Universidad Católica del Norte
Antofagasta - Chile

Group vertex magic labeling of some special graphs

M. Basher
Qassim University, Saudi Arabia
Suez University, Egypt
Received : February 2023. Accepted : November 2023

Abstract

For any additive abelian group A, a graph $G=(V, E)$ is said to be A-vertex magic graph if there exist an element $\mu \in A$ and a labeling function $f: V \rightarrow A \backslash\{0\}$ such that $\omega(v)=\sum_{u \in N(v)} f(u)=\mu$ for any vertex v of G, where $N(v)$ is the set of the open neighborhood of v. In this paper, we prove that graphs such as the wheel, the corona product $C_{n} \odot m K_{1}$, the subdivision ladder and the t-fold wheel are A vertex magic graphs for abelian groups A satisfying certain conditions. Also, we prove that the subdivided wheel, the helm and the closed helm are Z_{k}-vertex magic graphs for specific values of k. Furthermore, we prove that the triangular book and the t-fold wheel for $t=n, n-2$ are A-vertex magic graphs for every abelian group A.

Mathematics Subject Classification: 05C78.

Keywords: A-vertex magic ; Group vertex magic; Weight of the vertex ; Subdivided wheel ; t-fold wheel; Helm ; Triangular book ; Cryptography.

1. Introduction

By a graph $G=(V, E)$ we consider a finite undirected simple graph with vertex set V and edge set E. The degree of a vertex v in graph G, indicated as $d(v)$, is the number of edges incident with v. We refer to [1] for graph theoretic terminology and to [3] for terminology on group theory. Throughout this paper A denotes an abelian group with identity element 0 . The order of element $g \in A$, is the smallest positive integer n such that $n g=0$, it is denoted by $o(g)$. The group $Z_{2} \otimes Z_{2}=\left\{(x, y) \mid x, y \in Z_{2}\right\}$ with binary operation $(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)$ is called Klain's 4-group and is denoted by V_{4}. The concept of group magic graphs was introduced by Lee et al. [5] as follows: For any abelian group A, a graph G with edge labeling function which assigns to each edge of G an element of A different from the identity such that the sum of the labels of edges incident to any vertex is same for all the vertices is called an A-magic graph. In [4] N.Kamatchi et al. introduced the concept of group vertex magic graphs and obtained the necessary conditions for some graphs to be group vertex magic. Labeled graphs play a vital role in various scientific fields such as coding theory, cryptography, logistics, mathematical modeling, crystallography, radar, astronomy and circuit design [2]. Also, in communication network there are many applications using graph labeling, such as communication network addressing, fault-tolerant system designing, and automated channel allocation [6].

Definition 1. Let A be any non-trivial abelian group and let μ be any element of A, a graph $G=(V, E)$ is said to be A-vertex magic graph with magic constant μ if there exist a vertex labeling $f: V \rightarrow A \backslash\{0\}$ such that $\omega(v)=\sum_{u \in N(v)} f(u)=\mu$ for any vertex v of G.

Comment: The function f satisfying the condition of the Definition 1 is called an A-vertex magic labeling of G with magic constant μ.
If G has a vertex labeling satisfying the condition in the above definition for every non-trivial abelian group A, then G is called a group vertex magic graph. We use the following definitions in the subsequent section.

Definition 2. The subdivided wheel $W_{n}(r, k)$ is a graph derived from the wheel graph W_{n}, by replacing each external edge $v_{i} v_{i+1}$ with a $v_{i} v_{i+1}$-path of order $r \geq 2$, and every radial edge $v_{i} v, 1 \leq i \leq n$ by a $v_{i} v$-path of order $k \geq 2$.

Fig. 1 shows the subdivided wheel of W_{7}.

Figure 1.1: The subdivided wheel $W_{7}(3,5)$

Definition 3. Let G_{1}, G_{2} be two graphs of order n, m respectively. The corona product of G_{1} and G_{2}, denoted $G_{1} \odot G_{2}$, is the graph obtained by taking one copy of G_{1} and n copies of G_{2} and then making the i th vertex of G_{1} adjacent to each vertex in the ith copy of G_{2}.

Fig. 2 shows the corona product of C_{8} and $3 K_{1}$.

Figure 1.2: Corona product $C_{8} \odot 3 K_{1}$

Definition 4. The t-fold of W_{n} is the graph W_{n}^{t} with t central vertices and n rim vertices, where the n rim vertices form a cycle and each of the central vertices is adjacent to all cycle vertices, but central vertices are not adjacent to each other.

The graph of 3 -fold wheel of W_{6} is given in Fig. 3.

Figure 1.3: 3 -fold wheel of W_{6}

Definition 5. Let P_{n} be a path with n vertices, the ladder graph,L_{n}, is a graph formed from the Cartesian product $P_{2} \times P_{n}$, where $n \geq 2$.

Definition 6. The Subdivision of the ladder graph L_{n} denoted by $S\left(L_{n}\right)$ is created by splitting each edge of L_{n} by one vertex.

Definition 7. The helm H_{n} is the graph derived from a wheel by attaching a pendant edge at each vertex of the rim.

Definition 8. The closed helm $C H_{n}$ is the graph derived from a helm H_{n} by attaching each pendant vertex to form cycle.

The graphs of H_{8} and CH_{8} are given in Fig. 4.

Figure 1.4: H_{8} and CH_{8} graphs

Definition 9. The triangular book $B(3, n)$ is a graph made up of n triangles that share a common edge.

The graph of $B(3,4)$ is given in Fig. 5.

Figure 1.5: $B(3,4)$ graph

Observation 1. [4] Any r-regular graph G is group vertex magic with magic constant $r g$, where g is a nonzero element of abelian group A.

2. Main Results

Theorem 1. The wheel W_{n} for $n \geq 3$ is Z_{n}-vertex magic.
Proof. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of n-cycle of the wheel W_{n} and let v be its central vertex. Let $g \neq 0$ be any element of the group Z_{n} such that $g \neq \frac{n}{2}$ when n is even. Assign labels $f\left(v_{i}\right)=g$ where $1 \leq i \leq n$ and label the central vertex v by $(n-2) g$ i.e. $f(v)=(n-2) g$. This defines a Z_{n}-vertex magic labeling of W_{n} with magic constant 0 .

Theorem 2. Let $n>2, r \geq 2$ and let $k \geq 2$. The subdivided wheel $W_{n}(r, k)$ is Z_{n}-vertex magic if r is even or r is odd and n is even.

Proof. Let v be the central vertex of the wheel W_{n} and let $v_{i}, 1 \leq i \leq n$ be the vertices of the cycle C_{n} and let each edge $v_{i} v, 1 \leq i \leq n$ be replaced by the path P_{k}^{i} of order k and each edge of $v_{i} v_{i+1}, 1 \leq i \leq n-1$ and $v_{n} v_{1}$ are replaced by the paths $P_{r}^{* i}, P_{r}^{* n}$ of order r respectively. Let $v_{i}=v_{1}^{i}, v_{2}^{i}, \ldots, v_{r}^{i}=v_{i+1}$ be the vertices of i th copy of the path of order r and let $v_{i}=u_{1}^{i}, u_{2}^{i}, \ldots, u_{k}^{i}=v$ be the vertices of i th copy of the path of order k. As $n>2$, there exists $g \in Z_{n} \backslash\{0\}$ such that $g \neq \frac{n}{2}$ when n is even. For instance $g=1$.

Case(i). Suppose r is even then $r=2 s$, where $s \geq 1$. If s even, then define f by:

For $1 \leq i \leq n$

$$
\begin{aligned}
& f\left(v_{j}^{i}\right)= \begin{cases}g, & j \equiv 1,4 \bmod 4 \\
n-g, & j \equiv 2,3 \bmod 4 .\end{cases} \\
& f\left(u_{\ell}^{i}\right)= \begin{cases}g, & \ell \equiv 1 \bmod 4 \\
2 g, & \ell \equiv 2 \bmod 4 \\
n-g, & \ell \equiv 3 \bmod 4 \\
n-2 g, & \ell \equiv 4 \bmod 4 .\end{cases}
\end{aligned}
$$

Thus, f is a Z_{n}-vertex magic of $W_{n}(r, k)$ with magic constant 0 .
If s odd, hence define f by:

For $1 \leq i \leq n$.

$$
\begin{aligned}
& f\left(v_{j}^{i}\right)= \begin{cases}g, & j \equiv 1,2 \bmod 4 \\
n-g, & j \equiv 3,4 \bmod 4 .\end{cases} \\
& f\left(u_{\ell}^{i}\right)= \begin{cases}g, & \ell \equiv 1 \bmod 4 \\
n-2 g, & \ell \equiv 2 \bmod 4 \\
n-g, & \ell \equiv 3 \bmod 4 \\
2 g, & \ell \equiv 4 \bmod 4 .\end{cases}
\end{aligned}
$$

Clearly, f is a Z_{n}-vertex magic labeling of $W_{n}(r, k)$ with magic constant 0.

Case(ii). Suppose r is odd and n is even. Then $r \equiv 1 \bmod 4$ or $r \equiv 3 \bmod$ 4. When $r \equiv 1 \bmod 4$, define f as follows:

$$
\begin{aligned}
& \text { For } i \text { odd. } \\
& f\left(v_{j}^{i}\right)=\left\{\begin{array}{ll}
\frac{n}{2}, & j \equiv 1 \bmod 2 \\
g, & j \equiv 2 \bmod 4 \\
n-g, & j \equiv 4 \bmod 4 .
\end{array} ~ . ~ . ~\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } i \text { even. } \\
& f\left(v_{j}^{i}\right)= \begin{cases}\frac{n}{2}, & j \equiv 1 \bmod 2 \\
\frac{n}{2}+g, & j \equiv 2 \bmod 4 \\
\frac{n}{2}-g, & j \equiv 4 \bmod 4 .\end{cases} \\
& f\left(u_{\ell}^{i}\right)=\frac{n}{2}, \quad 1 \leq \ell \leq k, \quad 1 \leq i \leq n .
\end{aligned}
$$

It is clear that f is a Z_{n}-vertex magic labeling of $W_{n}(r, k)$ with magic constant 0 .

When $r \equiv 3 \bmod 4$, now define f as follows:

$$
\begin{aligned}
& \text { For } 1 \leq i \leq n \\
& f\left(v_{j}^{i}\right)= \begin{cases}\frac{n}{2}, & j \equiv 1 \bmod 2 \\
g, & j \equiv 2 \bmod 4 \\
n-g, & j \equiv 4 \bmod 4 .\end{cases} \\
& f\left(u_{\ell}^{i}\right)= \begin{cases}\frac{n}{2}, & \ell \equiv 1 \bmod 2 \\
n-2 g, & \ell \equiv 2 \bmod 4 \\
2 g, & \ell \equiv 4 \bmod 4 .\end{cases}
\end{aligned}
$$

Hence, f is a Z_{n}-vertex magic labeling of $W_{n}(r, k)$ with magic constant 0.

Corollary 2.1. The Jahangir graph $J_{m, n}$ is Z_{n}-vertex magic if $n m+n$ is even.

Proof. Note that the Jahangir graph $J_{m, n}$ can be defined as the especial case from the subdivided wheel $W_{n}(r, k)$, by taking $r=m+1$ and $k=2$. From the above theorem it follows that $J_{m, n}=W_{n}(m+1,2)$ is a Z_{n}-vertex magic when $n m+n$ is even.

Proposition 2.1. If r, k are odd and $n \equiv 0 \bmod 3$, then $W_{n}(r, k)$ is $V_{4}{ }^{-}$ vertex magic.

Proof. Consider $A=V_{4}=\{0, a, b, c\}$, where $2 a=2 b=2 c=0$ and the sum of any two elements other than zero gives the third, then we can define f as follows:

$$
\begin{aligned}
& f\left(v_{j}^{i}\right)= \begin{cases}a, & j \equiv 1 \bmod 2, i \equiv 1 \bmod 3 \\
c, & j \equiv 2 \bmod 2, i \equiv 1 \bmod 3 \\
a, & 1 \leq j \leq r, i \equiv 2 \bmod 3 \\
a, & j \equiv 1 \bmod 2, i \equiv 3 \bmod 3 \\
b, & j \equiv 2 \bmod 2, i \equiv 3 \bmod 3 .\end{cases} \\
& f\left(u_{\ell}^{i}\right)= \begin{cases}a, & 1 \leq \ell \leq k, i \equiv 1 \bmod 3 \\
a, & \ell \equiv 1 \bmod 2, i \equiv 2 \bmod 3 \\
b, & \ell \equiv 2 \bmod 2, i \equiv 2 \bmod 3 \\
a, & \ell \equiv 1 \bmod 2, i \equiv 3 \bmod 3 \\
c, & \ell \equiv 2 \bmod 2, i \equiv 3 \bmod 3 .\end{cases}
\end{aligned}
$$

This defines a V_{4}-vertex magic labeling of $W_{n}(r, k)$ with magic constant 0.

Theorem 3. The t-fold of the wheel W_{n} is A-vertex magic for some abelian group A. Furthermore, W_{n}^{t} is group vertex magic for $t=n, n-2$.

Proof. The 1-fold wheel is a wheel and is A-vertex magic graph by the Theorem 2.1. Let $v_{i}, 1 \leq i \leq n$ be the vertices of rim of wheel W_{n} and let $u_{j}, 1 \leq j \leq t$ be the t vertices hub.

Case(i). When $t=n$. Let A be an abelian group, $|A| \geq 2$ and $g \in A \backslash\{0\}$, now define the labeling f by:

$$
\begin{array}{ll}
f\left(v_{i}\right)=g, & 1 \leq i \leq n \\
f\left(u_{j}\right)=g, & 1 \leq j \leq n-1 \\
f\left(u_{n}\right)=-g . &
\end{array}
$$

This gives a group vertex magic labeling of G with magic constant $n g$.
Case(ii). When $t=n-1$. Let A be an abelian group and let g be a nonzero element of $A, o(g) \neq 2$. The vertices of the rim are labeled as in the above case, now we label $n-3$ vertices of the hub by label g i.e. $f\left(u_{j}\right)=g, 1 \leq j \leq n-3$. Now define the label of the remaining two vertices by $f\left(u_{n-2}\right)=2 g, f\left(u_{n-1}\right)=-g$. This gives an A-vertex magic labeling of the t-fold wheel with magic constant $n g$.

Case(iii). When $t=n-2$. Here all vertices of G of degree n i.e. $d\left(v_{i}\right)=d\left(u_{j}\right)=2$ for all i, j. Then it follows from Observation 1 that t-fold wheel is a group vertex magic with magic constant $n g$.

Case(iv). When $n-t>2$. Let A be an abelian group and $g \in A \backslash\{0\}$ such that $(n-t-1) g \neq 0$. Obviously we can define the labeling f by:

$$
\begin{array}{ll}
f\left(v_{i}\right)=g, & 1 \leq i \leq n \\
f\left(u_{j}\right)=g, & 1 \leq j \leq t-1 \\
f\left(u_{t}\right)=(n-t-1) g . &
\end{array}
$$

This defines an A-vertex magic labeling of the t-fold wheel with magic constant $n g$.

Case(v). When $n-t<2$. Clearly, $d\left(v_{i}\right)>d\left(u_{j}\right)$. Then we can define the labeling f as follows:

$$
\begin{array}{ll}
f\left(v_{i}\right)=g, & 1 \leq i \leq n \\
f\left(u_{j}\right)=g, & 1 \leq j \leq n-2 .
\end{array}
$$

For $n-1 \leq j \leq t-1$, define the labels $f\left(u_{j}\right)$ to be any elements of A such that $\sum_{j=n-1}^{t-1} f\left(u_{i}\right)=a$ is nonzero. Now define $f\left(u_{t}\right)=-a$. This gives an A-vertex magic labeling of the t-fold wheel with magic constant $n g$.

Theorem 4. For $n>2$ and $m \geq 2$, the corona product $C_{n} \odot m K_{1}$ is A-vertex magic for some abelian group A.

Proof. Let $G=C_{n} \odot m K_{1}$ be the graph obtained from the corona product of a cycle C_{n} with m copies of isolated vertices.

Case(i). When $m=1$ The $C_{n} \odot m K_{1}$ graph is obtained from a cycle C_{n} by adding a pending neighbor to each vertex. We consider the partition $\{X, Y\}$ of V, with $X=V\left(C_{n}\right)$ and $Y=V-V\left(C_{n}\right)$. Let $x($ resp. $y)$ be the
label of each vertex of X (resp. Y). Each vertex u of X has 2 neighbors in X and 1 neighbor in Y, so $w(u)=2 x+y$ Each vertex v of Y has 1 neighbor in X and 0 neighbor in Y, so $w(v)=x$. We obtain the equation $2 x+y=x$, i.e. $y=-x$, and therefore the solution $x=g$ and $y=-g$, where g is an element of $A \backslash\{0\}$.

Case(ii). When $m \geq 2$. Let A be any abelian group where $|A| \geq 3$. We can define f by:
(1) Let $g \in A \backslash\{0\}$, for $1 \leq i \leq n$ label each vertex u_{i} by g i.e. $f\left(u_{i}\right)=g$.
(2) Assign label $f\left(v_{j}\right), 1 \leq j \leq m-1$ by arbitrary element of A such that $\sum_{j=1}^{m-1} f\left(v_{j}\right)+g=a, a \in A \backslash\{0\}$ and define $f\left(v_{m}\right)=-a$. Hence we obtain an A-vertex magic labeling of G with magic constant g.

Theorem 5. The subdivision of Ladder graph $S\left(L_{n}\right), n \geq 3$ is A-vertex magic for some abelian group A.

Proof. Let $u_{i}, v_{i}, 1 \leq i \leq n$ be the vertices of the ladder graph L_{n} and let $\dot{u}_{i}, v_{i}, \dot{w}_{i}$ be the newly added vertices to the edges $u_{i} u_{i+1}, v_{i} v_{i+1}$ and $u_{i} v_{i}$ respectively. Then we obtain the graph $S\left(L_{n}\right)$. Let A be any abelian group where $|A| \geq 3$ and let g be an arbitrary nonzero element of A such that $o(g) \neq 2$. Thus define the labeling $f: V\left(S\left(L_{n}\right)\right) \rightarrow A$ by :
For $1 \leq i \leq n$.

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}g, & i \text { is odd } \\
2 g, & i \text { is even. }\end{cases} \\
& f\left(v_{i}\right)= \begin{cases}2 g, & i \text { is odd } \\
g, & i \text { is even. }\end{cases} \\
& f\left(\dot{u}_{i}\right)=f\left(\hat{v}_{i}\right)=g
\end{aligned} \begin{aligned}
& f\left(\dot{w}_{i}\right)= \begin{cases}2 g, & \text { for } i=1, i=n \\
g, & \text { for } 2 \leq i \leq n-1 .\end{cases}
\end{aligned}
$$

Obviously, the graph $S\left(L_{n}\right)$ is A-vertex magic with magic constant $3 g$.

Theorem 6. The helm graph H_{n} is Z_{n-1}-vertex magic for $n \geq 4$. Furthermore, H_{3} is Z_{m}-vertex magic, where m is any positive even integer.

Proof. Let W_{n} be the wheel graph and let $v_{i}, 1 \leq i \leq n$ be the vertices of the rim of W_{n}. Hence the helm graph H_{n} obtained by adding a pendent
edge for each v_{i}. Let $u_{i}, 1 \leq i \leq n$ be the pendant vertices.
Case(i). When $n=3$. Let A be Z_{m} the abelian group of integers modulo m, where m is a positive even integer and let $g \in\{1,2,3, \ldots, m-1\}$. So we can define $f: V\left(H_{3}\right) \rightarrow Z_{m}$ by:

$$
\begin{gathered}
f(v)=\frac{m}{2}-g, \text { where } v \text { is the central vertex } \\
f\left(v_{i}\right)=\frac{m}{2}, \quad f\left(u_{i}\right)=g, \text { where } 1 \leq i \leq 3 .
\end{gathered}
$$

Hence the H_{3} is Z_{m}-vertex magic with magic constant $\frac{m}{2}$.
Case(ii). When $n \geq 3$. In this case, let A be Z_{n-1} and let $g \in\{1,2,3, \ldots, n-$ $1\}$. Now define $f: V \rightarrow A$ as follows:

$$
\begin{aligned}
& f(v)=(n-3) g, \text { where } v \text { is the central vertex } \\
& f\left(v_{i}\right)=g, \quad f\left(u_{i}\right)=g, \text { where } 1 \leq i \leq n .
\end{aligned}
$$

Clearly the H_{n} is Z_{n-1}-vertex magic with magic constant g.
Theorem 7. Let $C H_{n}$ be a closed helm graph of order n.
(i) The closed helm graph CH_{3} is Z_{m}-vertex magic, where m is any positive even integer.
(ii) For $n \geq 4$, if n is even $C H_{n}$ is Z_{n}-vertex magic, and if n is odd $C H_{n}$ is Z_{n-1}-vertex magic.

Proof. Let H_{n} be helm graph, by attaching any two consecutive a pendant vertices by edge we obtained the closed helm graph CH_{n}.

Case(i). When $n=3$. In this case take $A=Z_{m}$, where m is a positive even integer and let $g \in Z_{m}$. Hence we can define $f: V \rightarrow A$ by:

$$
\begin{aligned}
& f(v)=\frac{m}{2}, \text { where } v \text { is the central vertex } \\
& f\left(v_{i}\right)=g, \quad f\left(u_{i}\right)=\frac{m}{2}+g, \text { where } 1 \leq i \leq n .
\end{aligned}
$$

Thus CH_{3} is Z_{m}-vertex magic with magic constant $3 g$.
Case(ii). When $n \geq 4$ and n is even. Let A be Z_{n} the abelian group of integers modulo n. For any integer $g \in\{1,2,3, \ldots, n-1\}, g \neq \frac{n}{2}$ and $o(g) \neq 3$, define f by:
$f(v)=n-3 g$, where v is the central vertex
$f\left(v_{i}\right)=2 g, \quad f\left(u_{i}\right)=n-g$, where $1 \leq i \leq n$.
Clearly f is a Z_{n}-vertex magic labeling of $C H_{n}$ with magic constant 0 .

Case(iii). When $n \geq 4$ and n is odd. We take $A=Z_{n-1}$. For any odd integer $g \in\{1,2,3, \ldots, n-1\}, g \neq \frac{n-1}{2}$, define f by:

$$
f(v)=\frac{n-3}{2} g, \text { where } v \text { is the central vertex }
$$

$$
f\left(v_{i}\right)=g, \quad f\left(u_{i}\right)=\frac{n-1}{2} g, \text { where } 1 \leq i \leq n
$$

Then f is a Z_{n-1}-vertex magic labeling of $C H_{n}$ with magic constant g.

Theorem 8. The triangular book $B(3, n)$ with n pages is group vertex magic for $n \geq 3$.

Proof. Consider $B(3, n)$ is the triangular book graph with n pages. Let u, v be the vertices of the base of the book and $v_{i}, 1 \leq i \leq n$ the vertices of n pages, let A be an arbitrary abelian group. Now define $f: V \rightarrow A$ as follows:
(1) Assign labels $f(u), f(v)$ by the same arbitrary nonzero element of A. i.e. $f(u)=f(v)=g$, where $g \in A \backslash\{0\}$.
(2) For $1 \leq i \leq n-2$ assign labels $f\left(v_{i}\right)$ by arbitrary nonzero element of A such that $\sum_{i=1}^{n-2} f\left(v_{i}\right)=a, a \in A \backslash\{0\}$. Now define $f\left(v_{n-1}\right)=-a, f\left(v_{n}\right)=$ g. This gives a group vertex labeling of $B(3, n)$, with magic constant $2 g$.

References

[1] J. A. Bondy U. S. R. Murty, Graph Theory with Applicatons. American Elsevier Publishing Co. Inc., New York, 1976.
[2] J. A. Gallian, A dynamic survey of graph labeling. The Electronic Journal of Combinatorics, Twentieth edition, December 22, \sharp DS6, 2017.
[3] I. N. Herstein, Topics in Algebra, John wiley \& Sons, New York, 2006.
[4] N. Kamatachi, K. Paramasivam, A. V. Prajeesh, K. Muhammed Sabeel, S. Arumugam, On group vertex magic graphs, AKCE International Journal of Graphs and Combinatorics, Vol. 17 (1), pp. 461-465, 2020.
[5] S. M. Lee, H. Sun, I. Wen, On group magic graphs, J. Combin. Math. Combin. Comput., Vol. 38, pp. 197-207, 2001.
[6] M. S. Vinutha,P. Arathi, Applications of Graph Coloring and Labeling in Computer Science, International Journal on Future Revolution in Computer Science \& Communication Engineering, Vol 3 (8), 2017.

M. Basher
Department of Mathematics,
College of Science and Arts in Unaizah, Qassim University, Qassim, Saudi Arabia
Department of Mathematics and Computer Science, Faculty of Science,
Suez University,
P. O. Box 43221
Suez,
Egypt
e-mail: m.basher@qu.edu.sa
m_e_basher@yahoo.com

