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Abstract

Edge irregular mapping or vertex mapping h : V (G) −→ {1, 2, 3, ..., s}
is a mapping of vertices in such a way that all edges have distinct
weights. We evaluate weight of any edge by using equation wth(cd) =
h(c)+h(d), ∀c, d ∈ V (G) and ∀cd ∈ E(G). Edge irregularity strength
denoted by es(G) is a minimum positive integer used to label vertices
to form edge irregular labeling. In this paper, we find exact value of
edge irregularity strength of linear phenylene graph PHn, Bn graph
and different families of snake graph.
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1. Introduction

In this paper, we consider finite, simple and undirected graphs.
The procedure of assignment of non-negative integers to the elements of
a graph G is termed as labeling. Vertex set V (G) and edge set E(G) are
the elements of a graph G. If we label vertices or edges, then this labeling
is categorized as vertex labeling or edge labeling respectively. If we label
both vertices and edges, then this labeling is termed as total labeling.
Chartrand et al.[15] had introduced edge labeling for a graph G. We call
this labeling as irregular assignments because all vertices have distinct
weights. Irregularity strength s(G) is a minimum positive integer which
is used to form irregular labeling. Results regarding irregularity strength
can be seen in [7, 14, 16, 21].
Vertex irregular mapping or edge mapping h : E(G) −→ {1, 2, 3, ..., s} is
a mapping of edges in such a way that all vertices have distinct weights.
Weight of any vertex can be calculated by using equation wth(c) = Σh(cd),
∀c, d ∈ V (G) and cd ∈ E(G).
Motivated by Chartrand’s work, Bača at [12] introduced new labeling named
as vertex irregular total labeling.
Vertex irregular total labeling h : E(G)∪ V (G) −→ {1, 2, 3, ..., s} is a map-
ping of edges and vertices of G in such a way that the total vertex weight is
different for all vertices. We can evaluate total vertex weight by using the
relation wth(c) = h(c)+Σh(cd), ∀c, d ∈ V (G) and cd ∈ E(G). Total vertex
irregularity strength denoted by tvs(G) is a minimum positive integer used
to label vertices to form vertex irregular total labeling. Inspired by this,
more results were developed in [4, 1, 2, 9, 26, 8, 11, 13, 17, 18, 20, 22, 24].
Edge irregularity and vertex irregularity were both new labels developed by
Marzuki based on the previously improved motivation in [12], which were
categorized as total labels with complete irregularity. Total irregularity
strength for a graph G is denoted as ts(G). Results related to irregular
total labeling were developed in [12, 23].
Because of the motivation of previous results, Ahmed et al. developed a new
concept of edge irregularity strength denoted by es(G) in [3], which was a
minimum positive integer used to label vertices to form edge irregular label-
ing. Edge irregular mapping or vertex mapping h : V (G) −→ {1, 2, 3, ..., s}
is a mapping of vertices in such a way that all edges have distinct weights.
We evaluate weight of any edge by using equation wth(cd) = h(c) + h(d),
∀c, d ∈ V (G) and ∀cd ∈ E(G).
In 2012, Siddiqui [25] calculated edge irregularity strength of subdivision
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of star Sn. In 2016, Ahmad et al. [5] obtained exact value of edge irregu-
larity strength of different classes of Toeplitz graphs. In 2016, Tarawneh et
al. [27, 28] found edge irregularity strength of different families of graphs.
Tarawneh et al. [29, 30] found many useful results regarding edge irreg-
ularity strength of disjoint union of star graph, subdivision of star graph
and grid graphs. In 2017, Mushayt et al. [10] computed edge irregular-
ity strength of products of certain families of graphs with path P − 2. In
2017, Imran et al. [19] computed edge irregularity strength of caterpil-
lars, n-star graphs, (n, t)-kite graphs, cycle chains and friendship graphs.
In 2020, Zhang et al. [31] introduced some new families of comb graph
and calculated exact value of edge irregularity strength of these graphs. In
2020, Ahmad et al. [6] performed computer based experiment dealing with
the edge irregularity strength of complete bipartite graphs, they also gave
bounds on this parameter for wheel related graphs.

Theorem 1.1

Let G be a simple graph with maximum degree = (G), then

es(G) ≥ max{d |E(G)|+12 e, (G)} [3].

2. Main Results

2.1. Quadrilateral Snake Graph

To obtain a quadrilateral snake graph let us consider a path graph Pn,
(n > 1), if we replace each edge of path graph by a quadrilateral C4, we
get Quadrilateral snake graph QSn. It has (3n − 2) vertices, ui have n
vertices,vi have 2n− 2 vertices and its edge set can be given as E(QSn) =
{UiUi+1; 1 ≤ i ≤ n − 1}S{V 2i−1V 2i; 1 ≤ i ≤ n − 1}S{U iV2i−1; 1 ≤ i ≤
n− 1}S{U i+1V 2i; 1 ≤ i ≤ n− 1}.

Theorem 2.1. Let QSn be a quadrilateral snake graph, then es(QSn) =
2n− 1, for n > 1.

Proof: Let QSn be a quadrilateral snake graph. We have to show that
es(QSn) = 2n−1. From Theorem 1.1 we get lower bound es(QSn) ≥ 2n−1.
For converse, we have to prove that es(QSn) ≤ 2n − 1. For this, define a
vertex labeling h : V (QSn)→ {1, 2, 3, ..., 2n− 1} such that
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h(Vi) = i, 1 ≤ i ≤ 2n− 2

h(Ui) = 2i− 1, 1 ≤ i ≤ n

Now we evaluate weights for all edges as:

Wt(UiUi+1) = 4i, 1 ≤ i ≤ n− 1

Wt(V2i−1V2i) = 4i− 1, 1 ≤ i ≤ n− 1

Wt(UiV2i−1) = 4i− 2, 1 ≤ i ≤ n− 1

Wt(Ui+1V2i) = 4i+ 1, 1 ≤ i ≤ n− 1

On the basis of above calculations we see that all edges have distinct
weights.
Hence we can say that es(QSn) = 2n− 1, for n > 1. 2

Figure 1. Irregular Labeling on Quadrilateral Snake Graph QS5.

2.2. Quadrilateral Snake Graph with Pendant Edges

Quadrilateral snake graph PQSn with pendant edges is formed by ver-
tex set V (PQSn) consists of 6n − 4 vertices where n > 1, Ui and Vi have
2n − 2 vertices, Wi and Xi have n vertices, and edge set can be given as
E(PQSn) = {UiVi; 1 ≤ i ≤ 2n−2}S{V2i−1Wi; 1 ≤ i ≤ n−1}S{WiXi; 1 ≤
i ≤ n}S{Wi+1V2i; 1 ≤ i ≤ n−1}S{WiWi+1; 1 ≤ i ≤ n−1}S{V2i−1V2i; 1 ≤
i ≤ n− 1}.

Theorem 2.2. Let PQSn be a quadrilateral snake graph with pendant
edges, then es(PQSn) = b7n−42 c, for n > 1.

Marisol Martínez
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Proof: Let PQSn be a quadrilateral snake graph with pendant edges.
We have to show that es(PQSn) = b7n−42 c. From Theorem 1.1 we get
lower bound es(PQSn) ≥ b7n−42 c. For converse, we have to prove that
es(PQSn) ≤ b7n−42 c. For this, define a vertex labeling h : V (PQSn) →
{1, 2, 3, ..., b7n−42 c} such that

h(Ui) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

7i+1
4 , if i ≡ 1(mod4)

7i−2
4 , if i ≡ 2(mod4)

7i−1
4 , if i ≡ 3(mod4)

7i
4 , if i ≡ 4(mod4)

h(Vi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

7i+1
4 , if i ≡ 1(mod4)

7i+2
4 , if i ≡ 2(mod4)

7i+3
4 , if i ≡ 3(mod4)

7i
4 , if i ≡ 4(mod4)

h(Wi) =

( 7i−5
2 , 1 ≤ i ≤ n, odd

7i−6
2 , 2 ≤ i ≤ n, even

h(Xi) =

( 7i−5
2 , 1 ≤ i ≤ n, odd

7i−4
2 , 2 ≤ i ≤ n, even

Now we evaluate weights for all edges as:

wt(UiVi) =

( 7i+1
2 , 1 ≤ i ≤ 2n− 2, odd

7i
2 , 2 ≤ i ≤ 2n− 2, even

wt(V2i−1V2i) = 7i− 1, 1 ≤ i ≤ n− 1

wt(WiV2i−1) = 7i− 4, 1 ≤ i ≤ n− 1

wt(V2iWi+1) = 7i+ 1, 1 ≤ i ≤ n− 1

wt(WiXi) = 7i− 5, 1 ≤ i ≤ n

wt(WiWi+1) = 7i− 2, 1 ≤ i ≤ n− 1
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On the basis of above calculations we see that all edges have distinct
weights.
Hence we can say that es(PQSn) = b7n−42 c, for n > 1. 2

Figure 2. Irregular Labeling on Quadrilateral Snake Graph PQS5 With
Pendant Edges.

2.3. Alternate Quadrilateral Snake Graph

To obtain an alternate quadrilateral snake graph AQSn, let us consider
a path graph Pn having (n > 1) vertices, if we join Pi and Pi+1 (alter-
natively) to a new vertex ai in such a way that every alternate edge of
a path is replaced by triangle C4, we get alternate quadrilateral snake
graph AQSn. It has 2n vertices where n > 1, Ui and Vi have n ver-
tices. Its edge set can be defined as E(AQSn) = {UiUi+1; 1 ≤ i ≤ n −
1}S{V2i−1V 2i; 1 ≤ i ≤ n

2}
S{U2iV2i; 1 ≤ i ≤ n

2}
S{U2i−1V2i−1; 1 ≤ i ≤ n

2}.

Theorem 2.3. Let AQSn be an alternate quadrilateral snake graph, then
es(AQSn) = b5n+24 c, for even n.

Proof: Let AQSn be an alternate quadrilateral snake graph. We have to
show that es(AQSn) = b5n+24 c. From Theorem 1.1 we get lower bound
es(AQSn) ≥ b5n+24 c. For converse, we have to prove that es(AQSn) ≤
b5n+24 c. For this, define a vertex labeling h : V (AQSn)→ {1, 2, 3, ..., b5n+24 c}
such that

Marisol Martínez
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h(Vi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

5i+3
4 , if i ≡ 1(mod4)

5i+2
4 , if i ≡ 2(mod4)

5i+1
4 , if i ≡ 3(mod4)

5i−8
4 , if i ≡ 4(mod4)

h(Ui) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

5i−1
4 , if i ≡ 1(mod4)

5i−6
4 , if i ≡ 2(mod4)

5i+5
4 , if i ≡ 3(mod4)

5i
4 , if i ≡ 4(mod4)

Now we evaluate weights for all edges as:

Wt(UiUi+1) =

⎧⎪⎪⎨⎪⎪⎩
5i−1
2 , if i ≡ 1(mod4)

5i+2
2 , 2 ≤ i ≤ n− 1, even

5i+5
2 , if i ≡ 3(mod4)

Wt(V2i−1V2i) =

(
5i, 1 ≤ i ≤ n

2 , odd

5i− 3, 2 ≤ i ≤ n
2 , even

Wt(U2iV2i) =

(
5i− 1, if i ≡ 1(mod4)andi ≡ 3(mod4)

5i− 2, if i ≡ 2(mod4)andi ≡ 4(mod4)

Wt(U2i−1V2i−1) =

(
5i− 2, if i ≡ 1(mod4)andi ≡ 3(mod4)

5i− 1, if i ≡ 2(mod4)andi ≡ 4(mod4)

On the basis of above calculations we see that all edges have distinct
weights.

Hence we can say that es(AQSn) = b5n+24 c, for even n. 2
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Figure 3. Irregular Labeling on Alternate Quadrilateral Snake Graph
AQS8.

2.4. Alternate Quadrilateral Snake Graph with Pendant Edges

Alternate Quadrilateral snake graph PAQSn with pendant edges consists
of 4n vertices where n > 1, Ui, Vi,Wi and Xi have n vertices. Its edge
set can be defined as E(PAQSn) = {UiVi; 1 ≤ i ≤ n}S{ViWi; 1 ≤ i ≤
n}S{WiXi; 1 ≤ i ≤ n}S{V2i−1V2i; 1 ≤ i ≤ n

2}
S{WiWi+1; 1 ≤ i ≤ n− 1}.

It has 9n−22 edges.

Theorem 2.4. Let PAQSn be an alternate quadrilateral snake graph with
pendant edges, then es(PAQSn) = b9n+24 c, for even n.

Proof: Let PAQSn be a alternate quadrilateral snake graph with pen-
dant edges. We have to show that es(PAQSn) = b9n+24 c From Theorem
1.1 we get lower bound es(PAQSn) ≥ b9n+24 c. For converse, we have
to prove that es(PAQSn) ≤ b9n+24 c. For this, define a vertex labeling
h : V (PAQSn)→ {1, 2, 3, ..., b9n+24 c} such that

h(Ui) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

9i−1
4 , if i ≡ 1(mod4)

9i−2
4 , if i ≡ 2(mod4)

9i−11
4 , if i ≡ 3(mod4)

9i−4
4 , if i ≡ 4(mod4)

h(Vi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

9i−1
4 , if i ≡ 1(mod4)

9i−6
4 , if i ≡ 2(mod4)

9i+1
4 , if i ≡ 3(mod4)

9i−4
4 , if i ≡ 4(mod4)

Marisol Martínez
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h(Wi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

9i−5
4 , if i ≡ 1(mod4)

9i+2
4 , if i ≡ 2(mod4)

9i−7
4 , if i ≡ 3(mod4)

9i
4 , if i ≡ 4(mod4)

h(Xi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

9i−5
4 , if i ≡ 1(mod4)

9i−2
4 , if i ≡ 2(mod4)

9i+5
4 , if i ≡ 3(mod4)

9i
4 , if i ≡ 4(mod4)

Now we evaluate weights for all edges as:

wt(UiVi) =

⎧⎪⎪⎨⎪⎪⎩
9i−1
2 , if i ≡ 1(mod4)

9i−5
2 , if i ≡ 3(mod4)

9i−4
2 , if 2 ≤ i ≤ n, even

wt(ViWi) =

( 9i−3
2 if 1 ≤ i ≤ n, odd

9i−2
2 if 2 ≤ i ≤ n, even

wt(WiXi) =

⎧⎪⎪⎨⎪⎪⎩
9i−1
2 , if i ≡ 3(mod4)

9i−5
2 , if i ≡ 1(mod4)

9i
2 , if 2 ≤ i ≤ n, even

wt(WiWi+1) =

⎧⎪⎪⎨⎪⎪⎩
9i+1
2 , if i ≡ 3(mod4)

9i+3
2 , if i ≡ 1(mod4)

9i+2
2 , if 2 ≤ i ≤ n− 1, even

wt(V2i−1V2i) =

(
9i− 3, if 2 ≤ i ≤ n

2 , even

9i− 2, if 1 ≤ i ≤ n
2 , odd

On the basis of above calculations we see that all edges have distinct
weights.
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Hence we can say that es(PAQSn) = b9n+24 c, for even n. 2

Figure 4. Irregular Labeling on Alternate Quadrilateral Snake Graph
PAQS6 With Pendant Edges.

2.5. Double Alternate Quadrilateral Snake Graph

Double alternate quadrilateral snake graph DAQSn consists of two alter-
nate quadrilateral snake graphs that have common path. DAQSn consists
of 3n vertices where n > 1, Ui, Vi and Wi have n vertices. Its edge set can
be defined as E(DAQSn) = {UiUi+1; 1 ≤ i ≤ n − 1}S{V2i−1V2i; 1 ≤ i ≤
n
2}
S{U2iV2i; 1 ≤ i ≤ n

2}
S{U2i−1V2i−1; 1 ≤ i ≤ n

2}
S{W2i−1W2i; 1 ≤ i ≤

n
2}
S{U2iW2i; 1 ≤ i ≤ n

2}
S{U2i−1W2i−1; 1 ≤ i ≤ n

2}.

Theorem 2.5. LetDAQSn be a double alternate quadrilateral snake graph,
then es(DAQSn) = 2n, for even n.

Proof: Let DAQSn be a double alternate quadrilateral snake graph. We
have to show that es(DAQSn) = 2n. From Theorem 1.1 we get lower bound
es(DAQSn) ≥ 2n. For converse, we have to prove that es(DAQSn) ≤ 2n.
For this, define a vertex labeling h : V (DAQSn)→ {1, 2, 3, ..., 2n} such that

h(Vi) = 2i, 1 ≤ i ≤ n

h(Ui) =

(
2i, if 2 ≤ i ≤ n, even

2i− 1, if 1 ≤ i ≤ n, odd

h(Wi) = 2i− 1, 1 ≤ i ≤ n

Now we evaluate weights for all edges as:

Marisol Martínez
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wt(UiUi+1) = 4i+ 1, 1 ≤ i ≤ n− 1

wt(V2i−1V2i) = 8i− 2, 1 ≤ i ≤ n
2

wt(U2iV2i) = 8i, 1 ≤ i ≤ n
2

wt(U2i−1V2i−1) = 8i− 5, 1 ≤ i ≤ n
2

wt(W2i−1W2i) = 8i− 4, 1 ≤ i ≤ n
2

wt(U2iW2i) = 8i− 1, 1 ≤ i ≤ n
2

wt(U2i−1W2i−1) = 8i− 6, 1 ≤ i ≤ n
2

On the basis of above calculations we see that all edges have distinct
weights.
Hence we can say that es(DAQSn) = 2n, for even n. 2

Figure 5. Irregular Labeling on Double Alternate Quadrilateral Snake
Graph DAQS6.

2.6. Linear Phenylene Graph

To obtain a Linear phenylene graph, we make a chain of alternate copies
of hexagon and squares. Its vertex set and edge set can be defined as
V (PHn) = {Xi; 1 ≤ i ≤ n}S{Yi; 1 ≤ i ≤ n} and E(PHn) = {XiXi+1; 1 ≤
i ≤ n−1}S{YiYi+1; 1 ≤ i ≤ n−1}S{X3iY3i; 1 ≤ i ≤ n−1

3 }
S{X3i+1Y3i+1; 1 ≤

i ≤ n−1
3 }

S {X1Y1}.

Theorem 2.6. Let PHn be a linear phenylene graph, then es(PHn) =
b4n3 c, forn ≡ 4(mod3).

Marisol Martínez
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Proof: Let PHn be a linear phenylene graph. We have to show that
es(PHn) = b4n3 c. From Theorem 1.1 we get lower bound es(PHn) ≥ b4n3 c.
For converse, we have to prove that es(PHn) ≤ b4n3 c. For this, define a
vertex labeling h : V (PHn)→ {1, 2, 3, ..., b4n3 c} such that

h(Xi) =

⎧⎪⎪⎨⎪⎪⎩
4i−1
3 , if i ≡ 1(mod3)

4i−2
3 , if i ≡ 2(mod3)

4i−6
3 , if i ≡ 3(mod3)

h(Yi) =

⎧⎪⎪⎨⎪⎪⎩
4i−1
3 , if i ≡ 1(mod3)

4i+4
3 , if i ≡ 2(mod3)

4i
3 , if i ≡ 3(mod3)

Now we evaluate weights for all edges as:

Wt(YiYi+1) =

⎧⎪⎪⎨⎪⎪⎩
8i+7
3 , if i ≡ 1(mod3)

8i+8
3 , if i ≡ 2(mod3)

8i+3
3 , if i ≡ 3(mod3)

Wt(XiXi+1) =

⎧⎪⎪⎨⎪⎪⎩
8i+1
3 , if i ≡ 1(mod3)

8i−4
3 , if i ≡ 2(mod3)

8i−3
3 , if i ≡ 3(mod3)

Wt(X3i+1Y3i+1) = 8i+ 2, 1 ≤ i ≤ n−1
3

Wt(X3iY3i) = 8i− 2, 1 ≤ i ≤ n−1
3

Wt(X1Y1) = 2

On the basis of above calculations we see that all edges have distinct
weights.
Hence we can say that es(PHn) = b4n3 c, forn ≡ 4(mod3). 2
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Figure 6. Linear Phenylene Graph PH13.

2.7. Bn Graph

Bn graph is obtained by making a ladder Ln ' Pn × P2. It is a planar
graph. Its vertex set is formed by V (Bn) = {Xi; 1 ≤ i ≤ n}S{Yi; 1 ≤ i ≤
n}S{Zi; 1 ≤ i ≤ n} and edge set can be given as E(Bn) = {XiXi+1; 1 ≤
i ≤ n− 1}S{YiYi+1; 1 ≤ i ≤ n− 1}S{ZiZi+1; 1 ≤ i ≤ n− 1}S{XiYi; 1 ≤
i ≤ n}S{Xi+1Yi; 1 ≤ i ≤ n− 1}S{YiZi; 1 ≤ i ≤ n}.

Theorem 2.7. Show that es(Bn) = b7n−22 c, for n > 1.

Proof: Let Bn be a graph. We have to show that es(Bn) = b7n−22 c.
From Theorem 1.1 we get lower bound es(Bn) ≥ b7n−22 c. For converse,
we have to prove that es(Bn) ≤ b7n−22 c. For this, define a vertex labeling
h : V (Bn)→ {1, 2, 3, ..., b7n−22 c} such that

h(Xi) =

( 7i−6
2 , 2 ≤ i ≤ n, even

7i−5
2 , 1 ≤ i ≤ n, odd

h(Yi) =

( 7i−4
2 , 2 ≤ i ≤ n, even

7i−3
2 , 1 ≤ i ≤ n, odd

h(Zi) =

( 7i−2
2 , 2 ≤ i ≤ n, even

7i−3
2 , 1 ≤ i ≤ n, odd

Now we evaluate weights for all edges as:

Marisol Martínez
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wt(XiXi+1) = 7i− 2, 1 ≤ i ≤ n− 1

wt(YiYi+1) = 7i, 1 ≤ i ≤ n− 1

wt(ZiZi+1) = 7i+ 1, 1 ≤ i ≤ n− 1

wt(Xi+1Yi) = 7i− 1, 1 ≤ i ≤ n− 1

wt(XiYi) =

(
7i− 5, 2 ≤ i ≤ n, even

7i− 4, 1 ≤ i ≤ n, odd

wt(YiZi) = 7i− 3, 1 ≤ i ≤ n

On the basis of above calculations we see that all edges have distinct
weights.

Hence we can say that es(Bn) = b7n−22 c, for n > 1. 2

Figure 7. Irregular Labeling on B5 Graph.
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3. Conclusion

In this research paper, we obtained exact values of edge irregularity strength
of linear phenylene graph PHn, Bn graph and different families of snake
graph.
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