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1. Introduction

The study of elliptic transmission system has an importance in the recent
years, this amounts to the study of problems with a nonlocal term (nonlocal
operator) whose concrete applications, like physics (for example, anomalous
diffusion, fractional quantum mechanics), biology (e.g. modeling biologi-
cal processes with memory effects), image processing (e.g. denoising and
blurring), finance (e.g. modeling long memory financial derivatives) see
[16].

Elliptic transmission problems arise in various fields of science and engi-
neering, including electromagnetism, heat conduction, acoustics, and more.
Solving such problems often involves combining techniques from partial dif-
ferential equations, domain decomposition methods.

In the context of transmission problems, an elliptic transmission system
typically involves two or more subdomains, each with its own set of differ-
ential equations, and these subdomains are linked by interface conditions
that provide continuity of solutions and certain flows or quantities through
the interfaces. The term ”transmission” here refers to the fact that so-
lutions from different PDEs are transmitted across the interfaces between
subdomains.

Let Ω be a smooth bounded domain of RN , N ≥ 2, and let Ω1 ⊂ Ω be
a subdomain with smooth boundary Σ satisfying Ω1 ⊂ Ω. Writing Γ = ∂Ω
and Ω2 = Ω\Ω1 we have Ω = Ω1 ∪ Ω2 and ∂Ω2 = Σ ∪ Γ.

The purpose of this paper is to study the existence and multiplicity of
nontrivial weak solutions for the following class of nonlocal elliptic system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−M1

µZ
Ω1

1

p (x)
|∇u|p(x) dx

¶
div

³
|∇u|p(x)−2∇u

´
= f (x, u) in Ω1

−M2

µZ
Ω2

1

p (x)
|∇v|p(x)dx

¶
div

³
|∇v|p(x)−2∇v

´
= g (x, v) in Ω2

v = 0 on Γ

,

(1.1)

with the transmission condition
u = v,
and

M1

µZ
Ω1

1

p (x)
|∇u|p(x) dx

¶
∂u
∂η =M2

µZ
Ω2

1

p (x)
|∇v|p(x)dx

¶
∂v
∂η on Σ.
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Where p ∈ C
³
Ω
´
, and M1 and M2 are continuous functions. η is

outward normal to Ω2 and is inward Ω1. The operator div
³
|∇u|p(x)−2∇u

´
is called the p(x)-Laplacian, and becomes p−Laplacian when p(x) = p (a
constant). We confine ourselves to the case where M1 = M2 = M for
simplicity.

The problem (1.1) is related to the stationary problem of two wave
equations of the Kirchhoff type⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

utt −M1

µZ
Ω1
|∇u|2 dx

¶
∆u = f (x, u) in Ω1

utt −M2

µZ
Ω2
|∇v|2dx

¶
∆v = g (x, v) in Ω2

,

which models the transverse vibrations of the membrane composed by two
different materials in Ω1 and Ω2. Controllability and stabilization of trans-
mission problems for the wave equations can be found in [21],[25]. We
refer the reader to [2] for the stationary problems of Kirchhoff type, to [6]
for elliptic equation p−Kirchhoff type and to [1] for p(x)−Kirchhoff type
equation in unbounded domain.

We investigate the problem (1.1) in the case f (x, u) = λ1 |u|q(x)−2 u,
g (x, v) = λ2 |v|q(x)−2 v where λ1,λ2 > 0 and p, q ∈ C

³
Ω
´
such that 1 <

q (x) < p∗ (x) where p∗ (x) = Np(x)
N−p(x) if p (x) < n or p∗ (x) =∞ otherwise.

In order to study the existence of solutions, we assume that:

(M1) There exists m0 > 0 such that m0 ≤M (t) .

(M2) There exists 0 < µ < 1 such that cM(t) ≥ (1− µ)M(t)t.

such that cM =
R t
0 M (s) ds.

The solution of (1.1) belonging to the framework generalized Sobolev
space, which we will be briefly discribed in the second section.

E :=
n
(u, v) ∈W 1,p(x) (Ω1)×W

1,p(x)
Γ (Ω2) : u = v on Σ

o
,

where

W
1,p(x)
Γ (Ω2) =

n
v ∈W

1,p(x)
Γ (Ω2) : v = 0 on Γ

o
equipped with the norm k(u, v)kE = k∇ukp(x),Ω1 + k∇vkp(x),Ω2 .
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Definition 1.1. We say that (u, v) ∈ E is a weak solution of (1.1) if

M

µZ
Ω1

1

p (x)
|∇u|p(x) dx

¶Z
Ω1
|∇u|p(x)∇u∇zdx

+M

µZ
Ω2

1

p (x)
|∇v|p(x) dx

¶Z
Ω2
|∇v|p(x)∇v∇wdx

−λ1
Z
Ω1
|u|q(x)−1 uzdx− λ2

Z
Ω2
|v|q(x)−1 vwdx = 0,

for any (z, w) ∈ E.

2. Preliminary results

In order to study the problem (1.1), we recall some definitions and basic
properties of the variable exponent Lebesgue—Sobolev spaces and introduce
some notations.
Set

C+
³
Ω
´
=
n
h : h ∈ C

³
Ω
´
, h (x) > 1, for all x ∈ Ω

o
For p ∈ C+

³
Ω
´
, denote by 1 < p− := min

x∈Ω
p (x) ≤ p+ := max

x∈Ω
p (x) <∞,

we introduce the variable exponent Lebesgue space

Lp(x) (Ω) :=
n
u;u : Ω→ R is a measurable and

R
Ω |u|

p(x) dx < +∞
o
.

We recal the following so-called Luxemburg norm

|u|p(x),Ω := inf
(
α > 0;

Z
Ω

¯̄̄̄
u (x)

α

¯̄̄̄p(x)
dx ≤ 1

)
,

which is separable and reflexive Banach space.
Let us define the space

W 1,p(x) (Ω) :=
n
u ∈ Lp(x) (Ω) ; |∇u| ∈ Lp(x) (Ω)

o
,

equipped with the norm

kuk1,p(x),Ω = |u|p(x),Ω + |∇u|p(x),Ω , ∀u ∈W 1,p(x) (Ω) .

Let W
1,p(x)
0 (Ω) be the closure of C∞0 (Ω) in W 1,p(x) (Ω).

Proposition 2.1. ([15]) W
1,p(x)
0 (Ω) is separable reflexive Banach space.
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Proposition 2.2. ([14],[13]) Assume that Ω is bounded domain, the bound-

ary of Ω prossesses the cone property and p, q ∈ C+
³
Ω
´
and q (x) < p∗ (x)

for any x ∈ Ω, then the embedding fromW 1,p(x) (Ω) to Lq(x) (Ω) is compact
and continuous.

An important role in manipulating the generalized Lebesgue-Sobolev
spaces is played by the mapping ρ defined by

ρp(x),Ω (u) :=

Z
Ω
|∇u|p(x) dx.

Proposition 2.3. ([14]) For u, uk ∈ Lp(x) (Ω) ; k = 1, 2, ..., we have

(i) |u|p(x),Ω > 1 (= 1;< 1) implies ρp(x),Ω (u) > 1 (= 1;< 1) ;

(ii) |u|p(x),Ω > 1 implies kukp− ≤ ρp(x),Ω (u) ≤ kukp
+

;

(iii) |u|p(x),Ω < 1 implies kukp+ ≤ ρp(x),Ω (u) ≤ kukp
−
;

(iv) |u|p(x),Ω = a > 0 if and only if ρp(x),Ω
¡u
a

¢
= 1.

Proposition 2.4. ([14]) Let p ∈ C+ (Ω) , then the conjugate space of
Lp(x) (Ω) is Lq(x) (Ω) , where 1

p(x) +
1

q(x) = 1. For any u ∈ Lp(x) (Ω) and

v ∈ Lq(x) (Ω) we have ¯̄̄̄Z
Ω
uvdx

¯̄̄̄
≤ 2 |u|p(x),Ω |v|q(x),Ω .

Proposition 2.5. ([14]) If u, un ∈ Lp(x) (Ω) , n = 1, 2, ..., then the
following statements are mutually equivalent:

(1) n→∞lim |un − u|p(x),Ω = 0,
(2) n→∞limρp(x),Ω (un − u) = 0,

(3) un → u in measure in Ω and n→∞limρp(x),Ω (un) = ρp(x),Ω (u) .

Lemma 2.6. ([5]) LetE be a closed subspace ofW 1,p(x) (Ω1)×W 1,p(x) (Ω2)
and

k(u, v)k = kuk1,p(x),Ω1 + kvk1,p(x),Ω2

define a norme in E equivalent to the standard norm of W 1,p(x) (Ω1) ×
W 1,p(x) (Ω2) .
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Theorem 2.7. ([24]) Let E be an infinite dimensional Banach space and
I ∈ C1 (E,R) satisfy the following two assumptions.
(A1) I (u) is even, bounded from below; I (0) = 0 and I (u) satisfies the
Palais-Smale condition (PS);
(A2) For each k ∈ N, there exists an Ak ∈ Γk such that sup

u∈Ak

I (u) < 0.

Then I (u) admits a sequence of critical points uk such that I (uk) <
0; uk 6= 0 and uk → 0, as k →∞.
Where Γk denote the family of closed symmetric subsets A of E such that
0 /∈ A and γ (A) ≥ k. Here

γ (A) := inf
n
k ∈N;∃h : A→ Rk {0} such that his continuous and odd

o
,

is the genus of A.

3. Main result and Proof

The Euler-Lagrange functional associated to problem (1.1) is defined as
I : E → R

I (u, v) = J (u, v)−K (u, v)

where

J(u, v) = cM µZ
Ω1

1

p (x)
|∇u|p(x) dx

¶
+ cM µZ

Ω2

1

p (x)
|∇v|p(x) dx

¶
and

K(u, v) = λ1

Z
Ω1

1

q (x)
|u|q(x) dx+ λ2

Z
Ω2

1

q (x)
|v|q(x) dx.

Theorem 3.1. Under assumptions (M1) − (M2), Problem (1.1) admits
infinitely many nontrivial weak solutions.

In order to prove the theorem, we will verify that the symmetric moun-
tain pass theorem can be applied. We start with the following lemmas.

Lemma 3.2. [5] The functional is well defined on E, and it is of class
C1 (E,R) , and we have

I 0 (u, v) (z,w) = J 0 (u, v) (z, w)−K 0 (u, v) (z, w) ,

where

J 0 (u, v) (z, w) = M

µZ
Ω1

1

p (x)
|∇u|p(x) dx

¶Z
Ω1
|∇u|p(x)−2∇u∇zdx

+M

µZ
Ω2

1

p (x)
|∇v|p(x) dx

¶Z
Ω2
|∇v|p(x)−2∇v∇wdx
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and

K0 (u, v) (z, w) = λ1

Z
Ω1
|u|q(x)−1 uzdx+ λ2

Z
Ω2
|v|q(x)−1 vwdx

Lemma 3.3. The functional I is even, bounded from below.

Proof. It is clear that I is even and I (0, 0) = 0.
By using the compacteness embedding of W 1,p(x) (Ω) into Lq(x) (Ω) , we

obtain
|u|q(x),Ω1 ≤ C1 kukp(x),Ω1

and

|v|q(x),Ω2 ≤ C2 kvkp(x),Ω2
Then

|u|q(x),Ω1 + |v|q(x),Ω2 ≤ C1 kukp(x),Ω1 + C2 kvkp(x),Ω2
≤ C k(u, v)kE

We fix η ∈ (0, 1) such that η < 1

C
. Then the above relation implies

|u|q(x),Ω1 + |v|q(x),Ω2 < 1, (u, v) ∈ E

By using the proposition 2.2 and 2.5, we getZ
Ω1
|u|q(x) dx ≤ c4

³
kukq

+

q(x),Ω1
+ kukq

−

q(x),Ω1

´
, u ∈W 1,p(x) (Ω1)

and Z
Ω2
|v|q(x) dx ≤ c5

³
kvkq

+

q(x),Ω2
+ kvkq

−

q(x),Ω2

´
, v ∈W 1,p(x) (Ω2)

Then, for any (u, v) ∈ EZ
Ω1
|u|q(x) dx+

Z
Ω2
|v|q(x) dx ≤ C6

³
kukq(x),Ω1 + kvkq(x),Ω2

´
Hence, we deuce thatZ

Ω1
|u|q(x) dx+

Z
Ω2
|v|q(x) dx ≤ C7 k(u, v)kE .
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By using (M1) and (M2) , and in view the elementary inequality

|a+ b|s ≤ 2s−1 (|a|s + |b|s)

we obtain

I (u, v) = cM µZ
Ω1

1

p (x)
|∇u|p(x) dx

¶
+ cM µZ

Ω2

1

p (x)
|∇v|p(x) dx

¶
−λ1

Z
Ω1

1

q (x)
|u|q(x) dx− λ2

Z
Ω2

1

q (x)
|v|q(x) dx

≥ (1− µ)M

µZ
Ω1

1

p (x)
|∇u|p(x) dx

¶Z
Ω1

1

p (x)
|∇u|p(x) dx

+(1− µ)M

µZ
Ω2

1

p (x)
|∇v|p(x) dx

¶Z
Ω2

1

p (x)
|∇v|p(x) dx

−λ1
Z
Ω1

1

q (x)
|u|q(x) dx− λ2

Z
Ω2

1

q (x)
|v|q(x) dx

≥ m0(1−µ)
p+

µZ
Ω1
|∇u|p(x) dx+

Z
Ω2
|∇v|p(x) dx

¶
− λ1

q−

Z
Ω1
|u|q(x) dx− λ2

q−

Z
Ω2
|v|q(x) dx

≥ m0(1−µ)
p+

³
kukp

+

p(x),Ω1
+ kvkp

+

p(x),Ω2

´
−C7

(λ1+λ2)
q− k(u, v)kE

≥ 21−p
+
m0(1−µ)
p+ k(u, v)kp

+

E −C7
(λ1+λ2)

q− k(u, v)kE .

Then, for any p+ < q−, the fonctional I is bounded from below and
coercive. 2

Lemma 3.4. The functional I satisfies the Palais-Smale condition (PS).

Proof. Let (un, vn) ⊂ E be a Palais-Smale sequence, satisfies
I(un, vn) → c and I 0 (un, vn) → 0, we will show that (un, vn) is a bounded
sequence.

c+ 1 ≥ I (un, vn)− 1
q− hI

0 (un, vn) , (un, vn)i
≥ cM ³R

Ω1
1

p(x) |∇u|
p(x) dx

´
+ cM ³R

Ω2
1

p(x) |∇v|
p(x) dx

´
−λ1

Z
Ω1

1

q (x)
|u|q(x) dx− λ2

Z
Ω2

1

q (x)
|v|q(x) dx

− 1

q−
M

µZ
Ω1

1

p (x)
|∇un|p(x) dx

¶Z
Ω1
|∇un|p(x) dx

− 1

q−
M

µZ
Ω2

1

p (x)
|∇vn|p(x) dx

¶Z
Ω2
|∇vn|p(x) dx+

λ1
q−

Z
Ω1
|u|q(x) dx
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+
λ2
q−

Z
Ω2
|v|q(x) dx ≥ (1− µ)m0

p+

Z
Ω1
|∇un|p(x) dx

+
(1− µ)m0

p+

Z
Ω2
|∇vn|p(x) dx− λ1

Z
Ω1

1

q (x)
|u|q(x) dx

−λ2
Z
Ω2

1

q (x)
|v|q(x) dx− m0

q−

Z
Ω1
|∇un|p(x) dx−

m0

q−

Z
Ω2
|∇vn|p(x) dx

+
λ1
q−

Z
Ω1
|u|q(x) dx+ λ2

q−

Z
Ω2
|v|q(x) dx

≥ m0

µ
(1− µ)

p+
− 1

q−

¶Z
Ω1
|∇un|p(x) dx+m0

µ
(1− µ)

p+
− 1

q−

¶Z
Ω2
|∇vn|p(x) dx

+λ1

Z
Ω1

µ
1

q−
− 1

q (x)

¶
|u|q(x) dx+ λ2

Z
Ω2

µ
1

q−
− 1

q (x)

¶
|v|q(x) dx

≥ m0

µ
(1− µ)

p+
− 1

q−

¶³
|∇un|p(x)p(x),Ω1

+ |∇vn|p(x)p(x),Ω2

´
≥ m0

µ
(1− µ)

p+
− 1

q−

¶³
kunkp

−

1,p(x),Ω1
+ kvnkp

−

1,p(x),Ω2

´
≥ 21−p−m0

µ
(1− µ)

p+
− 1

q−

¶
k(un, vn)kp

−

Since p+ < q−, dividing the above inequality by k(un, vn)k and passing
to the limit as n → ∞ we obtain a contradiction. Then the sequence
(un, vn) is bounded in E.

Thus, there is a subsequence denoted again (un, vn) weakly convergent
in Wp(x),q(x). We will show that (un, vn) is strongly convergent to (u, v) in
E.

We recall the elementary inequality for any ζ, η ∈ RN :⎧⎨⎩ 22−p |ζ − η|p ≤
³
|ζ|p−2 ζ − |η|p−2 η

´
(ζ − η) ,

(p− 1) |ζ − η|2 (|ζ|+ |η|)p−2 ≤
³
|ζ|p−2 ζ − |η|p−2 η

´
(ζ − η)

if p ≥ 2
if 1 < p < 2

Indeed (un, vn) contains a Cauchy subsequence.
Put

Up,Ω1 = {x ∈ Ω1, p (x) ≥ 2} Vp,Ω1 = {x ∈ Ω1, 1 < p (x) < 2}
Up,Ω2 = {x ∈ Ω2, p (x) ≥ 2} Vp,Ω2 = {x ∈ Ω2, 1 < p (x) < 2}

Therefore for p (x) ≥ 2, using the above inequality, we get
22−p

+
M

µZ
Ω1

1

p (x)
|∇un|p(x) dx

¶
M

µZ
Ω1

1

p (x)
|∇um|p(x) dx

¶
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Z
Up,Ω1

|∇un −∇um|p(x) dx

≤M

µZ
Ω1

1

p (x)
|∇un|p(x) dx

¶
M

µZ
Ω1

1

p (x)
|∇um|p(x) dx

¶
Z
Up,Ω1

|∇un|p(x)−2∇un (∇un −∇um) dx

−M
µZ

Ω1

1

p (x)
|∇um|p(x) dx

¶
M

µZ
Ω1

1

p (x)
|∇um|p(x) dx

¶
Z
Up
|∇um|p(x)−2∇um (∇un −∇um) dx

≤M

µZ
Ω1

1

p (x)
|∇un|p(x) dx

¶
M

µZ
Ω1

1

p (x)
|∇um|p(x) dx

¶
Z
Up,Ω1

|∇un|p(x)−2∇un (∇un −∇um) dx

−M
µZ

Ω1

1

p (x)
|∇un|p(x) dx

¶
M

µZ
Ω1

1

p (x)
|∇um|p(x) dx

¶
Z
Ω1
|∇um|p(x)−2∇um (∇un −∇um) dx

≤M

µZ
Ω1

1

p (x)
|∇um|p(x) dx

¶
J 0 (un, vn) (un − um, 0)

−M
µZ

Ω1

1

p (x)
|∇un|p(x) dx

¶
J 0 (um, vm) (un − um, 0)

=M

µZ
Ω1

1

p (x)
|∇um|p(x) dx

¶
I 0 (un, vn) (un − um, 0)

−M
µZ

Ω1

1

p (x)
|∇un|p(x) dx

¶
I 0 (um, vm) (un − um, 0)

+M

µZ
Ω1

1

p (x)
|∇um|p(x) dx

¶
K 0 (un, vn) (un − um, 0)

−M
µZ

Ω1

1

p (x)
|∇un|p(x) dx

¶
K 0 (um, vm) (un − um, 0)

if we put

Xn :=M

µZ
Ω1

1

p (x)
|∇un|p(x) dx

¶
then the positive numerical sequence is bounded. We can write

22−p
+
XnXm

Z
Up,Ω1

|∇un −∇um|p(x) dx ≤ XmI
0 (un, vn) (un − um, 0)

−XnI
0 (um, vm) (un − um, 0) +XmK

0 (un, vn) (un − um, 0)
−XnK

0 (um, vm) (un − um, 0) .
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When 1 < p (x) < 2, we use the second inequality (see [[1]]), to getZ
Vp,Ω1

|∇un −∇um|p(x) dx ≤
Z
Vp,Ω1

|∇un −∇um|p(x) (|∇un|

+ |∇um|
p(x)(p(x)−2)

2 (|∇un|+ |∇um|)
p(x)(2−p(x))

2 dx

≤ 2
¯̄̄̄
|∇un −∇um|p(x) . |∇un +∇um|

p(x)(p(x)−2)
2

¯̄̄̄
2

p(x)

×
¯̄̄̄
|∇un +∇um|

p(x)(2−p(x))
2

¯̄̄̄
2

2−p(x)

≤ 2i = ±max
µZ

Ω1
|∇un −∇um|2 |∇un +∇um|p(x)−2 dx

¶ pi

2

× i

= ±max
µZ

Ω1
|∇un +∇um|p(x) dx

¶ 2−pi
2

≤ 2i = ±max (p− − 1)
−pi
2 .i = ±max

∙Z
Ω1
|∇un|p(x)−2∇un (∇un −∇um) dx

−
Z
Ω1
|∇um|p(x)−2∇um (∇un −∇um) dx

¸pi
2

× i

= ±max
µZ

Ω1
|∇un +∇um|p(x)

¶ 2−pi
2

Taking into account Proposition 2.3., Proposition 2.4., the fact that
kI 0 (un, vn)k→ 0 as n→∞ and the fact that the operator K 0 is compact,
it is easy to see that

lim
n,m→∞

Z
Ω1
|∇un −∇um|p(x) dx = 0.

In the same way we show that

lim
n,m→∞

Z
Ω2
|∇vn −∇vm|p(x) dx = 0.

Hence, (un, vn) contains a Cauchy subsequence. The proof is complete.
2

Lemma 3.5. Assume (M1) − (M2) hold. Then for each k ∈ N∗, there
exists an Ak ∈ Γk such that

sup
u∈Ak

I(u, v) < 0.
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Proof. Let w1, w2, ..., wk ∈ C∞(Ω) such that

{x ∈ ∂Ω;wi(x) 6= 0} ∩ {x ∈ ∂Ω;wj(x) 6= 0} = ∅, if i 6= j,

and
|{x ∈ ∂Ω;wi(x) 6= 0}| > 0,

∀i, j ∈ {1, 2, ...k} .

Taking Fk = span {w1, w2, ..., wk}; clearly dimFk = k.

Denote S =
n
w ∈Wp(x),q(x); kwk = 1

o
and for 0 < t ≤ 1, Ak(t) =

t(Fk ∩ S). For all t ∈ ]0, 1] , γ (Ak (t)) = k. We show now that for any
k ∈ N∗, there exists t such that

sup
u,v∈Ak(t)

I (u, v) < 0,

From (M2), we can obtain for t > t0

cM (t) ≤
cM (t0)

t
1

1−µ
0

t
1

1−µ ≤ Ct
1

1−µ

where C is constant, and t0 is an arbitrarily positive constant
Choose u0 ∈ W 1,p(x) (Ω1) and v0 ∈ W 1,p(x) (Ω2) , u0, v0 > 0. It follows

that if t > 0.
Indeed, we have

sup
u∈Ak(t)

I (u, v)

≤ sup
w∈Fk∩S

I (tw) = sup
u0,v0∈Fk∩S

I (tu0, tv0)

= sup
u0,v0∈Fk∩S

½cM µZ
Ω1

1

p (x)
|∇tu0|p(x) dx

¶
+ cM µZ

Ω2

1

p (x)
|∇tv0|p(x) dx

¶
−λ1

Z
Ω1

1

q (x)
|tu0|q(x) dx− λ2

Z
Ω2

1

q (x)
|tv0|q(x) dx

¾

≤ sup
u0,v0∈Fk∩S

(
C

µZ
Ω1

1

p (x)
|∇tu0|p(x) dx

¶ 1
1−µ

+ C

µZ
Ω2

1

q (x)
|∇tv0|p(x) dx

¶ 1
1−µ

−λ1
Z
Ω1

1

q (x)
|tu0|q(x) dx− λ2

Z
Ω2

1

q (x)
|tv0|q(x) dx

¾
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≤ sup
u0,v0∈Fk∩S

⎧⎨⎩ Ct
p−
1−µ

(p−)
1

1−µ

"µZ
Ω1
|∇u0|p(x) dx

¶ 1
1−µ

+

µZ
Ω2
|∇v0|p(x) dx

¶ 1
1−µ

#

−λ1t
q+

q+

Z
Ω1
|u0|q(x) dx−

λ2t
q+

q+

Z
Ω2
|v0|q(x) dx

≤ sup
u0,v0∈Fk∩S

⎧⎪⎨⎪⎩ Ct
p−
1−µ

(p−)
1

1−µ

"
max

(
|∇u0|

p−
1−µ
p(x),Ω1

, |∇u0|
p+

1−µ
p(x),Ω1

)

+max

(
|∇v0|

p−
1−µ
p(x),Ω2

, |∇v0|
p+

1−µ
p(x),Ω2

)#)

−λ1t
q+

q+
min

n
|v0|q

−

q(x),Ω1
, |v0|q

+

p(x),Ω1

o
− λ2t

q+

q+
min

n
|v0|q

−

q(x),Ω2
, |v0|q

+

p(x),Ω2

o)
< 0

It is easy to verify that sup
u∈Ak

I (u, v) < 0, for t > 0 sufficiently small

enough and µ < 1. 2

Proof. [Proof of theorem 3.1] From lemmas 3.2, 3.3, 3.4 and 3.5 and
the symmetric mountain pass lemma [24], we deduce there exists a sequence
of nontrivial weak solutions (un, vn)n ∈ E which converging to 0. 2
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