Proyecciones Journal of Mathematics
Vol. 30, N ${ }^{o}$ 1, pp. 59-64, May 2011.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172011000100006

On graphs whose chromatic transversal number is two

S.K.Ayyaswamy
Sastra University, India
and
C. Natarajan
Sastra University, India

Received: October 2010. Accepted : February 2011

Abstract

In this paper we characterize the class of trees, block graphs, cactus graphs and cubic graphs for which the chromatic transversal domination number is equal to two.

Keywords : Domination number; chromatic transversal domination number; double star; cubic graphs; block graphs; cactus graphs.

AMS subject classification : 05C69.

1. Introduction

Let $G=(V, E)$ be a simple graph of order p. A vertex v of G is a critical vertex if $\chi(G-v)<\chi(G)$, where $\chi(G)$ is the chromatic number of G. If every vertex of G is a critical vertex, then G is called a vertex critical graph. A subset $D \subset V$ is a dominating set, if every $v \in V-D$ is adjacent to some $u \in D$. The domination number $\gamma=\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set D is called a chromatic transversal dominating set (ctd-set) if D has non empty intersection with every color class of every chromatic partition of G. The chromatic transversal domination number $\gamma_{c t}=\gamma_{c t}(G)$ is the minimum cardinality of a ctd-set of G. The parameter $\gamma_{c t}$ for a few well known graphs was computed by L.Benedict et al. [1]. For example, if G is a vertex critical graph of order p, then $\gamma_{c t}(G)=p$.

By a double star we mean a tree obtained by joining the centers of two stars $K_{1, m}$ and $K_{1, n}$ by an edge. If we subdivide the edge connecting the centers of two stars, then it is called a double star with one subdivision. Similarly, a double star with two subdivisions is defined. The diameter of a graph G is the length of the longest path in G and is denoted by $\operatorname{diam}(G)$. A vertex v of a connected graph G is said to be a cutvertex if $G-v$ is no longer connected. A connected subgraph B of G is a block, if B has no cutvertex and every subgraph $B^{\prime} \subset G$ with $B \subset B^{\prime}$ and $B \neq B^{\prime}$ has at least one cutvertex. A block B of G is called an end block, if B contains at most one cutvertex of G; such a cutvertex is called an end block cutvertex. A graph G is called a block graph, if every block G is a complete graph. A graph G is called a cactus graph if every edge of G is in at most one cycle of G . A graph G is said to be a cubic graph if it is 3 -regular. $\Delta(G)=\max \{\operatorname{deg}(v): v \in V(G)\}$. A support vertex in G is one which is adjacent to a leaf.

Theorem 1.0.1. [2] Let G be a connected bipartite graph of order $p \geq 3$ with partition $\left(V_{1}, V_{2}\right)$ of $V(G)$, where $\left|V_{1}\right| \leq\left|V_{2}\right|$. Then $\gamma_{c t}(G)=\gamma(G)+1$ if and only if every vertex in V_{1} has at least two pendant neighbors.

Theorem 1.0.2. [2] For a tree $T, \gamma_{c t}(T)=\gamma(T)+1$ if and only if either T is K_{2} or T satisfies the condition that whenever v is a support vertex, then each vertex w with $d(v, w)$ even is also a support vertex and each support vertex has at least two pendant neighbors. Otherwise $\gamma_{c t}(T)=\gamma(T)$.

2. Characterization

2.1. Trees

Lemma: 2.1.1. For a tree $T, \gamma(T)=2$ if and only if T is one of the following:
(i) a double star
(ii) a double star with one subdivision
(iii) a double star with two subdivisions.

Proof: Assume that $\gamma(T)=2$.

Claim: $\operatorname{diam}(T) \leq 5$.
If not, let P be the largest path in T with length greater than 5 . Then $\gamma(P) \geq 3$ where $\gamma(P)$ refers to the domination number of the path P. Without loss of generality assume that $\gamma(P)=3$ and let $D=\left\{x_{1}, x_{2}, x_{3}\right\}$ be a γ-set of P.

Now, take any γ-set $S=\{x, y\}$ of T. If x or y is not in P, then a cycle will be formed with one of the vertices of D. In fact, if $x=x_{1}$ and y is not in P, then x_{3} must be adjacent to y and at least one of the neighbors of x_{3}, say u, will be adjacent to y so that the vertices x_{3}, y, u form a cycle. Thus $x, y \in P$. But if $x, y \in P$ then at least one of the vertices of D will not be dominated by S, contradicting the assumption that $\gamma(T)=2$.

Case 1. Let $\operatorname{diam}(T)=3$ and $P_{4}: u_{1} u_{2} u_{3} u_{4}$ be the longest path in T. If $S=\{x, y\}$ is a γ-set of T, then as argued earlier, $S \subset V\left(P_{4}\right)$. As P_{4} is the longest path in T it follows that u_{1} and u_{4} are pendant vertices in T. If $x=u_{1}$ and $y=u_{4}$, then T is a path P_{4}. If $x=u_{1}$ and $y=u_{3}$, then T is a double star with $K_{1, t}$ at u_{3}. Similarly, we get a double star if $x=u_{2}$ and $y=u_{4}\left(\right.$ or if $x=u_{2}$ and $\left.y=u_{3}\right)$.

Case 2. Let $\operatorname{diam}(T)=4$ and $P_{5}: u_{1} u_{2} u_{3} u_{4} u_{5}$ be the longest path in T with u_{1} and u_{5} as pendant vertices in T. Then for any γ-set $S=\{x, y\}$ of T, we have $S \subset V\left(P_{5}\right)$. We claim that $x=u_{2}$ and $y=u_{4}$. Suppose $x=u_{3}$ and $y=u_{4}$. Then u_{1} will not be dominated by S. Similarly, the other possibilities for x and y except $x=u_{2}$ and $y=u_{4}$. Thus T is a double star
with one subdivision.

Case 3. Let $\operatorname{diam}(T)=5$ and $P_{6}: u_{1} u_{2} u_{3} u_{4} u_{5} u_{6}$ be the longest path in T. Then any γ-set $S=\{x, y\}$ of T is a subset of $V\left(P_{6}\right)$ and as argued earlier $x=u_{2}$ and $y=u_{4}$ making T a double star with two subdivisions.

The converse is obvious.

Theorem 2.1.1. For a tree $T, \gamma_{c t}(T)=2$ if and only if T is one of the following:
(i) a double star
(ii) a double star with two subdivisions
(iii) a star graph.

Proof: Assume that $\gamma_{c t}(T)=2$. According to Theorem 1.0.2, $\gamma_{c t}(T)$ is either $\gamma(T)$ or $\gamma(T)+1$. If $\gamma_{c t}(T)=\gamma(T)$, then $\gamma(T)=2$ and so by Lemma 2.1.1, T is a double star or a double star with one subdivision or a double star with two subdivisions. But T cannot be a double star with one subdivision in view of Theorem 1.0.2.

If $\gamma_{c t}(T)=\gamma(T)+1$, then $\gamma(T)=1$ and so T is a star graph.
The converse is obvious.

2.2. Block graphs

Proposition: 2.2.1. For a block graph $G, \gamma_{c t}(G)=2$ if and only if G is a star graph.

Proof: Assume that $\gamma_{c t}(G)=2$. Let K_{n} be a maximal clique with maximum number of cutvertices. Then one can show that $\gamma_{c t}(G)=n+\gamma\left(G^{\prime}\right)$ where $G^{\prime}=G-V\left(K_{n}\right)-L$ and L is the set of all leaves with supports at some vertices of K_{n}. Then $\gamma_{c t}(G)=2$ if and only if $n=2$ and $\gamma\left(G^{\prime}\right)=0$ or $n=1$ and $\gamma\left(G^{\prime}\right)=1$. In either case G is a star graph.

The converse is obvious.

Note: For a block graph G, one can easily verify that $\gamma(G)=2$ if and only if G has exactly two end vertices and at most two internal cut vertices.

2.3. Cubic graphs

Proposition: 2.3.1. For a connected cubic graph G of order $p, \gamma_{c t}(G)=2$ if and only if $p \leq 8$.

Proof: Let G be a cubic graph with $\gamma_{c t}(G)=2$. Then since $\gamma_{c t}(G) \geq \chi(G)$, $\chi(G)=2$. That is G is a bipartite graph. Therefore by Theorem 1.0.1, $\gamma_{c t}(G)=\gamma(G)$ and so $\gamma(G)=2$. But then we have $\frac{p}{1+\Delta(G)} \leq 2$ which implies $\frac{p}{4} \leq 2$. That is $p \leq 8$. Conversely, if G is a cubic graph with $p \leq 8$, one can easily verify that $\gamma_{c t}(G)=2$.

This proves the result.

2.4. Cactus graphs

Proposition: 2.4.1. If G is a cactus graph with at least one cycle, then $\gamma_{c t}(G)=2$ if and only if G is either C_{4} with at most two support vertices that are adjacent or C_{6} with a pair of support vertices u_{i} and u_{j} where $j=i+3(\bmod 6)$ if $V\left(C_{6}\right)=\left\{u_{0}, u_{1}, \ldots, u_{5}\right\}$.

Proof: Let us assume that $\gamma_{c t}(G)=2$. If G has an odd cycle, $\chi(G)=3$ and so $\gamma_{c t}(G) \geq 3$, a contradiction. Therefore G cannot have an odd cycle.

Suppose G has an even cycle of length greater than or equal to 8 . Then $\gamma_{c t}(G)=\left\lceil\frac{8}{3}\right\rceil=3$, which is a contradiction. Therefore G has an even cycle of length 4 or 6 . Furthermore G is unicyclic. If not, $\gamma_{c t}(G) \geq \gamma(G) \geq 3$.

Case 1. Let G be a unicyclic graph with C_{4}, a cycle of length 4 . Let X be the set of all vertices of degree 2 in C_{4}. Now $\gamma_{c t}(G)=2$ implies $|X| \geq 2$. If $|X|=4, G$ is just C_{4}. If $|X|=3, G$ is C_{4} with one support vertex. Similarly, if $|X|=2, G$ is C_{4} with two support vertices and as $\gamma_{c t}(G)=2$, these support vertices are adjacent.

Case 2. Let G be a unicyclic graph with C_{6}, cycle of length 6 .
The proof of this case is just similar to Case 1 except that two support vertices require to be of distance 3 to form a $\gamma_{c t}$-set of G.

The converse is obvious.

Acknowledgement: The authors wish to thank the anonymous referees for their valuable suggestions.

References

[1] L. Benedict Michaelraj, S. K. Ayyaswamy and S. Arumugam, Chromatic transversal domination in graphs; J. Comb. Math. Comb. Comput. (Accepted for publication)
[2] L. Benedict Michaelraj, A Study on Chromatic Transversal Domination in graphs; (Ph.d Thesis), Bharathidasan University, Trichy, Tamilnadu, India, April 2008.
[3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, New York, (1998).

S. K. Ayyaswamy

Department of Mathematics, SASTRA University,
Thanjavur - 613 401,
Tamilnadu,
India
e-mail : sjcayya@yahoo.co.in
and

C. Natarajan

Department of Mathematics, SASTRA University,
Thanjavur - 613 401,
Tamilnadu,
India
e-mail : natarajan_c@maths.sastra.edu

