

Proyecciones Journal of Mathematics Vol. 42, N^o 6, pp. 1583-1596, December 2023. Universidad Católica del Norte Antofagasta - Chile

Fuzzy S_{β} -compactness and fuzzy S_{β} -closed spaces

Runu Dhar Maharaja Bir Bikram University, India Received: January 2023. Accepted: August 2023

Abstract

The aim of this paper is to introduce the notion of fuzzy S_{β} -compactness. Some of the basic properties and characterization theorems would be investigated of this newly defined compactness in fuzzy setting. We would also introduce and study fuzzy S_{β} - closed spaces.

Keywords: Fuzzy set, fuzzy topology, fuzzy S_{β} -compact space, fuzzy S_{β} -open set, fuzzy S_{β} -closed space.

AMS Subject Classification No. (2020): 54A40, 03E72, 54A05, 54C05, 54C08.

1. Introduction

After introduction of the notion of fuzzy sets by Zadeh [22], researchers contributed for investigation on fuzzy sets in different aspects and successfully applied it for further investigations in all the branches of science and technology. Chang [6] introduced the notion of fuzzy topology. Abd El-Monsef et al. [1] introduced the concepts of β -open sets and β -continuous functions in general topology and Fath Alla [3] introduced these concepts in fuzzy setting. Khalaf and Ahmed [15] introduced and studied a new class of semiopen sets, called S_{β} -open sets, they then introduced and investigated S_{β} - continuous functions in general topological spaces. Dhar [9] introduced the notion of fuzzy S_{β} -open sets, fuzzy S_{β} -continuous mappings and fuzzy S_{β} -open mappings. Compactness contributes a very important role in fuzzy topology and so do some of its forms. Balasubramanian [4] introduced and investigated some interesting properties of fuzzy β - compactness. Hanafy [14] introduced and studied the concepts of β -compactness and β -closed spaces in fuzzy setting. Besides them, many researchers [2, 5, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21] contributed themselves to the study of fuzzy setting. These works lead us to this paper with the purpose of defining fuzzy S_{β} -compactness and fuzzy S_{β} -closed spaces and to study their basic properties in fuzzy setting. In section 2, the different known concepts and results in fuzzy setting would be procured as ready reference. In section 3, the notion of fuzzy S_{β} -compact spaces would be introduced and investigated some of their basic properties in fuzzy topological spaces. In section 4, the concept of fuzzy S_{β} -closed spaces would be introduced and studied in fuzzy setting. Throughout the article, X and Y represent fuzzy topological spaces.

2. Preliminaries

In this section, some preliminary results and definitions have been procured as ready reference.

Definition 2.1. [22] Let A and B be two fuzzy sets in a crisp set X and the membership functions of them be μ_A and μ_B respectively. Then

- 1. A is equal to B, i.e., A = B if and only if $\mu_A(x) = \mu_B(x)$, for all $x \in X$,
- 2. A is called a subset of B if and only if $\mu_A(x) \leq \mu_B(x)$, for all $x \in X$,

- 3. the Union of two fuzzy sets A and B is denoted by $A \vee B$ and its membership function is given by $\mu_{A\vee B} = \max(\mu_A, \mu_B)$,
- 4. the Intersection of two fuzzy sets A and B is denoted by $A \wedge B$ and its membership function is given by $\mu_{A \wedge B} = \min(\mu_A, \mu_B)$,
- 5. the Complement of a fuzzy set A is defined as the negation of the specified membership function. Symbolically it can be written as $\mu_A^c = 1 \mu_A$.

Definition 2.2. [16] A fuzzy point x_p in X is a fuzzy set in X defined by

$$x_p(y) = p (0 = 0, for $y \ne x (y \in X),$$$

x and p are respectively the support and the value of x_p . A fuzzy point x_p is said to belong to a fuzzy set A of X if and only if $p \leq A(x)$. A fuzzy set A in X is the union of all fuzzy points which belong to A.

Definition 2.3. [6] Suppose τ is a family of fuzzy subsets in X which satisfies the following axioms:

- 1. $0_X, 1_X \in \tau$.
- 2. If $A, B \in \tau$, then $A \wedge B \in \tau$.
- 3. If $A_j \in \tau$ for all j from the index set $J, \forall_{j \in J} A_j \in \tau$.

Then τ is called a fuzzy topology for X and the pair (X, τ) is called a fuzzy topological space (fts, in short). The elements of τ are called fuzzy open subsets. The complement of each member in τ is defined as a fuzzy closed set in X (with respect to τ) or simply a fuzzy closed set in X.

Throughout the paper, the spaces X and Y always represent fuzzy topological spaces (X, τ) and (Y, σ) respectively.

Definition 2.4. [3] A fuzzy set A in a fuzzy topological space X is called fuzzy β -open set if $A \leq clintcl A$.

From definition it follows that each fuzzy semiopen and fuzzy preopen set imply fuzzy β -open set.

Definition 2.5. [3] Let A be a fuzzy set in a fuzzy topological space X. The fuzzy β -closure (βcl) and β -interior (βint) of A are defined as follows:

$$\beta clA = \land \{B : A \leq B, B \text{ is fuzzy } \beta\text{-closed }\},\ \beta intA = \lor \{B : A \geq B, B \text{ is fuzzy } \beta\text{-open }\}.$$

It is obvious that $\beta cl(A)^c = (\beta int A)^c$ and $\beta int(A)^c = (\beta cl A)^c$.

Definition 2.6. [3] A function $f: X \to Y$ is said to be fuzzy β -continuous (respectively $M\beta$ -continuous) if the inverse image of every fuzzy open (respectively fuzzy β -open) set in Y is fuzzy β -open (respectively fuzzy β -open) set in X.

Definition 2.7. [9] A fuzzy semiopen subset A of a fuzzy topological space (X, τ) is said to be fuzzy S_{β} -open if for each fuzzy point $x_p \in A$ there exists a fuzzy β -closed set F such that $x_p \in F \leq A$. A fuzzy subset B of a fuzzy topological space X is fuzzy S_{β} -closed if its complement is fuzzy S_{β} -open.

The family of all fuzzy S_{β} -open subsets of X is denoted by $S_{\beta}O(X)$.

Definition 2.8. [9] A fuzzy point x_p is said to be a fuzzy S_{β} -interior point of A if there exists a fuzzy S_{β} -open set U containing x_p such that $x_p \in U \leq A$. The set of all fuzzy S_{β} -interior points of A is said to be fuzzy S_{β} -interior of A and it is denoted by S_{β} -interior.

Definition 2.9. [9] Intersection of all fuzzy S_{β} -closed sets containing F is called the fuzzy S_{β} -closure of F and is denoted by $S_{\beta}clF$.

Theorem 2.10. [22] A function $f: X \to Y$ is fuzzy open function, then $f^{-1}(cl(u)) \le cl(f^{-1}(u))$ for every fuzzy set u in Y.

3. Fuzzy S_{β} -compact spaces

In this section, we would introduce and study a new class of fuzzy topological spaces, called fuzzy S_{β} - compact spaces.

Definition 3.1. A function $f: X \to Y$ is said to be fuzzy S_{β} -continuous (respectively $M S_{\beta}$ -continuous) if the inverse image of every fuzzy open (respectively fuzzy S_{β} -open) set in Y is fuzzy S_{β} -open (respectively fuzzy S_{β} -open) set in X.

Lemma 3.2. Let $f: X \to Y$ be a function. Then the following are equivalent:

- 1. f is fuzzy MS_{β} -continuous.
- 2. $f(S_{\beta}clu) \leq S_{\beta}clf(u)$, for every fuzzy set u in X.

Proof. $1 \Rightarrow 2$. Let u be a fuzzy set of X. Then $S_{\beta}clf(u)$ is fuzzy S_{β} -closed. By 1, $f^{-1}(S_{\beta}clf(u))$ is fuzzy S_{β} -closed and so $f^{-1}(S_{\beta}clf(u)) = S_{\beta}clf^{-1}(S_{\beta}clf(u))$. Hence $f(S_{\beta}clu) \leq S_{\beta}clf(u)$.

 $2 \Rightarrow 1$. Let v be a fuzzy S_{β} -closed set in Y. By 2, if $u = f^{-1}(v)$, then $S_{\beta}clf^{-1}(v) \leq f^{-1}\left(S_{\beta}clf\left(f^{-1}(v)\right)\right) \leq f^{-1}\left(S_{\beta}clv\right) = f^{-1}(v)$. Since $f^{-1}(v) \leq S_{\beta}clf^{-1}(v)$, then $f^{-1}(v) = S_{\beta}clf^{-1}(v)$. Hence $f^{-1}(v)$ is fuzzy S_{β} -closed set in X. Hence f is fuzzy MS_{β} -continuous.

Lemma 3.3. Let $f: X \to Y$ be a function. Then the following are equivalent:

- 1. f is fuzzy S_{β} -continuous.
- 2. $f(S_{\beta}clu) \leq clf(u)$, for every fuzzy set u in X.

Proof. Obvious.

Definition 3.4. A fuzzy topological space X is said to be fuzzy S_{β} -compact if and only if for every family μ of fuzzy S_{β} -open sets where $\bigvee_{A \in \mu} A = 1_X$, there is a finite subfamily $\eta \subseteq \mu$ such that $\bigvee_{A \in \eta} A = 1_X$.

Definition 3.5. A fuzzy set u in a fuzzy topological space X is said to be fuzzy S_{β} -compact relative to X if and only if for every family μ of fuzzy S_{β} -open sets such that $\bigvee_{A \in \mu} A \geq u(x)$, there is a finite subfamily $\eta \subseteq \mu$ such that $\bigvee_{A \in \eta} A \geq u(x)$ for every $x \in S(u)$.

Theorem 3.6. A fuzzy topological space X is fuzzy S_{β} -compact if and only if for every collection $\{A_j : j \in J\}$ of fuzzy S_{β} -closed sets of X having the finite intersection property, $\bigwedge_{j \in J} A_j \neq 0_X$.

Proof. Let $\{A_j : j \in J\}$ be a collection of fuzzy S_{β} -closed sets with the finite intersection property. Suppose that $\bigwedge_{j \in J} A_j = 0_X$. Then

 $\bigvee_{j\in J}A_j^c=1_X$. Since $\left\{A_j^c:j\in J\right\}$ is a collection of fuzzy S_β -open sets cover of X, then from the fuzzy S_β -compactness of X it follows that there exists a finite subset $F\subseteq J$ such that $\bigvee_{j\in F}A_j^c=1_X$. Then $\bigwedge_{j\in F}A_j=0_X$ which gives a contradiction. Therefore, $\bigwedge_{j\in J}A_j\neq 0_X$

Conversely, let $\{A_j: j \in J\}$ be a collection of fuzzy S_β -open sets cover of X. Suppose that for every finite subset $F \subseteq J$, we have $\bigvee_{j \in F} A_j \neq 1_X$. Then $\bigwedge_{j \in F} A_j^c \neq 0_X$. Hence $\{A_j^c: j \in J\}$ satisfies the finite intersection property. Then from the hypothesis, we have $\bigwedge_{j \in J} A_j^c \neq 0_X$ which implies $\bigwedge_{j \in F} A_j \neq 1_X$ and this contradicting that $\{A_j: j \in J\}$ is a fuzzy S_β -open cover of X. Thus X is fuzzy S_β -compact.

Theorem 3.7. A fuzzy topological space X is fuzzy S_{β} -compact if and only if every fuzzy filter base ξ in X, $\wedge_{G \in \xi} S_{\beta} clG \neq 0_X$.

Proof. Let μ be a fuzzy S_{β} -open cover of X and μ has no a finite subcover. Then for every finite subcollection $\{A_1, A_2, \ldots, A_n\}$ of μ , there exists $x \in X$ such that $A_j(x) < 1$ for every $j = 1, 2, \ldots, n$. Then $A_j^c(x) > 0$, so that $\bigwedge_{j=1}^n A_j^c \neq 0_X$. Thus $\left\{A_j^c(x) : j \in \mu\right\}$ forms a fuzzy filter base in X. Since μ is fuzzy S_{β} -open cover of X, then $\bigvee_{A_j \in \mu} A_j^c(x) = 1_X$ for every $x \in X$ and hence $\bigwedge_{A_j \in \mu} S_{\beta} cl A_j^c(x) = \bigwedge_{A_j \in \mu} A_j^c(x) = 0_X$, which is a contradiction. Then every fuzzy S_{β} -open cover of X has a finite subcover and hence X is fuzzy S_{β} -compact.

Conversely, suppose there exists a fuzzy filter base ξ such that $\bigwedge_{G\in\xi} S_{\beta}clG = 0_X$, so that $\left(\bigvee_{G\in\xi} \left(S_{\beta}clG\right)^c\right)(x) = 1_X$ for every $x\in X$ and hence $\mu = \left\{\left(S_{\beta}clG\right)^c: G\in\xi\right\}$ is a fuzzy S_{β} -open set cover of X. Since X is fuzzy S_{β} -compact, then μ has a finite subcover. Then $\left(\bigvee_{j=1}^n \left(S_{\beta}clG_j\right)^c\right)(x) = 1_X$ and hence $\left(\bigvee_{j=1}^n G_j^c\right)(x) = 1_X$, so that $\bigwedge_{j=1}^n G_j = 0_X$ which is a contradiction, since the G_j are members of filter base ξ . Therefore $\bigwedge_{G\in\xi} S_{\beta}clG \neq 0_X$ for every filter base ξ .

Theorem 3.8. A fuzzy set A in a fuzzy topological space X is fuzzy S_{β} -compact relative to X if and only if for every fuzzy filter base ξ such that every finite members of ξ is quasi-coincident with A, that is $(\land_{G \in \xi} S_{\beta} clG) \land A \neq 0_X$.

Proof. Let A not be fuzzy S_{β} -compact relative to X. Then there exists a fuzzy S_{β} -open set μ cover of A such that μ has no finite subcover η . Then $\left(\bigvee_{A_j \in \eta} A_j\right)(x) < A(x)$ for some $x \in S(A)$, so that $\left(\wedge_{A_j \in \eta} A_j^c\right)(x) > A^c(x) \ge 0_X$ and hence $\xi = \left\{A_j^c : A_j \in \mu\right\}$ forms a filterbase and $\bigwedge_{A_j \in \eta} A_j^c qA$. By hypothesis $\left(\wedge_{A_j \in \eta} S_{\beta} cl A_j^c\right) \wedge A \ne 0_X$ and hence $\left(\wedge_{A_j \in \eta} A_j^c\right) \wedge A \ne 0_X$. Then for some $x \in S(A)$, $\left(\wedge_{A_j \in \eta} A_j^c\right)(x) > 0_X$, that is $\left(\bigvee_{A_j \in \mu} A_j\right)(x) < 1_X$, which is a contradiction. Hence A is fuzzy S_{β} -compact relative to X.

Conversely, suppose that there exists a filter base ξ such that every finite of members of ξ is quasi-coincident with A and $\left(\bigwedge_{G\in\xi}S_{\beta}clG\right)\wedge A\neq 0_X$. Then for every $x\in S(A), \left(\bigwedge_{G\in\xi}S_{\beta}clG\right)(x)=0_X$ and hence $\left(\bigvee_{G\in\xi}(S_{\beta}clG)^c\right)(x)=1_X$ for every $x\in S(A)$. Thus $\mu=\{(S_{\beta}ClG)^c:G\in\xi\}$ is fuzzy S_{β} -open cover of A. Since A is fuzzy S_{β} -compact relative to X, then there exists a finite subcover, say $\{(S_{\beta}clG_1)^c,\ldots,(S_{\beta}clG_n)^c\}$, such that $\left(\bigvee_{j=1}^n(S_{\beta}clG_j)^c\right)(x)\geq A(x)$ for every $x\in S(A)$. Hence $\left(\bigwedge_{j=1}^n(S_{\beta}clG_j)\right)(x)\leq A^c(x)$ for every $x\in S(A)$, so that $\bigwedge_{j=1}^n(S_{\beta}clG_j)$ is not quasi-coincident with A, which is a contradiction. Therefore, for every fuzzy filter base ξ such that every finite of members of ξ is quasi-coincident with A, that is $\left(\bigwedge_{G\in\xi}S_{\beta}clG\right)\wedge A\neq 0_X$.

Theorem 3.9. Every fuzzy S_{β} -closed subset of a fuzzy S_{β} -compact space is fuzzy S_{β} -compact relative to X.

Proof. Let ξ be a fuzzy filter base in X such that $Vq \wedge \{G : G \in \lambda\}$ holds for every finite subcollection λ of ξ and a fuzzy S_{β} -closed set V. Consider $\xi^* = \{V\} \cup \xi$. For any finite subcollection λ^* of ξ^* , if V does not belong to λ^* , then $\wedge \lambda^* \neq 0_X$. If $V \in \lambda^*$ and since $Vq \wedge \{G : G \in \lambda^* - V\}$, then $\wedge \lambda^* \neq 0_X$. Hence λ^* is a fuzzy filter base in X. Since X is fuzzy S_{β} -compact, then $\bigwedge_{G \in \xi^*} S_{\beta} clG \neq 0_X$, so that $\left(\bigwedge_{G \in \xi} S_{\beta} clG\right) \wedge V = \left(\bigwedge_{G \in \xi} S_{\beta} clG\right) \wedge S_{\beta} ClV \neq 0_X$. Hence by Theorem 3.8, we have V is fuzzy S_{β} -compact relative to X.

Theorem 3.10. If a function $f: X \to Y$ is fuzzy MS_{β} -continuous and V is fuzzy S_{β} -compact relative to X, then so is f(V).

Proof. Let $\{A_j: j \in J\}$ be a fuzzy S_{β} -open set cover of S(f(V)). For $x \in S(V), f(x) \in f(S(V)) = S(f(V))$. Since f is fuzzy MS_{β} -continuous, then $\{f^{-1}(A_j): j \in J\}$ is fuzzy S_{β} -open cover of S(V). Since V is fuzzy S_{β} -compact relative to X, there is a finite subfamily $\{f^{-1}(A_j): j = 1, \ldots, n\}$ such that $S(V) \leq \bigvee_{j=1}^n f^{-1}(A_j)$ which implies $S(V) \leq f^{-1}(\bigvee_{j=1}^n A_j)$ and then $S(f(V)) = f(S(V)) \leq ff^{-1}(\bigvee_{j=1}^n A_j) \leq \bigvee_{j=1}^n A_j$. Therefore, f(V) is fuzzy S_{β} -compact relative to Y.

Lemma 3.11. If $f: X \to Y$ is fuzzy open and fuzzy continuous function, then f is fuzzy MS_{β} - continuous.

Proof. Let v be a fuzzy S_{β} -open set in Y, then $v \leq clintclv$. So $f^{-1}(v) \leq f^{-1}$ (clintclv) $\leq cl$ (f^{-1} (intclv)). Since f is fuzzy continuous, then $f^{-1}(intclv) = int (f^{-1}(clv))$. Also by Theorem 2.10, $f^{-1}(intclv) = int (f^{-1}(intclv)) \leq int (f^{-1}(clv)) \leq intcl (f^{-1}(v))$. Thus $f^{-1}(v) \leq cl$ (f^{-1} (intclv)) $\leq cl$ intcl ($f^{-1}(v)$). Hence the result.

Corollary 3.12. Let $f: X \to Y$ be fuzzy open and fuzzy continuous function and X is fuzzy S_{β} -compact, then f(X) is fuzzy S_{β} -compact.

Proof. It is followed directly from Lemma 3.11 and Theorem 3.10.

Definition 3.13. A function $f: X \to Y$ is said to be fuzzy MS_{β} -open if and only if the image of every fuzzy S_{β} -open set in X is fuzzy S_{β} -open set in Y.

Theorem 3.14. Let $f: X \to Y$ be a fuzzy MS_{β} -open bijective function and Y is fuzzy S_{β} -compact, then X is fuzzy S_{β} -compact.

Proof. Let $\{A_j; j \in J\}$ be a collection of fuzzy S_{β} -open cover of X. Then $\{f(A_j): j \in J\}$ is a collection of fuzzy S_{β} -open set covering of Y. Since Y is fuzzy S_{β} -compact, there is a finite subset $F \subseteq J$ such that $\{f(A_j): j \in F\}$ is a covering of Y. But $1_X = f^{-1}(1_Y) = f^{-1}f\left(\bigvee_{j \in F} (A_j) = \bigvee_{j \in F} (A_j)\right)$ and therefore X is fuzzy S_{β} -compact.

4. Fuzzy S_{β} -closed spaces

In this section, we would introduce and study fuzzy S_{β} -closed spaces.

Definition 4.1. A fuzzy set U in a fuzzy topological space X is said to be a fuzzy $S_{\beta}q$ -nbd of a fuzzy point x_t in X if there exists a fuzzy S_{β} -open set $A \leq U$ such that x_tqA .

Theorem 4.2. Let x_t be a fuzzy point in a fuzzy topological space X and U be any fuzzy set in X. Then $x_t \in S_{\beta}clU$ if and only if for every $S_{\beta}q$ -nbd H of x_t, HqU .

Proof. Let $x_t \in S_{\beta}clU$ and there exists a $S_{\beta}q$ -nbd H of x_t, H is not quasicoincident with U. Then there exists a fuzzy S_{β} -open set $A \leq H$ in Xsuch that x_tqA , which implies that A is not quasi-coincident with U and $U \leq A^c$. Since A^c is fuzzy S_{β} -closed set, then $S_{\beta}clU \leq A^c$. Since $x_t \notin A^c$, then $x_t \in S_{\beta}clU$, which is a contradiction. Conversely, let $x_t \notin S_{\beta}clU = \wedge \{A : A \text{ is fuzzy } S_{\beta}\text{-closed in } X, A \geq U\}$. Then there exists a fuzzy S_{β} -closed set $A \geq U$ such that $x_t \notin A$. Hence $x_t q A^c = H$ where H is fuzzy S_{β} -open set in X and H is not quasi-coincident with U. Then there exists a fuzzy $S_{\beta}q - nbdH$ of x_t which is not quasi-coincident with U. Hence the result.

Definition 4.3. A fuzzy topological space X is said to be fuzzy S_{β} -closed if and only if for every family μ of fuzzy S_{β} -open sets such that $\bigvee_{A \in \mu} A = 1_X$, there is a finite subfamily $\eta \subseteq \mu$ such that $\left(\bigvee_{A \in \eta} S_{\beta} clA\right)(x) = 1_X$, for every $x \in X$.

Remark 4.4. From the above definition and other types of fuzzy compactness, one can draw the following diagram:

$$FS_{\beta}$$
-compact $\to F\beta$ -compact $\to F\beta$ -closed

$$FS_{\beta}$$
-compact $\to FS_{\beta}$ -closed $\to F\beta$ -closed

where F = fuzzy.

Theorem 4.5. A fuzzy topological space X is fuzzy S_{β} -closed if and only if for every fuzzy S_{β} - open filter base ξ in X, $\bigwedge_{G \in \mathcal{E}} S_{\beta} clG \neq 0_X$.

Proof. Let μ be a fuzzy S_{β} -open set cover of X and let for every finite subfamily η of μ , $\left(\bigvee_{A\in\eta}S_{\beta}clA\right)(x)<1_X$ for some $x\in X$. Then $\left(\bigwedge_{A\in\eta}S_{\beta}clA^c\right)(x)>0_X$ for some $x\in X$. Thus $\left\{(S_{\beta}clA)^c:A\in\mu\right\}=\xi$ forms a fuzzy S_{β} -open filter base in X. Since μ is a fuzzy S_{β} -open cover of X, then $\bigwedge_{A\in\mu}A^c=0_X$, which is a contradiction. Then every fuzzy S_{β} -open μ cover of X has a finite subfamily η such that $\left(\bigvee_{A\in\eta}S_{\beta}clA\right)(x)=1_X$ for every $x\in X$. Hence X is fuzzy S_{β} -closed.

Conversely, suppose there exists a fuzzy S_{β} -filter base ξ in X such that $\bigwedge_{G \in \xi} S_{\beta} clG = 0_X$, so that $\left(\bigvee_{G \in \xi} \left(S_{\beta} clG\right)^c\right)(x) = 1_X$ for every $x \in X$ and hence $\mu = \{(S_{\beta} clG)^c : G \in \xi\}$ is a fuzzy S_{β} -open cover of X. Since X is fuzzy S_{β} -closed, then μ has a finite subfamily η such that $\left(\bigvee_{G \in \eta} S_{\beta} cl\left(S_{\beta} clG\right)^c\right)(x) = 1_X$ for every $x \in X$ and hence $\bigwedge_{G \in \eta} \left(S_{\beta} cl\left(S_{\beta} clG\right)^c\right)^c = 0_X$. Thus $\bigwedge_{G \in \eta} G = 0_X$ which is a contradiction, since all the G are members of filter base.

Definition 4.6. A fuzzy set u in a fuzzy topological space X is said to be fuzzy S_{β} -closed relative to X if and only if for every family μ of fuzzy

 S_{β} -open sets such that $\bigvee_{A \in \mu} A = u$, there is a finite subfamily $\eta \subseteq \mu$ such that $(\bigvee_{A \in \eta} S_{\beta} clA)(x) \ge u(x)$ for every $x \in S(u)$.

Theorem 4.7. A fuzzy subset u in a fuzzy topological space X is fuzzy S_{β} -closed relative to X if and only if every fuzzy S_{β} -open filter base ξ in X, $\left(\bigwedge_{G\in\xi}S_{\beta}clG\right)\wedge u=0_X$, there exists a finite subfamily $\lambda of\xi$ such that $\left(\bigwedge_{G\in\lambda}G\right)$ is not quasi-coincident, with u.

Proof. Let u be a fuzzy S_{β} -closed relative to X. Suppose ξ is a fuzzy S_{β} -open filter base in X such that for every finite subfamily λ of ξ , $(\bigwedge_{G \in \lambda} G) qu$, but $(\bigwedge_{G \in \xi} S_{\beta} \text{ clG}) \wedge u = 0_X$. Then for every $x \in S(u)$, $(\bigwedge_{G \in \xi} S_{\beta} \text{clG})(x) = 0_X$ and hence $(\bigvee_{G \in \xi} (S_{\beta} \text{cl}G)^c)(x) = 1_X$ for every $x \in S(u)$. Then $\mu = \{(S_{\beta} \text{cl}G)^c : G \in \xi\}$ is a fuzzy S_{β} -open set cover of u and hence there exists a finite subfamily $\lambda \subseteq \xi$ such that $\bigvee_{G \in \lambda} S_{\beta} \text{cl}(S_{\beta} \text{cl}G)^c \geq u$, so that $\bigwedge_{G \in \lambda} (S_{\beta} \text{cl}(S_{\beta} \text{cl}G)^c)^c = \bigwedge_{G \in \lambda} S_{\beta} \text{int}(S_{\beta} \text{cl}G) \leq u^c$ and hence $\bigwedge_{G \in \lambda} G \leq u^c$. Then $\bigwedge_{G \in \lambda} G$ is not quasi-coincident with u which is a contradiction.

Conversely, let u not be a fuzzy S_{β} -closed set relative to X. Then there exists a fuzzy S_{β} -open set μ cover of u such that every finite subfamily $\eta \subseteq \mu$, $\left(\bigvee_{A \in \eta} S_{\beta} clA\right)(x) \leq u(x)$ for some $x \in S(u)$ and hence $\left(\bigwedge_{A \in \eta} (S_{\beta} clA)^c\right)(x) > u^c(x) \geq 0_X$ for some $x \in S(u)$. Thus $\xi = \{(S_{\beta} clA)^c : A \in \mu\}$ forms a fuzzy S_{β} -open filter base in X. Let there exists a finite subfamily $\{(S_{\beta} clA)^c : A \in \eta\}$ such that $\left(\bigwedge_{A \in \eta} (S_{\beta} clA)^c\right)$ is not quasi-coincident with u. Then $u \leq \bigvee_{A \in \eta} S_{\beta} clA$. So there exists a finite subfamily $\eta \subseteq \mu$ such that $\bigvee_{A \in \eta} S_{\beta} clA \geq u$ which is a contradiction. Then for each finite subfamily $\lambda = \{(S_{\beta} clA)^c : A \in \eta\}$ of ξ , we have $\left(\bigwedge_{A \in \eta} (S_{\beta} clA)^c\right) qu$. Hence by the given condition $\left(\bigwedge_{A \in \mu} S_{\beta} cl (S_{\beta} clA)^c\right) \wedge u \neq 0_X$. So there exists $x \in S(x)$ such that $\left(\bigwedge_{A \in \mu} S_{\beta} cl (S_{\beta} clA)^c\right)(x) > 0_X$. Then,

$$\left(\bigvee_{A\in\mu}\left(S_{\beta}cl\left(S_{\beta}clA\right)^{c}\right)\left(\bigvee_{A\in\mu}\left(S_{\beta}cl\left(S_{\beta}clA\right)^{c}\right)^{c}(x)=\left(\bigvee_{A\in\mu}S_{\beta}int\left(S_{\beta}clA\right)\right)(x)<1_{X}\right)$$

and hence $(\bigvee_{A \in \mu} A)(x) < 1_X$ which contradicts the fact that μ is a fuzzy S_{β} -open cover of u. Therefore u is a fuzzy S_{β} -closed set relative to X. \square

Definition 4.8. A fuzzy set u of X is said to be fuzzy S_{β} -regular if it is both fuzzy S_{β} -open and fuzzy S_{β} -closed.

Proposition 4.9. If u is fuzzy S_{β} -open in X, then S_{β} clu is fuzzy S_{β} -regular.

Proof. Since S_{β} clu is fuzzy S_{β} -closed, we must show that S_{β} clu is fuzzy S_{β} -open. Since u is fuzzy S_{β} -open in X, $v \le u \le clv$ holds for some fuzzy preopen set v in X. Therefore, we have $v \le S_{\beta} clv \le S_{\beta} clu \le clv$ and hence S_{β} clu is fuzzy S_{β} -open.

Theorem 4.10. For a fuzzy topological space X, the following are equivalent:

- 1. X is fuzzy S_{β} -closed space.
- 2. Every cover of X by fuzzy S_{β} -regular sets has a finite subcover.
- 3. For every collection $\{A_j : j \in J\}$ of fuzzy S_{β} -regular sets such that $\bigwedge_{j \in J} A_j = 0_X$, there exists a finite subset $F \subseteq J$ such that $\bigwedge_{j \in F} A_j = 0_X$.

Proof. It is obvious from Proposition 4.9 and from the fact that for every collection $\{A_j: j \in J\}$, $\left(\bigvee_{j \in J} A_j\right)^c = \bigwedge_{j \in J} A_j^c$, $\left(\bigwedge_{j \in J} A_j\right)^c = \bigvee_{j \in J} A_j^c$ and A is fuzzy S_{β} -open set if and only if A^c is fuzzy S_{β} -closed.

Theorem 4.11. Let $f: X \to Y$ be a fuzzy S_{β} -continuous surjection function. If X is fuzzy S_{β} -closed space, then Y is almost fuzzy compact.

Proof. Let $\{A_j; j \in J\}$ be a collection of fuzzy open sets cover of Y. Then $\{f^{-1}(A_j): j \in J\}$ is a fuzzy S_β -open cover of X. By hypothesis, there exists a finite subset $F \subseteq J$ such that $\bigvee_{j \in F} S_\beta clf^{-1}(A_j) = 1_X$. From the surjective of f and by Lemma 3.3, $1_Y = f(1_X) = f\left(\bigvee_{j \in F} S_\beta clf^{-1}(A_j)\right) \leq \bigvee_{j \in F} clf\left(f^{-1}(A_j)\right) = \bigvee_{j \in F} clA_j$. Hence Y is almost fuzzy compact.

Theorem 4.12. If $f: X \to Y$ is fuzzy MS_{β} -continuous surjection function and X is fuzzy S_{β} -closed, then so is Y.

Proof. Using Lemma 3.2, the theorem can be proved similarly to Theorem 4.11.

Acknowledgement

The author thanks to the reviewer for the comments those improved the presentation of the article.

References

- [1] M. E. Abd El-Monsef, S.N. El-Deeb and R. A. Mahmoud, "-open sets and -continuous mappings", *Bull. Fac. Sci., Assiut Univ.*, vol. 12, pp. 77-90, 1983.
- [2] M. E. Abd El-Monsef, and A. M. Kozae, "Some generalized forms of compactness and closedness", *Delta Journal of Science*, vol. 9, no. 2, pp. 257- 269, 1985.
- [3] F. Alla, *On fuzzy topological spaces*, Ph. D. Thesis, Assiut Univ., Sohag, Egypt, 1984.
- [4] G. Balasubramanian, "On fuzzy -compact spaces and fuzzy -extremally disconnected spaces", *Kybernetika [cybernetics]*, vol. 33, no. 3, pp. 271-277, 1997.
- [5] B. Bhattacharya, J. Chakraborty and A. Paul, " γ^* -Hyperconnectedness in fuzzy topological spaces", *The Journal of Analysis*, vol. 28, pp. 9-19, 2020.
- [6] C. L. Chang, "Fuzzy topological spaces", *J. Math. Anal. Appl.*, vol. 24, pp. 182-190, 1968.
- [7] D. Coker and A. Haydar Es, "On fuzzy S closed spaces", *Doga Tu J. Math.*, pp. 145-152, 1987.
- [8] R. Dhar, Some pairwise weakly fuzzy mappings, *Proyecciones (Antofa- gasta, On line)*, vol. 38, no. 4, pp. 707-717, 2019.
- [9] R. Dhar, "Fuzzy S_{β} -open sets and fuzzy S_{β} -operations", *Acta Ciencia Indica*, vol. 47, no. 1-4, pp. 57-66, 2021.
- [10] R. Dhar, "Continuity in fuzzy bitopological ordered spaces", *Proyecciones (Antofagasta, On line)*, vol. 40, no. 3, pp. 681-696, 2021.
- [11] R. Dhar, "Fuzzy S_{β} continuous and fuzzy S_{β} open mappings", *Proyecciones (Antofagasta, On line)*, vol. 41, no. 4, pp. 891-902, 2022.
- [12] A. Dutta and B. C. Tripathy, "On fuzzy b $-\theta$ open sets in fuzzy topological space", *Journal of Intelligent and Fuzzy Systems*, vol. 32, no. 1, pp. 137-139, 2017.

- [13] S. Ganguly and S. Saha, "A note on compactness in fuzzy setting", Fuzzy Sets and Systems, vol. 34, pp. 117-124, 1990.
- [14] I. M. Hanafy, "Fuzzy β compactness and fuzzy β closed spaces", *Turk Journal of Mathematics*, vol. 28, pp. 281-293, 2004.
- [15] A. B. Khalaf and N. K. Ahmed, " S_{β} -open sets and S_{β} -continuity in topological spaces", *Thai Journal of Mathematics*, vol. 11, no. 2, pp. 319-335, 2013.
- [16] P. M. Pu and Y. M. Liu, "Fuzzy topology. I. neighborhood structure of a fuzzy point and moore-smith convergence", *Journal of Mathematical Analysis* and Applications, vol. 76, no. 2, pp. 571-599, 1980.
- [17] B. C. Tripathy and S. Debnath, " γ -open sets and γ -continuous map- pings in fuzzy bitopological spaces", *Journal of Intelligent and Fuzzy Systems*, vol. 24, no. 3, pp. 631-635, 2013.
- [18] B. C. Tripathy and G. C. Ray, "Mixed fuzzy ideal topological spaces", *Applied Mathematics and Computations*, vol. 220, pp. 602-607, 2013.
- [19] B. C. Tripathy and G. C. Ray, "Weakly continuous functions on mixed fuzzy topological spaces", *Act Scientiarum Technology*, vol. 36, no. 2, pp. 331-335, 2014.
- [20] B. C. Tripathy and S. Debnath, "On fuzzy b locally open sets in bitopological spaces", *Songklanakarin Journal of Science and Technology*, vol. 37, no. 1, pp. 93-96, 2015.
- [21] T. H. Yalvac, "Fuzzy sets and functions on fuzzy topological spaces", *Journal of Mathematical Analysis and Applications*, vol. 126, pp. 409- 423, 1987.
- [22] L. A. Zadeh, "Fuzzy sets", *Information and Control*, vol. 8, pp. 338-353, 1965.

Department of Mathematics Maharaja Bir Bikram University P. O. Agartala College College Tilla, Agartala, Tripura, India

PIN-799004

e-mail : runu.dhar@gmail.com