. 435-444, 2017.
[8] R. N. Ferreira, B. L. M. Ferreira, "Jordan triple derivation on alternative rings", Proyecciones (Antofagasta), vol. 37, pp. 169-178, 2018.
[9] B. L. M. Ferreira, J. C. M. Ferreira, and H. Guzzo Jr., "J ordan maps on alternative algebras", JP Journal of Algebra, Number Theory and Applications, vol. 31, pp. 129-142, 2013.
[10] B. L. M. Ferreira, J. C. M. Ferreira, and H. Guzzo Jr., "Jordan Triple Elementary M aps on Alternative Rings", Extracta M athematicae, vol. 29, pp. 1-18, 2014.
[11] B. L. M . Ferreira, J. C. M . Ferreira, and H. Guzzo Jr., "Jordan Triple M aps of Alternative algebras", JP Journal of Algebra, Number Theory and A pplications, vol. 33, pp. 25-33, 2014.
[12] J. M. Ferreira, and B. L. M. Ferreira, "Additivity of n-multiplicative maps on alternative rings", Commun. Algebra, vol. 44, pp. 1557-1568, 2016.
[13] B. L. M . Ferreira, and R. N ascimento, "Derivable maps on alternative rings", Recen, vol. 16, pp. 1-5, 2014.
[14] I. N. Herstein, "Jordan derivations of prime rings", Proc. Amer. Math. Soc., vol. 8, pp. 1104-1110, 1957.
[15] N. Jacobson, Structure of Rings. Amer. M ath. Soc., U .S.A., 1964.
[16] W. Jing, and F. Lu, "Additivity of Jordan (triple) derivations on rings", Commun. Algebra, vol. 40, pp. 2700-2719, 2012.
[17] P. Li, and F. Lu, "Additivity of elementary maps on rings", Commun. A Igebra, vol. 32, no. 10, pp. 3725-3737, 2004.
[18] W . S. M artindale III, "W hen are multiplicative mappings additive?", Proc. A mer. M ath. Soc., vol. 21, pp. 695-698, 1969.
[19] Y. W ang, "The additivity of multiplicative maps on rings", Commun. A Igebra, vol. 37, pp. 2351-2356, 2009.

Bruno L. M. Ferreira

Federal University of Technology,
Professora Laura Pacheco Bastos Avenue, 800, 85053-510, Guarapuava, Brazil
e-mail: brunolmfalg@gmail.com
Corresponding author
and

Gurninder S. Sandhu

Department of Mathematics, Patel Memorial National College, Rajpura 140401, Punjab,
India
e-mail: gurninderrs@pbi.ac.in

