Proyecciones Journal of Mathematics
Vol. 42, $\mathrm{N}^{o}$ 6, pp. 1549-1566, December 2023.
Universidad Católica del Norte
Antofagasta - Chile

# On edge irregularity strength of different families of graphs 

Muhammad Imran (D)<br>Concordia College Kasur Campus, Pakistan<br>Murat Cancan (1)<br>Yuzuncu Yil University, Turkey<br>Yasir Ali<br>Concordia College Kasur Campus, Pakistan<br>Anum<br>Concordia College Kasur Campus, Pakistan<br>Jamila Aslam<br>Concordia College Kasur Campus, Pakistan<br>Received : February 2023. Accepted : May 2023


#### Abstract

Edge irregular mapping or vertex mapping $h: V(G) \longrightarrow\{1,2,3, \ldots, s\}$ is a mapping of vertices in such a way that all edges have distinct weights. We evaluate weight of any edge by using equation $w t_{h}(c d)=$ $h(c)+h(d), \forall c, d \in V(G)$ and $\forall c d \in E(G)$. Edge irregularity strength denoted by es $(G)$ is a minimum positive integer used to label vertices to form edge irregular labeling. In this paper, we find exact value of edge irregularity strength of linear phenylene graph $P H_{n}, B_{n}$ graph and different families of snake graph.


Keywords: Irregular assignment; irregularity strength; edge irregularity strength; pendant edges; snake graphs; linear phenylene graph $P H_{n} ; B_{n}$ graph.

## 1. Introduction

In this paper, we consider finite, simple and undirected graphs.
The procedure of assignment of non-negative integers to the elements of a graph $G$ is termed as labeling. Vertex set $V(G)$ and edge set $E(G)$ are the elements of a graph $G$. If we label vertices or edges, then this labeling is categorized as vertex labeling or edge labeling respectively. If we label both vertices and edges, then this labeling is termed as total labeling.
Chartrand et al.[15] had introduced edge labeling for a graph $G$. We call this labeling as irregular assignments because all vertices have distinct weights. Irregularity strength $s(G)$ is a minimum positive integer which is used to form irregular labeling. Results regarding irregularity strength can be seen in $[7,14,16,21]$.
Vertex irregular mapping or edge mapping $h: E(G) \longrightarrow\{1,2,3, \ldots, s\}$ is a mapping of edges in such a way that all vertices have distinct weights. Weight of any vertex can be calculated by using equation $w t_{h}(c)=\Sigma h(c d)$, $\forall c, d \in V(G)$ and $c d \in E(G)$.
Motivated by Chartrand's work, Bača at [12] introduced new labeling named as vertex irregular total labeling.
Vertex irregular total labeling $h: E(G) \cup V(G) \longrightarrow\{1,2,3, \ldots, s\}$ is a mapping of edges and vertices of $G$ in such a way that the total vertex weight is different for all vertices. We can evaluate total vertex weight by using the relation $w t_{h}(c)=h(c)+\Sigma h(c d), \forall c, d \in V(G)$ and $c d \in E(G)$. Total vertex irregularity strength denoted by $\operatorname{tvs}(G)$ is a minimum positive integer used to label vertices to form vertex irregular total labeling. Inspired by this, more results were developed in $[4,1,2,9,26,8,11,13,17,18,20,22,24]$. Edge irregularity and vertex irregularity were both new labels developed by Marzuki based on the previously improved motivation in [12], which were categorized as total labels with complete irregularity. Total irregularity strength for a graph $G$ is denoted as $t s(G)$. Results related to irregular total labeling were developed in $[12,23]$.
Because of the motivation of previous results, Ahmed et al. developed a new concept of edge irregularity strength denoted by es $(G)$ in [3], which was a minimum positive integer used to label vertices to form edge irregular labeling. Edge irregular mapping or vertex mapping $h: V(G) \longrightarrow\{1,2,3, \ldots, s\}$ is a mapping of vertices in such a way that all edges have distinct weights. We evaluate weight of any edge by using equation $w t_{h}(c d)=h(c)+h(d)$, $\forall c, d \in V(G)$ and $\forall c d \in E(G)$.
In 2012, Siddiqui [25] calculated edge irregularity strength of subdivision
of star $S_{n}$. In 2016, Ahmad et al. [5] obtained exact value of edge irregularity strength of different classes of Toeplitz graphs. In 2016, Tarawneh et al. [27, 28] found edge irregularity strength of different families of graphs. Tarawneh et al. [29, 30] found many useful results regarding edge irregularity strength of disjoint union of star graph, subdivision of star graph and grid graphs. In 2017, Mushayt et al. [10] computed edge irregularity strength of products of certain families of graphs with path $P-2$. In 2017, Imran et al. [19] computed edge irregularity strength of caterpillars, $n$-star graphs, $(n, t)$-kite graphs, cycle chains and friendship graphs. In 2020, Zhang et al. [31] introduced some new families of comb graph and calculated exact value of edge irregularity strength of these graphs. In 2020, Ahmad et al. [6] performed computer based experiment dealing with the edge irregularity strength of complete bipartite graphs, they also gave bounds on this parameter for wheel related graphs.

## Theorem 1.1

Let $G$ be a simple graph with maximum degree $=(G)$, then $e s(G) \geq \max \left\{\left\lceil\frac{|E(G)|+1}{2}\right\rceil,(G)\right\}[3]$.

## 2. Main Results

### 2.1. Quadrilateral Snake Graph

To obtain a quadrilateral snake graph let us consider a path graph $P_{n}$, ( $n>1$ ), if we replace each edge of path graph by a quadrilateral $C_{4}$, we get Quadrilateral snake graph $Q S_{n}$. It has $(3 n-2)$ vertices, $u_{i}$ have n vertices, $v_{i}$ have $2 n-2$ vertices and its edge set can be given as $E\left(Q S_{n}\right)=$ $\left\{U_{i} U_{i+1} ; 1 \leq i \leq n-1\right\} \bigcup\left\{V_{2 i-1} V_{2 i} ; 1 \leq i \leq n-1\right\} \bigcup\left\{U_{i} V_{2 i-1} ; 1 \leq i \leq\right.$ $n-1\} \bigcup\left\{U_{i+1} V_{2 i} ; 1 \leq i \leq n-1\right\}$.

Theorem 2.1. Let $Q S_{n}$ be a quadrilateral snake graph, then es $\left(Q S_{n}\right)=$ $2 n-1$, for $n>1$.

Proof: Let $Q S_{n}$ be a quadrilateral snake graph. We have to show that $e s\left(Q S_{n}\right)=2 n-1$. From Theorem 1.1 we get lower bound $e s\left(Q S_{n}\right) \geq 2 n-1$. For converse, we have to prove that $e s\left(Q S_{n}\right) \leq 2 n-1$. For this, define a vertex labeling $h: V\left(Q S_{n}\right) \rightarrow\{1,2,3, \ldots, 2 n-1\}$ such that

$$
\begin{aligned}
& h\left(V_{i}\right)=i, 1 \leq i \leq 2 n-2 \\
& h\left(U_{i}\right)=2 i-1,1 \leq i \leq n
\end{aligned}
$$

Now we evaluate weights for all edges as:

$$
\begin{gathered}
W_{t}\left(U_{i} U_{i+1}\right)=4 i, 1 \leq i \leq n-1 \\
W_{t}\left(V_{2 i-1} V_{2 i}\right)=4 i-1,1 \leq i \leq n-1 \\
W_{t}\left(U_{i} V_{2 i-1}\right)=4 i-2,1 \leq i \leq n-1 \\
W_{t}\left(U_{i+1} V_{2 i}\right)=4 i+1,1 \leq i \leq n-1
\end{gathered}
$$

On the basis of above calculations we see that all edges have distinct weights.
Hence we can say that $e s\left(Q S_{n}\right)=2 n-1$, for $n>1$.


Figure 1. Irregular Labeling on Quadrilateral Snake Graph $Q S_{5}$.

### 2.2. Quadrilateral Snake Graph with Pendant Edges

Quadrilateral snake graph $P Q S_{n}$ with pendant edges is formed by vertex set $V\left(P Q S_{n}\right)$ consists of $6 n-4$ vertices where $n>1, U_{i}$ and $V_{i}$ have $2 n-2$ vertices, $W_{i}$ and $X_{i}$ have $n$ vertices, and edge set can be given as $E\left(P Q S_{n}\right)=\left\{U_{i} V_{i} ; 1 \leq i \leq 2 n-2\right\} \bigcup\left\{V_{2 i-1} W_{i} ; 1 \leq i \leq n-1\right\} \bigcup\left\{W_{i} X_{i} ; 1 \leq\right.$ $i \leq n\} \bigcup\left\{W_{i+1} V_{2 i} ; 1 \leq i \leq n-1\right\} \bigcup\left\{W_{i} W_{i+1} ; 1 \leq i \leq n-1\right\} \bigcup\left\{V_{2 i-1} V_{2 i} ; 1 \leq\right.$ $i \leq n-1\}$.

Theorem 2.2. Let $P Q S_{n}$ be a quadrilateral snake graph with pendant edges, then es $\left(P Q S_{n}\right)=\left\lfloor\frac{7 n-4}{2}\right\rfloor$, for $n>1$.

Proof: Let $P Q S_{n}$ be a quadrilateral snake graph with pendant edges. We have to show that $\operatorname{es}\left(P Q S_{n}\right)=\left\lfloor\frac{7 n-4}{2}\right\rfloor$. From Theorem 1.1 we get lower bound $e s\left(P Q S_{n}\right) \geq\left\lfloor\frac{7 n-4}{2}\right\rfloor$. For converse, we have to prove that $e s\left(P Q S_{n}\right) \leq\left\lfloor\frac{7 n-4}{2}\right\rfloor$. For this, define a vertex labeling $h: V\left(P Q S_{n}\right) \rightarrow$ $\left\{1,2,3, \ldots,\left\lfloor\frac{7}{2}-4\right]\right\}$ such that

$$
\begin{aligned}
& h\left(U_{i}\right)= \begin{cases}\frac{7 i+1}{4}, & \text { if } i \equiv 1(\bmod 4) \\
\frac{7 i-2}{4}, & \text { if } i \equiv 2(\bmod 4) \\
\frac{7 i-1}{4}, & \text { if } i \equiv 3(\bmod 4) \\
\frac{7 i}{4}, & \text { if } i \equiv 4(\bmod 4)\end{cases} \\
& h\left(V_{i}\right)= \begin{cases}\frac{7 i+1}{4}, & \text { if } i \equiv 1(\bmod 4) \\
\frac{7 i+2}{4}, & \text { if } i \equiv 2(\bmod 4) \\
\frac{7 i+3}{4}, & \text { if } i \equiv 3(\bmod 4) \\
\frac{7 i}{4}, & \text { if } i \equiv 4(\bmod 4)\end{cases} \\
& h\left(W_{i}\right)= \begin{cases}\frac{7 i-5}{2}, & 1 \leq i \leq n, \text { odd } \\
\frac{7 i-6}{2}, & 2 \leq i \leq n, \text { even }\end{cases} \\
& h\left(X_{i}\right)= \begin{cases}\frac{7 i-5}{2}, & 1 \leq i \leq n, \text { odd } \\
\frac{7 i-4}{2}, & 2 \leq i \leq n, \text { even }\end{cases}
\end{aligned}
$$

Now we evaluate weights for all edges as:

$$
\begin{gathered}
w_{t}\left(U_{i} V_{i}\right)= \begin{cases}\frac{7 i+1}{2}, & 1 \leq i \leq 2 n-2, \text { odd } \\
\frac{7 i}{2}, & 2 \leq i \leq 2 n-2, \text { even }\end{cases} \\
w_{t}\left(V_{2 i-1} V_{2 i}\right)=7 i-1,1 \leq i \leq n-1 \\
w_{t}\left(W_{i} V_{2 i-1}\right)=7 i-4,1 \leq i \leq n-1 \\
w_{t}\left(V_{2 i} W_{i+1}\right)=7 i+1,1 \leq i \leq n-1 \\
w_{t}\left(W_{i} X_{i}\right)=7 i-5,1 \leq i \leq n \\
w_{t}\left(W_{i} W_{i+1}\right)=7 i-2,1 \leq i \leq n-1
\end{gathered}
$$

On the basis of above calculations we see that all edges have distinct weights.
Hence we can say that $\operatorname{es}\left(P Q S_{n}\right)=\left\lfloor\frac{7 n-4}{2}\right\rfloor$, for $n>1$.


Figure 2. Irregular Labeling on Quadrilateral Snake Graph $P Q S_{5}$ With Pendant Edges.

### 2.3. Alternate Quadrilateral Snake Graph

To obtain an alternate quadrilateral snake graph $A Q S_{n}$, let us consider a path graph $P_{n}$ having $(n>1)$ vertices, if we join $P_{i}$ and $P_{i+1}$ (alternatively) to a new vertex $a_{i}$ in such a way that every alternate edge of a path is replaced by triangle $C_{4}$, we get alternate quadrilateral snake graph $A Q S_{n}$. It has $2 n$ vertices where $n>1, U_{i}$ and $V_{i}$ have $n$ vertices. Its edge set can be defined as $E\left(A Q S_{n}\right)=\left\{U_{i} U_{i+1} ; 1 \leq i \leq n-\right.$ $1\} \bigcup\left\{V_{2 i-1} V_{2 i} ; 1 \leq i \leq \frac{n}{2}\right\} \bigcup\left\{U_{2 i} V_{2 i} ; 1 \leq i \leq \frac{n}{2}\right\} \bigcup\left\{U_{2 i-1} V_{2 i-1} ; 1 \leq i \leq \frac{n}{2}\right\}$.

Theorem 2.3. Let $A Q S_{n}$ be an alternate quadrilateral snake graph, then $e s\left(A Q S_{n}\right)=\left\lfloor\frac{5 n+2}{4}\right\rfloor$, for even $n$.

Proof: Let $A Q S_{n}$ be an alternate quadrilateral snake graph. We have to show that $\operatorname{es}\left(A Q S_{n}\right)=\left\lfloor\frac{5 n+2}{4}\right\rfloor$. From Theorem 1.1 we get lower bound $e s\left(A Q S_{n}\right) \geq\left\lfloor\frac{5 n+2}{4}\right\rfloor$. For converse, we have to prove that $\operatorname{es}\left(A Q S_{n}\right) \leq$ $\left\lfloor\frac{5 n+2}{4}\right\rfloor$. For this, define a vertex labeling $h: V\left(A Q S_{n}\right) \rightarrow\left\{1,2,3, \ldots,\left\lfloor\frac{5 n+2}{4}\right\rfloor\right\}$ such that

$$
\begin{aligned}
& h\left(V_{i}\right)= \begin{cases}\frac{5 i+3}{4}, & \text { if } i \equiv 1(\bmod 4) \\
\frac{5 i+2}{4}, & \text { if } i \equiv 2(\bmod 4) \\
\frac{5 i+1}{4}, & \text { if } i \equiv 3(\bmod 4) \\
\frac{5 i-8}{4}, & \text { if } i \equiv 4(\bmod 4)\end{cases} \\
& h\left(U_{i}\right)= \begin{cases}\frac{5 i-1}{4}, & \text { if } i \equiv 1(\bmod 4) \\
\frac{5 i-6}{4}, & \text { if } i \equiv 2(\bmod 4) \\
\frac{5 i+5}{4}, & \text { if } i \equiv 3(\bmod 4) \\
\frac{5 i}{4}, & \text { if } i \equiv 4(\bmod 4)\end{cases}
\end{aligned}
$$

Now we evaluate weights for all edges as:

$$
\begin{gathered}
W_{t}\left(U_{i} U_{i+1}\right)=\left\{\begin{array}{cc}
\frac{5 i-1}{2}, & \text { if } i \equiv 1(\bmod 4) \\
\frac{5 i+2}{2}, & 2 \leq i \leq n-1, \text { even } \\
\frac{5 i+5}{2}, & \text { if } i \equiv 3(\bmod 4)
\end{array}\right. \\
W_{t}\left(V_{2 i-1} V_{2 i}\right)= \begin{cases}5 i, & 1 \leq i \leq \frac{n}{2}, \text { odd } \\
5 i-3, & 2 \leq i \leq \frac{n}{2}, \text { even }\end{cases} \\
W_{t}\left(U_{2 i} V_{2 i}\right)= \begin{cases}5 i-1, & \text { if } i \equiv 1(\bmod 4) \text { and } i \equiv 3(\bmod 4) \\
5 i-2, & \text { if } i \equiv 2(\bmod 4) \text { and } i \equiv 4(\bmod 4)\end{cases} \\
W_{t}\left(U_{2 i-1} V_{2 i-1}\right)= \begin{cases}5 i-2, & \text { if } i \equiv 1(\bmod 4) \text { and } i \equiv 3(\bmod 4) \\
5 i-1, & \text { if } i \equiv 2(\bmod 4) \operatorname{and} i \equiv 4(\bmod 4)\end{cases}
\end{gathered}
$$

On the basis of above calculations we see that all edges have distinct weights.

Hence we can say that $\operatorname{es}\left(A Q S_{n}\right)=\left\lfloor\frac{5 n+2}{4}\right\rfloor$, for even $n$.


Figure 3. Irregular Labeling on Alternate Quadrilateral Snake Graph $A Q S_{8}$.

### 2.4. Alternate Quadrilateral Snake Graph with Pendant Edges

Alternate Quadrilateral snake graph $P A Q S_{n}$ with pendant edges consists of $4 n$ vertices where $n>1, U_{i}, V_{i}, W_{i}$ and $X_{i}$ have $n$ vertices. Its edge set can be defined as $E\left(P A Q S_{n}\right)=\left\{U_{i} V_{i} ; 1 \leq i \leq n\right\} \bigcup\left\{V_{i} W_{i} ; 1 \leq i \leq\right.$ $n\} \bigcup\left\{W_{i} X_{i} ; 1 \leq i \leq n\right\} \bigcup\left\{V_{2 i-1} V_{2 i} ; 1 \leq i \leq \frac{n}{2}\right\} \bigcup\left\{W_{i} W_{i+1} ; 1 \leq i \leq n-1\right\}$. It has $\frac{9 n-2}{2}$ edges.

Theorem 2.4. Let $P A Q S_{n}$ be an alternate quadrilateral snake graph with pendant edges, then $\operatorname{es}\left(P A Q S_{n}\right)=\left\lfloor\frac{9 n+2}{4}\right\rfloor$, for even $n$.

Proof: Let $P A Q S_{n}$ be a alternate quadrilateral snake graph with pendant edges. We have to show that $\operatorname{es}\left(P A Q S_{n}\right)=\left\lfloor\frac{9 n+2}{4}\right\rfloor$ From Theorem 1.1 we get lower bound $\operatorname{es}\left(P A Q S_{n}\right) \geq\left\lfloor\frac{9 n+2}{4}\right\rfloor$. For converse, we have to prove that $\operatorname{es}\left(P A Q S_{n}\right) \leq\left\lfloor\frac{9 n+2}{4}\right\rfloor$. For this, define a vertex labeling $h: V\left(P A Q S_{n}\right) \rightarrow\left\{1,2,3, \ldots,\left\lfloor\frac{9 n+2}{4}\right\rfloor\right\}$ such that

$$
\begin{aligned}
& h\left(U_{i}\right)= \begin{cases}\frac{9 i-1}{4}, & \text { if } i \equiv 1(\bmod 4) \\
\frac{9 i-2}{4}, & \text { if } i \equiv 2(\bmod 4) \\
\frac{9 i-11}{4}, & \text { if } i \equiv 3(\bmod 4) \\
\frac{9 i-4}{4}, & \text { if } i \equiv 4(\bmod 4)\end{cases} \\
& h\left(V_{i}\right)= \begin{cases}\frac{9 i-1}{4}, & \text { if } i \equiv 1(\bmod 4) \\
\frac{9 i-6}{4}, & \text { if } i \equiv 2(\bmod 4) \\
\frac{9 i+1}{4}, & \text { if } i \equiv 3(\bmod 4) \\
\frac{9 i-4}{4}, & \text { if } i \equiv 4(\bmod 4)\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& h\left(W_{i}\right)= \begin{cases}\frac{9 i-5}{4}, & \text { if } i \equiv 1(\bmod 4) \\
\frac{9 i+2}{4}, & \text { if } i \equiv 2(\bmod 4) \\
\frac{9 i-7}{4}, & \text { if } i \equiv 3(\bmod 4) \\
\frac{9 i}{4}, & \text { if } i \equiv 4(\bmod 4)\end{cases} \\
& h\left(X_{i}\right)= \begin{cases}\frac{9 i-5}{4}, & \text { if } i \equiv 1(\bmod 4) \\
\frac{9 i-2}{4}, & \text { if } i \equiv 2(\bmod 4) \\
\frac{9 i+5}{4}, & \text { if } i \equiv 3(\bmod 4) \\
\frac{9 i}{4}, & \text { if } i \equiv 4(\bmod 4)\end{cases}
\end{aligned}
$$

Now we evaluate weights for all edges as:

$$
\begin{gathered}
w_{t}\left(U_{i} V_{i}\right)= \begin{cases}\frac{9 i-1}{2}, & \text { if } i \equiv 1(\bmod 4) \\
\frac{9 i-5}{2}, & \text { if } i \equiv 3(\bmod 4) \\
\frac{9 i-4}{2}, & \text { if } 2 \leq i \leq n, \text { even }\end{cases} \\
w_{t}\left(V_{i} W_{i}\right)= \begin{cases}\frac{9 i-3}{2} & \text { if } 1 \leq i \leq n, \text { odd } \\
\frac{9 i-2}{2} & \text { if } 2 \leq i \leq n, \text { even }\end{cases} \\
w_{t}\left(W_{i} X_{i}\right)= \begin{cases}\frac{9 i-1}{2}, & \text { if } i \equiv 3(\bmod 4) \\
\frac{9 i-5}{2}, & \text { if } i \equiv 1(\bmod 4) \\
\frac{9 i}{2}, & \text { if } 2 \leq i \leq n, \text { even }\end{cases} \\
w_{t}\left(W_{i} W_{i+1}\right)= \begin{cases}\frac{9 i+1}{2}, & \text { if } i \equiv 3(\bmod 4) \\
\frac{9 i+3}{2}, & \text { if } i \equiv 1(\bmod 4) \\
\frac{9 i+2}{2}, & \text { if } 2 \leq i \leq n-1, \text { even }\end{cases} \\
w_{t}\left(V_{2 i-1} V_{2 i}\right)= \begin{cases}9 i-3, & \text { if } 2 \leq i \leq \frac{n}{2}, \text { even } \\
9 i-2, & \text { if } 1 \leq i \leq \frac{n}{2}, \text { odd }\end{cases}
\end{gathered}
$$

On the basis of above calculations we see that all edges have distinct weights.

Hence we can say that es $\left(P A Q S_{n}\right)=\left\lfloor\frac{9 n+2}{4}\right\rfloor$, for even $n$.


Figure 4. Irregular Labeling on Alternate Quadrilateral Snake Graph $P A Q S_{6}$ With Pendant Edges.

### 2.5. Double Alternate Quadrilateral Snake Graph

Double alternate quadrilateral snake graph $D A Q S_{n}$ consists of two alternate quadrilateral snake graphs that have common path. $D A Q S_{n}$ consists of $3 n$ vertices where $n>1, U_{i}, V_{i}$ and $W_{i}$ have $n$ vertices. Its edge set can be defined as $E\left(D A Q S_{n}\right)=\left\{U_{i} U_{i+1} ; 1 \leq i \leq n-1\right\} \bigcup\left\{V_{2 i-1} V_{2 i} ; 1 \leq i \leq\right.$ $\left.\frac{n}{2}\right\} \bigcup\left\{U_{2 i} V_{2 i} ; 1 \leq i \leq \frac{n}{2}\right\} \bigcup\left\{U_{2 i-1} V_{2 i-1} ; 1 \leq i \leq \frac{n}{2}\right\} \bigcup\left\{W_{2 i-1} W_{2 i} ; 1 \leq i \leq\right.$ $\left.\frac{n}{2}\right\} \bigcup\left\{U_{2 i} W_{2 i} ; 1 \leq i \leq \frac{n}{2}\right\} \bigcup\left\{U_{2 i-1} W_{2 i-1} ; 1 \leq i \leq \frac{n}{2}\right\}$.

Theorem 2.5. Let $D A Q S_{n}$ be a double alternate quadrilateral snake graph, then $e s\left(D A Q S_{n}\right)=2 n$, for even $n$.

Proof: Let $D A Q S_{n}$ be a double alternate quadrilateral snake graph. We have to show that es $\left(D A Q S_{n}\right)=2 n$. From Theorem 1.1 we get lower bound $e s\left(D A Q S_{n}\right) \geq 2 n$. For converse, we have to prove that es $\left(D A Q S_{n}\right) \leq 2 n$. For this, define a vertex labeling $h: V\left(D A Q S_{n}\right) \rightarrow\{1,2,3, \ldots, 2 n\}$ such that

$$
\begin{gathered}
h\left(V_{i}\right)=2 i, 1 \leq i \leq n \\
h\left(U_{i}\right)= \begin{cases}2 i, & \text { if } 2 \leq i \leq n, \text { even } \\
2 i-1, & \text { if } 1 \leq i \leq n, \text { odd }\end{cases} \\
h\left(W_{i}\right)=2 i-1,1 \leq i \leq n
\end{gathered}
$$

Now we evaluate weights for all edges as:

$$
\begin{gathered}
w_{t}\left(U_{i} U_{i+1}\right)=4 i+1,1 \leq i \leq n-1 \\
w_{t}\left(V_{2 i-1} V_{2 i}\right)=8 i-2,1 \leq i \leq \frac{n}{2} \\
w_{t}\left(U_{2 i} V_{2 i}\right)=8 i, 1 \leq i \leq \frac{n}{2} \\
w_{t}\left(U_{2 i-1} V_{2 i-1}\right)=8 i-5,1 \leq i \leq \frac{n}{2} \\
w_{t}\left(W_{2 i-1} W_{2 i}\right)=8 i-4,1 \leq i \leq \frac{n}{2} \\
w_{t}\left(U_{2 i} W_{2 i}\right)=8 i-1,1 \leq i \leq \frac{n}{2} \\
w_{t}\left(U_{2 i-1} W_{2 i-1}\right)=8 i-6,1 \leq i \leq \frac{n}{2}
\end{gathered}
$$

On the basis of above calculations we see that all edges have distinct weights.
Hence we can say that $e s\left(D A Q S_{n}\right)=2 n$, for even $n$.


Figure 5. Irregular Labeling on Double Alternate Quadrilateral Snake Graph $D A Q S_{6}$.

### 2.6. Linear Phenylene Graph

To obtain a Linear phenylene graph, we make a chain of alternate copies of hexagon and squares. Its vertex set and edge set can be defined as $V\left(P H_{n}\right)=\left\{X_{i} ; 1 \leq i \leq n\right\} \bigcup\left\{Y_{i} ; 1 \leq i \leq n\right\}$ and $E\left(P H_{n}\right)=\left\{X_{i} X_{i+1} ; 1 \leq\right.$ $i \leq n-1\} \bigcup\left\{Y_{i} Y_{i+1} ; 1 \leq i \leq n-1\right\} \bigcup\left\{X_{3 i} Y_{3 i} ; 1 \leq i \leq \frac{n-1}{3}\right\} \cup\left\{X_{3 i+1} Y_{3 i+1} ; 1 \leq\right.$ $\left.i \leq \frac{n-1}{3}\right\} \bigcup\left\{X_{1} Y_{1}\right\}$.

Theorem 2.6. Let $P H_{n}$ be a linear phenylene graph, then es $\left(P H_{n}\right)=$ $\left\lfloor\frac{4 n}{3}\right\rfloor$, for $n \equiv 4(\bmod 3)$.

Proof: Let $P H_{n}$ be a linear phenylene graph. We have to show that $e s\left(P H_{n}\right)=\left\lfloor\frac{4 n}{3}\right\rfloor$. From Theorem 1.1 we get lower bound $e s\left(P H_{n}\right) \geq\left\lfloor\frac{4 n}{3}\right\rfloor$. For converse, we have to prove that $e s\left(P H_{n}\right) \leq\left\lfloor\frac{4 n}{3}\right\rfloor$. For this, define a vertex labeling $h: V\left(P H_{n}\right) \rightarrow\left\{1,2,3, \ldots,\left\lfloor\frac{4 n}{3}\right\rfloor\right\}$ such that

$$
\begin{aligned}
& h\left(X_{i}\right)= \begin{cases}\frac{4 i-1}{3}, & \text { if } i \equiv 1(\bmod 3) \\
\frac{4 i-2}{3}, & \text { if } i \equiv 2(\bmod 3) \\
\frac{4 i-6}{3}, & \text { if } i \equiv 3(\bmod 3)\end{cases} \\
& h\left(Y_{i}\right)= \begin{cases}\frac{4 i-1}{3}, & \text { if } i \equiv 1(\bmod 3) \\
\frac{4 i+4}{3}, & \text { if } i \equiv 2(\bmod 3) \\
\frac{4 i}{3}, & \text { if } i \equiv 3(\bmod 3)\end{cases}
\end{aligned}
$$

Now we evaluate weights for all edges as:

$$
\begin{gathered}
W_{t}\left(Y_{i} Y_{i+1}\right)= \begin{cases}\frac{8 i+7}{3}, & \text { if } i \equiv 1(\bmod 3) \\
\frac{8 i+8}{3}, & \text { if } i \equiv 2(\bmod 3) \\
\frac{8 i+3}{3}, & \text { if } i \equiv 3(\bmod 3)\end{cases} \\
W_{t}\left(X_{i} X_{i+1}\right)= \begin{cases}\frac{8 i+1}{3}, & \text { if } i \equiv 1(\bmod 3) \\
\frac{8 i-4}{3}, & \text { if } i \equiv 2(\bmod 3) \\
\frac{8 i-3}{3}, & \text { if } i \equiv 3(\bmod 3)\end{cases} \\
W_{t}\left(X_{3 i+1} Y_{3 i+1}\right)=8 i+2,1 \leq i \leq \frac{n-1}{3} \\
W_{t}\left(X_{3 i} Y_{3 i}\right)=8 i-2,1 \leq i \leq \frac{n-1}{3} \\
W_{t}\left(X_{1} Y_{1}\right)=2
\end{gathered}
$$

On the basis of above calculations we see that all edges have distinct weights.
Hence we can say that $e s\left(P H_{n}\right)=\left\lfloor\frac{4 n}{3}\right\rfloor$, for $n \equiv 4(\bmod 3)$.


Figure 6. Linear Phenylene Graph $P H_{13}$.

## 2.7. $B_{n}$ Graph

$B_{n}$ graph is obtained by making a ladder $L_{n} \simeq P_{n} \times P_{2}$. It is a planar graph. Its vertex set is formed by $V\left(B_{n}\right)=\left\{X_{i} ; 1 \leq i \leq n\right\} \cup\left\{Y_{i} ; 1 \leq i \leq\right.$ $n\} \bigcup\left\{Z_{i} ; 1 \leq i \leq n\right\}$ and edge set can be given as $E\left(B_{n}\right)=\left\{X_{i} X_{i+1} ; 1 \leq\right.$ $i \leq n-1\} \bigcup\left\{Y_{i} Y_{i+1} ; 1 \leq i \leq n-1\right\} \bigcup\left\{Z_{i} Z_{i+1} ; 1 \leq i \leq n-1\right\} \bigcup\left\{X_{i} Y_{i} ; 1 \leq\right.$ $i \leq n\} \bigcup\left\{X_{i+1} Y_{i} ; 1 \leq i \leq n-1\right\} \cup\left\{Y_{i} Z_{i} ; 1 \leq i \leq n\right\}$.

Theorem 2.7. Show that es $\left(B_{n}\right)=\left\lfloor\frac{7 n-2}{2}\right\rfloor$, for $n>1$.
Proof: Let $B_{n}$ be a graph. We have to show that $e s\left(B_{n}\right)=\left\lfloor\frac{7 n-2}{2}\right\rfloor$. From Theorem 1.1 we get lower bound $\operatorname{es}\left(B_{n}\right) \geq\left\lfloor\frac{7 n-2}{2}\right\rfloor$. For converse, we have to prove that $\operatorname{es}\left(B_{n}\right) \leq\left\lfloor\frac{7 n-2}{2}\right\rfloor$. For this, define a vertex labeling $h: V\left(B_{n}\right) \rightarrow\left\{1,2,3, \ldots,\left\lfloor\frac{7 n-2}{2}\right\rfloor\right\}$ such that

$$
\begin{aligned}
& h\left(X_{i}\right)= \begin{cases}\frac{7 i-6}{2}, & 2 \leq i \leq n, \text { even } \\
\frac{7 i-5}{2}, & 1 \leq i \leq n, \text { odd }\end{cases} \\
& h\left(Y_{i}\right)= \begin{cases}\frac{7 i-4}{2}, & 2 \leq i \leq n, \text { even } \\
\frac{7 i-3}{2}, & 1 \leq i \leq n, \text { odd }\end{cases} \\
& h\left(Z_{i}\right)= \begin{cases}\frac{7 i-2}{2}, & 2 \leq i \leq n, \text { even } \\
\frac{7 i-3}{2}, & 1 \leq i \leq n, \text { odd }\end{cases}
\end{aligned}
$$

Now we evaluate weights for all edges as:

$$
\begin{aligned}
& w_{t}\left(X_{i} X_{i+1}\right)=7 i-2,1 \leq i \leq n-1 \\
& w_{t}\left(Y_{i} Y_{i+1}\right)=7 i, 1 \leq i \leq n-1 \\
& w_{t}\left(Z_{i} Z_{i+1}\right)=7 i+1,1 \leq i \leq n-1 \\
& w_{t}\left(X_{i+1} Y_{i}\right)=7 i-1,1 \leq i \leq n-1 \\
& w_{t}\left(X_{i} Y_{i}\right)= \begin{cases}7 i-5, & 2 \leq i \leq n, \text { even } \\
7 i-4, & 1 \leq i \leq n, \text { odd }\end{cases} \\
& w_{t}\left(Y_{i} Z_{i}\right)=7 i-3,1 \leq i \leq n
\end{aligned}
$$

On the basis of above calculations we see that all edges have distinct weights.

Hence we can say that $\operatorname{es}\left(B_{n}\right)=\left\lfloor\frac{7 n-2}{2}\right\rfloor$, for $n>1$.


Figure 7. Irregular Labeling on $B_{5}$ Graph.

## Conflicts of Interest

All the authors declare that they have no conflicts of interest.

## 3. Conclusion

In this research paper, we obtained exact values of edge irregularity strength of linear phenylene graph $P H_{n}, B_{n}$ graph and different families of snake graph.

## References

[1] A. Ahmad, M. Baca, Y. Bashir, and M . K. Siddiqui, "Total edge irregularity strength of strong product of two paths", Ars Combinatoria, vol. 106, pp. 449-459, 2012.
[2] A. Ahmad, M. Baca, and M. K. Siddiqui, "On edge irregular total labeling of categorical product of two cycles". Theory of Computing Systems, vol. 54, no. 1, pp. 1-12, 2014. doi: 10.1007/s00224-013-9470-3
[3] A. Ahmad, O. B. S. AI-M ushayt, and M. Baca, "On edge irregularity strength of graphs", Appl. Math. Comput, vol. 243, pp. 607-610, 2014. doi: 10.1016/j.amc.2014.06.028
[4] A. Ahmad, M. Arshad, and G. Iarkov, "Irregular labelings of helm and sun graphs". AK CE International Journal of Graphs and combinatorics, vol. 12, no. 2-3, pp. 161-168, 2015. doi: 10.1016/j.ak cej.2015.11010
[5] A. Ahmad, M. Baca, and M . F. N adeem, "On edge irregularity strength of Toeplitz graphs", U.P.B. Sci. Bull., Series A , vol. 78, no. 4, pp. 155-162, 2016.
[6] A. Ahmad, M. A. Asim, B. Assiri, and A. Semaničová-Feňovčíková, "Computing the edge irregularity strength of bipartite graphs and wheel related graphs", Fundamenta Informaticae, vol. 174, no. 1, pp. 1-13, 2020. doi: 10.3233/fi-2020-1927
[7] D. Amar, and 0. Togni, "Irregularity strength of trees", DiscreteM ath, vol. 190, pp. 15-38, 1998. doi: 10.1016/s0012-365x(98)00112-5
[8] M. Anholcer, M. Kalkowski, and J. Przybyo, "A new upper bound for the total vertex irregularity strength of graphs", Discrete M ath., vol. 309, no. 21, pp. 6316-6317, 2009. doi: 10.1016/j.disc.2009.05.023
[9] O. B. S. AI-M ushayt, A. Ahmad, and M. K. Siddiqui, "On the total edge irregularity strength of hexagonal grid graphs", A ustralasian J. Combinatorics, vol. 53, 263-272, 2012.
[10] O. S. AI-M ushayt, "On edge irregularity strength of products of certain families of graphs with path P-2", A rs Combinatoria, vol. 135, pp. 323-334, 2017.
[11] E. T. Baskoro, A. N. M. Salman, and N. N. Gaos, "On the total vertex irregularity strength of trees", Discrete M ath., vol. 310, no. 21, pp. 3043-3048, 2010. doi: 10.1016/j.disc.2010.06.041
[12] M. Baca, and S. Jendrol, M. Miller, and J. Ryan, "On irregular total labellings", Discrete M athematics, pp. 1378-1388, vol. 307, no. 11-12, 2007. doi: 10.1016/j.disc.2005.11075
[13] M . Baca, and M . K. Siddiqui, "T otal edge irregularity strength of generalized prism". Appl. Math. Comput, vol. 235, pp. 168-173, 2014. doi: 10.1016/j.amc.2014.03.001
[14] T. Bohman, and D. Kravitz, "On the irregularity strength of trees", J. G raph Theory, vol. 45, pp. 241-254, 2004. doi: 10.1002/jgt. 10158
[15] G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, and F. Saba, "Irregular netw orks", C ongr. N umer., vol. 64, pp. 187-192, 1988.
[16] A. Frieze, R. J. Gould, M . K aronski, and F. Pfender, "On graph irregularity strength", J. Graph Theory, vol. 41, pp. 120-137, 2002. doi: 10.1002/jgt. 10056
[17] K. M . M . H aque, "Irregular total labellings of generalized Petersen graphs", Theory of Computing Systems, vol. 50, no. 3, pp. 537-544, 2012. doi: 10.1007/s00224-011-9350-7
[18] J. Ivano, and S. Jendrol, "Total edge irregularity strength of trees", Discussiones M athematicae G raph Theory, vol. 26, no. 3, pp. 449-456, 2006. doi: 10.7151/dmgt. 1337
[19] M. Imran, A. Aslam, S. Zafar, and W. Nazeer, "Further results on edge irregularity strength of graphs". Indonesian Journal of Combinatorics, vol. 1, no. 2, pp. 82-91, 2017. doi: 10.19184/ijc.2017.12.5
[20] S. Jendrol, J. Mikuf, and R. Sotk, "Total edge irregularity strength of complete graphs and complete bipartite graphs", Discrete M athematics, vol. 310, no. 3, pp.400-407, 2010. doi: 10.1016/j.disc.2009.03.006
[21] M. Kalkowski, M . Karonski, and F. Pfender, "A new upper bound for the irregularity strength of graphs", SIAM J.Discrete Math., vol. 25, no. 3, pp. 1319-1321, 2011 doi: $10.1137 / 090774112$
[22] P. M ajerski, and J. Przybyo, "Total vertex irregularity strength of dense graphs". Journal of Graph Theory, vol. 76, no. 1, pp. 34-41, 2014. doi: 10.1002/jgt. 21748
[23] P. M ajerski, and J. Przybylo, "On irregularity strength of dense graphs", J. Graph Theory, vol. 28, no. 1, pp. 197-205, 2014. doi: 10.1137/120886650
[24] J. Przybyo, "Linear bound on the irregularity strength and the total vertex irregularity strength of graphs", SIA M Journal on D iscrete M athematics, vol. 23, no. 1, pp. 511-516, 2009. doi: 10.1137/070707385
[25] M . K. Siddiqui, "On edge irregularity strength of subdivision of star Sn", International Journal of $M$ athematics and Soft Computing, vol. 2, no. 1, pp. 75-82, 2012. doi: 10.26708/ijmsc.2012.12.09
[26] M. K. Siddiqui, A. Ahmad, M. F. Nadeem, and Y. Bashir, "Total edge irregularity strength of the disjoint union of sun graphs", International Journal of Mathematics and Soft Computing, vol. 3, no. 1, pp. 21-27, 2013. doi: 10.26708/ijmsc.2013.13.02
[27] I. Taraw neh, R. H asni, and A. Ahmad, "On the edge irregularity strength of corona product of graphs with paths", A ppl. M ath. E-N otes, vol. 16, pp. 80-87, 2016. doi: 10.1142/s1793830920500834
[28] I. Taraw neh, R. H asni, and A. A hmad, "On the edge irregularity strength of corona product of cycle with isolated vertices", A K CE International Journal of Graphs and Combinatorics, vol. 13, no. 3, pp. 213-217, 2016. doi: 10.1016/j.akcej.2016.06.010
[29] I. Taraw neh, R . H asni, and M . A A Asim, "On the edge irregularity strength of disjoint union of star graph and subdivision of star graph", A rsCombinatoria, vol. 141, pp. 93-100, 2018.
[30] I. Taraw neh, R. H asni, and A. Ahmad, "On the edge irregularity strength of grid graphs", AK CE International Journal of G raphs and C ombinatorics, vol. 17, no. 1, pp.414-418, 2020. doi: 10.1016/j.ak cej.2018.06.011
[31] X. Zhang, M. Cancan, M . F. Nadeem, and M. Imran, "Edge irregularity strength of certain families of comb graph", Proyecciones (A ntofagasta), vol. 39, no. 4, pp. 787-797, 2020. doi: 10.22199/issn.0717-6279-2020-04-0049

## Muhammad Imran

Department of Mathematics, Concordia College Kasur Campus, Pakistan
e-mail: imranbepakistani@gmail.com Corresponding Author

## Murat Cancan

Faculty of Education, Yuzuncu Yil University, Van, Turkey
e-mail: mcancan@yyu.edu.tr

## Yasir Ali

Department of Mathematics, Concordia College Kasur Campus, Pakistan
e-mail: yasirbepakistani@gmail.com

## Anum

Department of Mathematics, Concordia College Kasur Campus, Pakistan
e-mail: anamikram319@gmail.com
and

## Jamila Aslam

Department of Mathematics, Concordia College Kasur Campus, Pakistan
e-mail: shaynisawera065@gmail.com

