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Abstract

We incorporate almost periodic functions in a mosquito model to
take into account a loss of synchronicity in the population dynamics of
mosquitoes due to climate change. The model takes into account the
skip oviposition strategy that is associated with the mosquitoes that are
vectors of infectious diseases as dengue, malaria and leishmaniasis.
We prove existence and uniqueness of a stable almost periodic solu-
tion for some conditions over the parameters of the model. Numerical
simulations are performed using values estimated for the life cycle
of Aedes albopictus gathered in literature. The results show that the
vector population can be underestimated or overestimated if an almost
periodic dynamics is approximated by a periodic dynamics. Therefore,
using an almost seasonal model can be more adequate to design breed-
ing habitat-targeted mosquito control strategies when seasonal drivers
are modeled since climate-mediated shifts can induce a loss of period-
icity in environmental drivers.
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1. Introduction

The population dynamics of many species that transmit infectious diseases
is strongly related to the phenomenon of seasonality. Since the Hippo-
cratic era, the relationship between the increase in the incidence of in-
fectious diseases and seasonality has been emphasized. In this sense, the
Corpus Hippocraticum mentions that the increase in infectious cases is re-
lated to environmental and social factors. For example, Hippocrates relates
the appearance of influenza virus infection to the arrival of winter. It is
widely accepted that seasonality can derive from changes in the environ-
ment, changes in the host behavior, changes in the host immune response,
and the appearance and disappearance of particular pathogens. However,
even if it is widely accepted that the appearance of new infectious cases
has a seasonal component, we are still far from understanding the epidemi-
ological and ecological mechanisms that generate seasonal diseases.

Knowing the population dynamics of species that transmit infectious
diseases is of great interest to decision makers. Particularly, for decision
makers, it is desirable to know the population dynamics of mosquitoes
that are vectors of infectious diseases as dengue, zyka, chikungungya, yel-
low fever, leishmaniasis and malaria, among others [20, 3, 18]. In this
sense, it is known that the species spreading these infectious diseases have
a seasonal population dynamics. Commonly, seasonal phenomena are re-
lated in a natural way with periodic behavior; however, climate-mediated
shifts have induced a loss of periodicity in environmental drivers such as
weather. Seasonality allows the development and implementation of breed-
ing habitat-targeted mosquito control strategies; however, if there is a loss
of synchronicity due to climate-mediated shifts, then forecasting a vector
population blowup may fail if the loss of periodicity is not considered.

Many models of mathematical ecology incorporate seasonality into pop-
ulation growth rates through forced oscillators [19, 6]. Seasonal models
show that the resulting dynamics may be more varied and interesting. Sea-
sonality is usually modeled through a sin(t) function, even though it is
clear that the ecological effects of seasonality on the phenomenon are far
from having a pattern as simple as sin(t). As a possibility, it could be as-
sumed that each factor involved is described by a function sin(t) and that
the periods of these functions are not synchronized. Then, the total effect
produced by several factors can be incorporated into the model through a
linear combination of those factors. In this sense, it is of paramount im-
portance to understand how the duration and form of seasonal forcing have
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an effect over the dynamics of the species. The aim is to have models that
incorporate more realistic characteristics of the phenomenon and are useful
for decision makers when designing population control strategies.

In this work, we will analyze an almost periodically forced seasonal
model using the theory of almost periodic functions [1]. We study a variant
of a model for mosquito population given in [9]. However, such a model can
also be used to describe a wide variety of species that show the skip ovipo-
sition strategy; such as, Aedes aegypti and Aedes albopictus that are trans-
mitting vector of dengue, zyka, chikunguya and yellow fever; Anopheles
coluzzi, Anopheles gambie, and Anopheles arabiensis that are transmitting
vectors of malaria and Phelebotomus papatasi and Phlebotomus orientalis
that are transmitting vectors of leishmaniasis [15, 24, 25, 20, 2]. To show
the population dynamics given by the proposed model, we will use some
values of the parameters estimated for the Aedes albopictus [5].

2. The Model

In this section, we explain the terms and the parameters used in the con-
struction of the model proposed. At any given time, t, the mosquito pop-
ulation is divided into two compartments: the adult mosquito population
that is denoted by A and the aquatic population (this class includes eggs,
larvae and pupae) that is denoted by L. We will study the following model:

dL

dt
= rb(t)

µ
1− L

K

¶
A− (ν + µL)L,

dA

dt
= νL− µA,(2.1)

where the sex ratio is denoted by r, the death rate of the aquatic class is
denoted by µL, the death rate of the female mosquito is denoted by µ, the
transition rate from the aquatic class to the adult class is denoted by ν, b(t)
is the fertility of a female mosquito and K is the larval carrying capacity.

The term rb(t)
³
1− L

K

´
A in (2.1) describes the intraspecific competi-

tion that exists between the female mosquitoes. That is, this term models
the competition for places where the female mosquitoes oviposit. As men-
tioned in the introduction, the mosquitoes of the species Aedes, Anophe-
les and Phlebotomus show a skip oviposition behavior. That is, the fe-
male mosquitoes seek oviposition places with low intraspecific competi-
tion and high food content. The population dynamics of these species
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of mosquitoes has been associated with a seasonal behavior because the
time of breading and oviposition is strongly related to abiotic variables
such as climate, temperature, humidity among other environment drivers
[12, 24, 25, 14, 11, 18, 15, 13, 17, 3, 16]. Recently, the daily and seasonal
temperature fluctuations have been object of studies to forecasting the evo-
lution of the malaria [10]. Since some biotic variables are changing due to
climate change and there is a loss of synchronicity in the ecological behavior
of mosquitoes, we propose an almost periodic model to describe the popu-
lation dynamics of some mosquitoes that are vectors of infectious diseases.
To do this, we use an almost periodic function to describe the number of
egg laid by female mosquitoes.

3. Almost periodic functions in cooperative systems

We refer the reader to [1, 4] for more details about almost periodic func-
tions as well as to [21, 22] for a detailed description of competitive and
cooperative systems.

Definition 1. We say that a continuous function φ ∈ C0(R) is almost
periodic if given ε > 0 there exists a set of translation numbers T (ε) ⊆ R
and a length l(ε) > 0 such that I∩T (ε) 6= ∅ for any interval I whose length
is l(ε). Moreover,

|φ(x+ τ)− φ(x)| < ε, ∀x ∈ R, ∀τ ∈ I ∩ T (ε).

For every φ ∈ Cap(R) ⊂ C0(R) in the subspace of almost periodic
functions we have a Fourier series:

φ ∼
X
n∈N

c(φ, λn)e
iλnt,

as well as a mean

M(φ) := lim
T→∞

1

T

Z T

0
φ(t) dt,

which is a linear bounded functional,M : AP(R)→ R, which is positive in
the following sense, φ ≥ 0 impliesM[φ] ≥ 0. The corresponding Parseval’s
Theorem for almost periodic functions states that

M
h
|φ|2

i
=
X
n∈N

|c(φ, λn)|2.
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We consider a planar system

x0(t) = u(t, x(t), y(t))
y0(t) = v(t, x(t), y(t)),

(3.1)

in a domain (x, y) ∈ D ⊆ R2. We say that the C1 functions, u(t, x, y) and
v(t, x, y) are uniformly almost periodic with respect to (x, y) ∈ C for every
compact C ⊆ D, if f (resp. g) has generalized Fourier series,

u(t, x, y) ∼ u(x, y) +
X
n∈N

a(u, λn; (x, y)) cos(λnt) + b(u, λn, (x, y)) sin(λnt),

where the uniform mean u(x, y) :=M[u(t, x, y)] as well as the frequencies
λn do not depend on (x, y).

Definition 2. We will say that (3.1) is of cooperative type [21], if for every
t ∈ R,

∂u

∂y
(t, x, y) ≥ 0, ∂v

∂x
(t, x, y) ≥ 0.

Moreover, (α(t), β(t)) is sub-solution if

ξ0(t) ≤ u(t, ξ(t), η(t))(3.2)

η0(t) ≤ v(t, ξ(t), η(t)),(3.3)

Analogously, we define a super-solution (Ξ(t),H(t)) by reversing in-
equalities. A pair (ξ(t), η(t)) and (Ξ(t),H(t)) is ordered if

ξ(t) ≤ Ξ(t), η(t) ≤ H(t), ∀t ∈ R.

The following result will be used and was proved in [7] as Theorem 2.

Theorem 1. Suppose that (ξ(t), η(t)) and (Ξ(t),H(t)) is a sub-super-solution
ordered pair of the competitive ODE (3.1). Then there exists an almost
periodic solution satisfying ξ(t) < x(t) < Ξ(t) and η(t) < x(t) < H(t). The
set of almost periodic solutions, having initial conditions in the rectangle
ξ(0) < x(0) < Ξ(0) and η(0) < y(0) < H(0) is totally ordered, provided
there is no equilibrium. If (x̌(t), y̌(t)), (x̂(t), ŷ(t)), denote the minimal and
maximal almost periodic solutions. Then

x̌(t) ≤ x(t) ≤ x̂(t), x̌(t) ≤ y(t) ≤ ŷ(t).

We just remark that in the case that there is an equilibrium point we
could have an equilibrium, instead of a genuine almost periodic orbit.
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4. Results

Given an almost periodic function u : R→ R, we denote

u∗ := inf
t∈R

u(t) and u∗ := sup
t∈R

u(t).

Lemma 1. Any solutions of (2.1) starting in the positive quadrant R2>0
either approach, enter, or remain in the subset defined by

Γ := {(L,A) ∈ R2 : 0 ≤ L ≤ K, 0 ≤ A ≤ νK

µ
}.(4.1)

Proof. Indeed, for any initial condition (L(0), A(0)) with L ≥ K, in
particular L

K ≥ 1, then on the right side of L0 we get

rb(t)

µ
1− L

K

¶
A− (ν + µL)L ≤ 0

thus L is decreasing. For the above, we can assume L ≤ K. Now, we
consider A ≥ νK

µ , then we get that A is decreasing. Therefore, any solution

with initial conditions in R2>0 remains or eventually enters into region Γ.
2

Thus it suffices to consider solutions in the feasible region Γ.
Define the basic offspring number N of system (2.1) when b is constant

as

N :=
νrb

(ν + µL)µ
.

The basic offspring number represents the average number of larvae pro-
duced over the lifetime of an individual. Motivated by this, we consider
M(N ) for system (2.1) as follows

M(N ) := νrM(b)

(ν + µL)µ
.

We also consider

N∗ :=
νrb∗

(ν + µL)µ
.

Our main result gives conditions which warranty globally asymptotic
convergence of the population towards an almost periodic solution whenever
there exists an almost periodic forcing in the birth rate. Now we state our
main result.
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Theorem 1. Assume r, ν, µ, µL > 0,K > 1 and b(t) a non constant con-
tinuous almost periodic function with b∗ > 0. Suppose that

N∗ > 1.(4.2)

Then we get

i) Under (4.2) there is, at least, one almost periodic solution (L,A) of
(2.1) whose components are positive.

ii) Under (4.2), the almost periodic solution is unique in R2>0.

iii) Any positive solution of (2.1), tends asymptotically to (L,A) when
t→∞.

Proof. For i). We first observe that (2.1) is cooperative in Γ. We find
a super-solution,

(Ξ(t),H(t)) =

µ
K,

νK

µ

¶
.

These functions satisfy the inequalities.

Ξ0(t) = 0 ≥ rb(t)

µ
1− K

K

¶µ
νK

µ

¶
− (ν + µL)K(4.3)

H 0(t) = 0 ≥ νK − µ

µ
νK

µ

¶
= 0.(4.4)

Therefore this is a super-solution.
To define a sub-solution, first we write K = 1+δ with δ > 0 and choose

0 < < δ such that N∗ > 1 + , doing

(ξ(t), η(t)) =

µ
,
ν(1 + )

µN∗

¶
.

Using 1
1+δ ≥

1
K , these functions satisfy the inequalities in (3.2)

ξ0(t) = 0 ≤ (ν + µL)

∙
b(t)

b∗

µ
1−

1 + δ

¶
(1 + )− 1

¸
≤ rb(t)

µ
1−

K

¶µ
ν(1 + )

µN∗

¶
− (ν + µL) .

η0(t) = 0 ≤ ν

µ
1− 1 +N∗

¶
.
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The right side is positive because < δ. Thus, we have a sub-solution
pair. Therefore, by Theorem 1 the set of almost periodic solutions for
system (2.1) with initial conditions in Γ is non-empty.

ii) For uniqueness, we consider a maximum (L̂, Â) and a minimum
(Ľ, Ǎ) in the set of almost periodic functions of (2.1), ordered according to
the partial ordered defined by the cooperative condition with initial con-
dition within the region Γ. We just need to prove that L̂(t) = Ľ(t) and
Â(t) = Ǎ(t).

We get

L̂ = rb(t)Â− r b(t)L̂ÂK − (ν + µL)L̂,
˙̌L = rb(t)Ǎ− r b(t)ĽǍK − (ν + µL)Ľ,

(4.5)

and
Â = νL̂− µÂ,
˙̌A = νĽ− µǍ.

(4.6)

We consider the Lyapunov type function V : R4>0 → R,

V (L1, A1, L2, A2) = A2L1 −A1L2,

so that

V (t) = V
³
Ľ, Ǎ; L̂, Â

´
= ÂĽ− ǍL̂,

is almost periodic and

V
³
Ľ, Ǎ; L̂, Â

´
=
˙̂
AĽ+ Â ˙̌L− ˙̌AL̂− Ǎ

˙̂
L

= −µÂĽ+ µǍL̂− (ν + µL)ĽÂ+ (ν + µL)L̂Ǎ

+(ν + µL)L̂Ǎ+
rb(t)
K ÂǍL̂− rb(t)

K ǍÂĽ.

Hence, by

Ľ ≤ L̂ ≤ K,
ν

µN∗
(1 + ) ≤ Ǎ ≤ Â ≤ ν

µ
K

and by (4.2) we obtain

V = −(µ+ ν + µL)V +
³
rb(t)
K Â

´
ǍL̂−

³
rb(t)
K Ǎ

´
ÂĽ

≤ −(µ+ ν + µL)V +
³
rνb(t)
µ

´
ǍL̂−

³
rb(t)
K Ǎ

´
ÂĽ

= −(µ+ ν + µL)V − rb(t) ǍK

h³
νK
µǍ

´
ÂĽ− ǍL̂

i
≤ −(µ+ ν + µL)V − rb(t) ǍK

h³
νK

µ(νK∗/µ)

´
ÂĽ− ǍL̂

i
.
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Therefore,

V̇ ≤ −(µ+ ν + µL + rb∗Ǎ∗/K)V ≤ −c · V,

or
V (t) ≤ V (0)e−ct, ∀t ≥ 0,

where µ+ ν + µL +
rb∗ν
µ = c > 0. We remark that V (t) is almost periodic.

If V (0) > 0, then the exponential decay V (0)e−ct implies that V (t) ≤ 0.
We claim that V ≡ 0. Indeed, if on the contrary V ≤ 0, then

1

2

d

dt

∙³
Ǎ
´2
−
³
Â
´2¸

= νV ≤ 0.

Hence,
³
Ǎ
´2
−
³
Â
´2
would be monotone decreasing. Moreover, Ǎ −

Â would also be monotone decreasing. But the difference of two almost
periodic functions is almost periodic and the only chance of being monotone
is Ǎ− Â being a constant. By further considerations about solutions of an
homogeneous linear system obtained from (4.5) and (4.6), we conclude that
L̂− Ľ would necessarily remain constant. Furthermore, Ǎ = Â and L̂ = Ľ

Finally, by Theorem 1 and doing arbitrarily small in the construction
of the sub-solution in ii) we have a single attractor almost-periodic orbit
in the set Γ0. But, since Γ is an attractor of R2>0 by Lemma 1, then the
almost-periodic orbit is attractor at R2. This concludes iii) and therefore
ends the proof of the Theorem. 2

A situation of special interest arises when considering in particular that
b(t) is a T periodic function, in this case we get

Corollary 2. Assume r, ν, µ, µL > 0,K > 1 and b(t) > 0 a non constant
continuous T -periodic function. If N∗ > 1, then there is at least one almost
T -periodic solution (L,A) of (2.1) whose components are positive. In the
case above, condition holds, there exists a globally stable almost periodic
solution of (2.1).

5. Numerical examples

In this section we show different scenarios for the solutions of model (2.1).
To do this, we consider values of some parameters of the model gathered in
literature. Particularly, the rates associated to mortality, the rates of tran-
sition from larvae to mosquitoes and the rate of fertility. We use arbitrary
values for the parameters associated to the seasonal drivers.



1040 H. G. Dı́az-Maŕın, O. Osuna and G. Villavicencio-Pulido

As in [9, 8], we use the values of the rates µL, ν and µ estimated in [5].
In that work, it is analyzed a cohort of Aedes albopictus from the immature
development to the adult stage. The authors in [5] measured fecundity,
survival, longevity and gonotrophic cycles. Also, they show the sex ratio
observed at five constant temperatures.

Table 5.1: Values of the parameters µL, ν and µ for Aedes albopictus at
different temperatures.

Parameters 10 ◦C 15 ◦C 20 ◦C 25 ◦C 30 ◦C 35 ◦C 40 ◦C Source
µL 1 0.96 0.48 0.62 0.65 0.99 1 [9]
ν 0 0.0236 0.0578 0.0667 0.0645 0.0515 0 [8]
µ − 0.0286 0.0400 0.0400 0.0385 0.0556 − [8]

Table 5.2: Sex ratio of Aedes albopictus at eight constant temperatures.

Parameters 15 ◦C 20 ◦C 25 ◦C 30 ◦C 35 ◦C Source
Sex ratio (r) 47.5% 43.5% 41.0% 46.3% 66.6% [5]

In Table 5.1, there are shown different values for the death rates and for
the transition rate from the larva stage to the adult stage at eight constant
temperatures; whereas in Table 5.2, there are shown the sex ratio observed
at six constant temperatures.

To model the seasonal drivers in the rate b(t) we use the function

F (t) = θ (φ+ cos(2πt) + sin(ψt)) .(5.1)

This kind of function is used in [23] to modeling the biting rate of
mosquitoes that transmit the malaria. Notice that F (t) is an almost peri-
odic or periodic function depending on whether ψ

2π is an irrational number
or a rational number, respectively.

In the following, we show the numerical simulations of the solutions of
model (2.1) using the values of the parameters given in Tables 5.1 and 5.2
and the seasonal function given in (5.1) to model the birth rate b(t). It will
be shown that solutions of the model go to a unique positive almost periodic
solution, which is globally stable. Numerical simulations were performed
using Mathematica 12.3.

We analyze the behavior of the aquatic and adult stages for three differ-
ent levels of the temperature when we assume that the female mosquitoes
lay an almost periodic number of egg in each oviposition.
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In the first scenario, we show the population behavior at 25◦C. For this
temperature, µL = 0.6200, ν = 0.0671 and µ = 0.0400 (Table 5.1). We use
the mean values for the parameters r = 0.5 and θ = 15 as in [9]. That is,
the proportion of female mosquitoes is 0.5 and θ = 15 (egg/female/day)
means that the mean number of eggs laid by a female mosquito per day
that have emerged as larvae is 15. We use the arbitrary values K = 200000,
φ = 1 and ψ =

√
5. Then,

b(t) = 15
³
1 + 0.36 cos(2πt) + 0.12 sin(

√
5t)
´
.(5.2)

With the values of the parameters mentioned above, b∗ = 7.839 and
N∗ = 50.929, then the conditions of Theorem 1 are satisfied. Figure 1 shows
numerical solutions of model (2.1). In the long term, both populations go
to the stable almost periodic solution.

(a) (b)

Figure 1: Scenario 1. Time evolution of aquatic and mosquitoes
population at 25◦C. In case 1 (a) the initial aquatic population is 250000.
In case 1 (b) the initial population of mosquitoes is given by 200000.

Figure 2 shows the solutions of model (2.1) for different initial condi-
tions.

pc
fa

pc
fb
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(a) (b)

Figure 2: Behavior of the aquatic population and the mosquitoes
population for different initial conditions in scenario 1. In case (a), the
larvae population has associated the color red, green, orange and magenta
for 250000, 200000, 300000, 100000 number of larvae at t = 0, respectively.

Case (b) shows the behavior of A(t) for different initial conditions
200000, 380000, 2000, 200, in which the color for each solutions is red,

green, orange, magenta, respectively.

Now, we show the behavior of the solutions of model (2.1) at two differ-
ent temperatures. For the second scenario, the temperature is 15◦C. The
values of the parameters are r = 0.475, µL = 0.96, ν = 0.0236 and µ =
0.0286. For the third scenario, the temperature is 35◦C, r = 0.666, µL =
0.99, ν = 0.0515 and µ = 0.0556. Figure 3 shows both scenarios.

pc
f3a

pc
f3b
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(a) (b)

(c) (d)

Figure 3: Figures 3 (a-b) show the evolution of aquatic and mosquitoes
populations at 15◦C (Scenario 2) while Figures 3 (c-d) show the evolution

of aquatic and mosquitoes populations at 35◦ C (scenario 3).

Fig. 4 (a-b) show the solutions of model (2.1) when the number of eggs
laid by a female mosquito per day that have emerged as larvae is modeled
by an almost periodic function and a periodic function (for the periodic case
ψ = 2π). We show that at the beginning of the dynamics the size of the
aquatic population are similar even although b(t) is modeled by an almost
periodic function and by a periodic function. However, the blowup timing
in the almost periodic case firstly occurs in comparison with the periodic
ones. Figures 4 (c-d) show the case when b(t) has an annual behavior.

pc
f3a

pc
f3b

pc
f3c

pc
f3d
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(a) (b)

(c) (d)

Figure 4: It is compared the almost periodic case and the periodic case
with 25◦C. The almost periodic case is shown in red color. The periodic
scenario is illustrated by blue color. Cases (a-b) are associated to b(t)
with a daily behavior while cases (c-d) are associated to b(t) with an

annual behavior.

6. Discussion

Epidemic outbreaks of many infectious diseases are affected by seasonal and
social drivers such as rainfall, temperature and human activities as immu-
nization schedules and school terms [20, 2]. Particularly, those infectious
diseases that are transmitted by vectors; for example, malaria, dengue,
leishmaniasis among others. Therefore, it is of paramount importance to
know how the population dynamics of these vectors is, in order to control

pc
f4a

pc
f4b

pc
f4c

pc
f4d
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the disease they transmit. In this direction, seasonal models are useful tools
to describe the incidence of diseases transmitted by vectors.

In seasonal models, some parameters are assumed to be exactly peri-
odic. Sometimes, those parameters share a common period. However, the
transmission patters could be almost periodic due to the diversity of sea-
sonal drivers. Therefore, it is of paramount importance to modeling the
population dynamics of vectors transmitting diseases using almost periodic
models to control the incidence of those diseases.

In this work, we analyze an almost periodic model to describe the time
evolution of the larvae and adult stage of mosquitoes population. To do
this, we combine the age structure of mosquitoes with seasonal drivers in
the fertility rate. Simulations of the solutions of model (2.1) show the
existence of one stable almost periodic solution, validating the theoretical
results.

In particular, Figure 3 shows that the solutions associated to the tem-
perature of 35◦C tend to a unique almost periodic solution in less time than
the solutions associated to the temperature of 15◦C when an almost periodic
behavior is assumed in the number of eggs laid by a female mosquito. Also,
the population of mosquitoes in both stages are very similar at 15◦C and
35◦C. However, by comparing the evolution of mosquitoes in both stages
at different temperatures, it can be observed that population of mosquitoes
at 25◦C reaches a higher population density; see Figure 2 and 3.

Simulations of the solutions of model (2.1) show two different behaviors
by assuming a daily almost periodic function. In the former case, sustained
oscillations with a large amplitude occur in the larva stage, L. In the second
case the amplitude in the population of mosquitoes, A, is so faint that it
can hardly be perceived. In contrast, if an annual behavior in the almost
periodic functions is assumed, the population shows sustained oscillations
with a large amplitude; see Figure 4.

Also, Figure 4 shows that the larvae population has an asynchronous
behavior when the almost periodic population dynamics is approximated
by a periodic dynamics. Then, the density of larvae can be underestimated
or overestimated which can lead to the decision makers to design wrong
control strategies for the vector population. This calculation mistake can
be catastrophic for the susceptible population because a disease outbreak
can occur even though the control intervention was implemented.

In summary, the population densities of many species that transmit in-
fectious diseases can be underestimated or overestimated if almost periodic
dynamics is approximated by a periodic dynamics. This mistake can result



1046 H. G. Dı́az-Maŕın, O. Osuna and G. Villavicencio-Pulido

in the design of wrong control strategies. Then, an epidemic outbreak may
occur even though the breeding habitat-targeted mosquito control strate-
gies were applied since the loss of synchronicity in the reproduction period
was neglected.
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