Monophonic-triangular distance in graphs

P. Titus
Anna University, India
J. Ajitha Fancy
Scott Christian College (Autonomous), India and
A. P. Santhakumaran
Hindustan Institute of Technology and Science, India
Received: December 2022. Accepted : May 2023

Abstract

A path $u_{1}, u_{2}, \ldots, u_{n}$ in a connected graph G such that for i, j with $j \geq i+3$, there does not exist an edge $u_{i} u_{j}$, is called a monophonictriangular path or mt-path. The monophonic-triangular distance or $m t$-distance $d_{m t}(u, v)$ from u to v is defined as the length of a longest $u-v$ mt-path in G. The mt-eccentricity $e_{m t}(v)$ of a vertex v in G is defined as the maximum mt-distance between v and other vertices in G. The mt-radius $\operatorname{rad}_{m t}(G)$ is defined as the minimum $m t-$ eccentricity among the vertices of G and the mt-diameter $\operatorname{diam}_{m t}(G)$ is defined as the maximum mt-eccentricity among the vertices of G. It is shown that $\operatorname{rad}_{m t}(G) \leq \operatorname{diam}_{m t}(G)$ for every connected graph G. Some realization and characterization results are given based on $m t-$-radius, mt-diameter, mt-center and mt-periphery of a connected graph.

Key Words: Distance, detour distance, monophonic distance, mtdistance, mt-radius, mt-diameter, mt-center.

AMS Subject Classification: 05C12.

1. Introduction

In this paper, a non-trivial simple finite undirected connected graph G with vertex set V and edge set E is considered. Let p and q be the order and size of G, respectively. We refer $[1,3]$ for basic definitions and results. The distance between two vertices u and v in G is defined as the minimum length of a $u-v$ path in G and it is denoted by $d(u, v)$. It is known that the distance d is a metric on V.

The eccentricity $e(v)$ of a vertex v in a connected graph G is defined as the distance between v and a vertex farthest from v in G. The radius $\operatorname{rad}(G)$ is defined as the minimum eccentricity among the vertices of G and the diameter $\operatorname{diam}(G)$ is defined as the maximum eccentricity among the vertices of G. If $e(v)=\operatorname{rad}(G)$, then v is a central vertex and if $e(v)=\operatorname{diam}(G)$, then v is a peripheral vertex. The center $C(G)$ of G is the subgraph induced by the central vertices of G and periphery $P(G)$ of G is the subgraph induced by the peripheral vertices of G.

In 2005, Chartrand et al. [2] introduded a new distance viz. detour distance based on a longest path joining any two vertices in a connected graph. The detour distance between two vertices u and v in G is defined as the maximum length of a $u-v$ path in G and it is denoted by $D(u, v)$. A longest $u-v$ path is called a $u-v$ detour. It is also known that the detour distance D is a metric on V. The detour eccentricity $e_{D}(v)$ of a vertex v in a connected graph G is defined as the maximum detour distance between u and other vertices in G. The detour radius $\operatorname{rad}_{D}(G)$ is defined as the minimum detour eccentricity among the vertices of G and the detour diameter $\operatorname{diam}_{D}(G)$ is defined as the maximum detour eccentricity among the vertices of G. If $e_{D}(v)=\operatorname{rad}_{D}(G)$, then v is a detour central vertex and if $e_{D}(v)=\operatorname{diam}_{D}(G)$, then v is a detour peripheral vertex. The detour center $C_{D}(G)$ of G is defined as the subgraph induced by the detour central vertices of G and detour periphery $P_{D}(G)$ of G is defined as the subgraph induced by the detour peripheral vertices of G.

A chord of a path P is an edge joining two non-adjacent vertices of P. A chordless path is called a monophonic path. In 2012, Santhakumaran et al. [5] introduced a new distance based on a longest monophonic path joining any two vertices in a connected graph and further investigated in [6]. The monophonic distance between any two vertices u and v in G is defined as the maximum length of a $u-v$ monophonic path in G and it is denoted by $d_{m}(u, v)$. The usual distance and the detour distance
are metrics on the vertex set of a connected graph, whereas the monophonic distance is not a metric on the vertex set of a connected graph. The monophonic eccentricity $e_{m}(v)$ of a vertex v in a connected graph G is defined as the maximum monophonic distance between v and other vertices in G. The monophonic radius $\operatorname{rad}_{m}(G)$ is defined as the minimum monophonic eccentricity among the vertices of G and the monophonic diameter $\operatorname{diam}_{m}(G)$ is defined as the maximum monophonic eccentricity among the vertices of G. If $e_{m}(v)=\operatorname{rad}_{m}(G)$, then v is a monophonic central vertex and if $e_{m}(v)=\operatorname{diam}_{m}(G)$, then v is a monophonic peripheral vertex. The monophonic center $C_{m}(G)$ of G is defined as the subgraph induced by the monophonic central vertices of G and monophonic periphery $P_{m}(G)$ of G is defined as the subgraph induced by the monophonic peripheral vertices of G.

The concept of distance (usual distance) in graphs is a major component in graph theory with its centrality and convexity concepts having numerous applications to real life problems. There are several interesting applications of these concepts to facility location in real life situations. The paths introduced here are monophonic-triangular so that intervention by hackers or rioters is not possible to the respective facilities provided. In fact, the two major applications provided by this path with security and protection are service facility and emergency facility in real life situations of a large city network. Further, as monophonic-triangular paths are secured and longer than geodesics, it is advantageous to more customers in providing protected service of facility locations.

In this article, we introduce the monophonic-triangular distance in a connected graph and based on this new distance, two new graph invariants known as $m t$-radius and $m t$-diameter of a graph are introduced and investigated. Also, the relation between $m t$-radius and $m t$-diameter with (detour or monophonic) radius and (detour or monophonic) diameter are given. Moreover, realization theorems for these graph parameters are presented. Throughout this article, G denotes a non-trivial simple connected graph.

2. Monophonic-triangular Distance

Definition 2.1. A path $u_{1}, u_{2}, \ldots, u_{n}$ in G such that for i, j with $j \geq i+3$, there does not exist an edge $u_{i} u_{j}$, is called a monophonic-triangular path
or mt-path. The monophonic-triangular distance or mt-distance $d_{m t}(u, v)$ from u to v is defined as the length of a longest $u-v m t-p a t h ~ i n ~ G . ~$

Example 2.2. Consider the graph G given in Figure 2.1. For the vertices v_{1} and $v_{7}, P_{1}: v_{1}, v_{5}, v_{7}$ is a $v_{1}-v_{7}$ geodesic, $P_{2}: v_{1}, v_{5}, v_{2}, v_{3}, v_{4}, v_{8}, v_{7}$ is a $v_{1}-v_{7}$ detour, $P_{3}: v_{1}, v_{2}, v_{8}, v_{7}$ is a longest $v_{1}-v_{7}$ monophonic path, $P_{4}: v_{1}, v_{2}, v_{3}, v_{8}, v_{7}$ is a longest $v_{1}-v_{7} m t$-path and so $d\left(v_{1}, v_{7}\right)=2$, $D\left(v_{1}, v_{7}\right)=6, d_{m}\left(v_{1}, v_{7}\right)=3$, and $d_{m t}\left(v_{1}, v_{7}\right)=4$, respectively. Thus, the $m t$-distance $d_{m t}$ is different from the known distances such as d, D and d_{m} in graphs.

Figure 2.1: G
The usual distance d and the detour distance D are metrics on V, and the monophonic distance d_{m} is not a metric on V. Now, it is seen that the $m t$-distance $d_{m t}$ is also not a metric on V. For the cycle C_{5} : $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}, \quad d_{m t}\left(v_{1}, v_{2}\right)=1, \quad d_{m t}\left(v_{2}, v_{3}\right)=1$ and $d_{m t}\left(v_{1}, v_{3}\right)=3$. Hence $d_{m t}\left(v_{1}, v_{3}\right)>d_{m t}\left(v_{1}, v_{2}\right)+d_{m t}\left(v_{2}, v_{3}\right)$ and so the triangle inequality is not satisfied for the mt-distance.

Note A $m t$-path P is either a monophonic path or the subgraph induced by P contains only triangles. Hence a monophonic path is obviously a $m t$-path and the converse need not be true. For the graph G given in Figure 2.1, $P_{4}: v_{1}, v_{2}, v_{3}, v_{8}, v_{7}$ is a $v_{1}-v_{7} m t$-path, but P_{4} is not a $v_{1}-v_{7}$ monophonic path.

The following result is trivial from the respective definitions.
Remark 2.3. For any two vertices x and y in a connected graph G of order $p, 0 \leq d(x, y) \leq d_{m}(x, y) \leq d_{m t}(x, y) \leq D(x, y) \leq p-1$. The
bounds in this chain inequalities are sharp. In any non-trivial connected graph G, if $x=y$, then $d(x, y)=d_{m}(x, y)=d_{m t}(x, y)=D(x, y)=0$. In a non-trivial path P on p vertices, if x and y are end vertices of P, then $d(x, y)=d_{m}(x, y)=d_{m t}(x, y)=D(x, y)=p-1$. Also, all the inequalities in this chain are strict. For the graph G given in Figure 2.1, $d\left(v_{1}, v_{7}\right)=2$, $d_{m}\left(v_{1}, v_{7}\right)=3, d_{m t}\left(v_{1}, v_{7}\right)=4, D\left(v_{1}, v_{7}\right)=6, p=8$ and so $0<d\left(v_{1}, v_{7}\right)<$ $d_{m}\left(v_{1}, v_{7}\right)<d_{m t}\left(v_{1}, v_{7}\right)<D\left(v_{1}, v_{7}\right)<p-1$.

Result 2.4. Let x and y be any two vertices in a connected graph G of order p. Then
(i) $d_{m t}(x, y)=0$ if and only if $x=y$.
(ii) $d_{m t}(x, y)=1$ if and only if $x y$ is either a cut edge or an edge in a smallest cycle of order at least 4.

Result 2.5. For every pair of distinct vertices x and y in $G, d_{m t}(x, y)=2$ if and only if $G=K_{p}(p \geq 3)$. For any two vertices x and y in $G, d(x, y)=$ $d_{m}(x, y)=d_{m t}(x, y)=D(x, y)$ if and only if G is a tree. It is possible, however, that for a connected graph, which is not a tree, there exists a pair of vertices x and y such that $d(x, y)=d_{m}(x, y)=d_{m t}(x, y)=D(x, y)$. For example, if x and y are antipodal vertices in an even cycle $C_{2 n}(n \geq 2)$, $d(x, y)=d_{m}(x, y)=d_{m t}(x, y)=D(x, y)=n$.

Definition 2.6. Let G be a connected graph. The mt-eccentricity $e_{m t}(v)$ of a vertex v in G is $e_{m t}(v)=\max \left\{d_{m t}(v, x): x \in V\right\}$. The $m t$-radius, $\operatorname{rad}_{m t}(G)$ of G is $\operatorname{rad}_{m t}(G)=\min \left\{e_{m t}(v): v \in V\right\}$ and the $m t-$ diameter, $\operatorname{diam}_{m t}(G)$ of G is $\operatorname{diam}_{m t}(G)=\max \left\{e_{m t}(v): v \in V\right\}$. A vertex y in G is a $m t$ - eccentric vertex of a vertex x in G if $e_{m t}(x)=d_{m t}(x, y)$.

Example 2.7. For the graph G given in Figure 2.1, the eccentricity, monophonic eccentricity, mt-eccentricity, detour eccentricity and the set of all $m t$-eccentric vertices of every vertex of G is given in Table 2.1.

Table 2.1.

vertex v	$e(v)$	$e_{r m}(v)$	$e_{m t}(v)$	$e_{D}(v)$	$m t$-eccentric vertices
v_{1}	2	4	5	7	$\left\{v_{3}, v_{4}\right\}$
v_{2}	2	3	4	7	$\left\{v_{6}\right\}$
v_{3}	3	4	5	7	$\left\{v_{1}, v_{6}\right\}$
v_{4}	3	5	5	7	$\left\{v_{1}, v_{6}, v_{7}\right\}$
v_{5}	2	3	4	7	$\left\{v_{3}, v_{8}\right\}$
v_{6}	3	4	5	7	$\left\{v_{3}, v_{4}, v_{8}\right\}$
v_{7}	2	5	5	7	$\left\{v_{4}\right\}$
v_{8}	2	4	5	7	$\left\{v_{6}\right\}$

Note Since $d(u, v)=d_{m}(u, v)=d_{m t}(u, v)=D(u, v)$ for any two vertices u and v in a tree T, it follows that $\operatorname{rad}(T)=\operatorname{rad}_{m}(T)=\operatorname{rad}_{m t}(T)=$ $\operatorname{rad}_{D}(T)$ and $\operatorname{diam}(T)=\operatorname{diam}_{m}(T)=\operatorname{diam}_{m t}(T)=\operatorname{diam}_{D}(T)$. Also, since $d_{m t}(u, v)=2$ for any two distinct vertices of a complete graph K_{p}, $\operatorname{rad}_{m t}\left(K_{p}\right)=\operatorname{diam}_{m t}\left(K_{p}\right)=2$. Also, Table 2.2 shows the $m t$-radius and the $m t$-diameter of some standard graphs.

Table 2.2.

Graph G	K_{p}	C_{p} $(p \geq 4)$	$W_{1, p-1}$ $(p \geq 5)$	$K_{1, p-1}$ $(p \geq 3)$	$K_{m, n}$ $(m, n \geq 2)$	P_{n}	Petersen graph
$\operatorname{rad}_{m t}(G)$	2	$p-2$	2	1	2	$\left\lfloor\frac{n}{2}\right\rfloor$	4
$\operatorname{diam}_{m t}(G)$	2	$p-2$	$p-3$	2	2	$n-1$	4

Since $0 \leq d(x, y) \leq d_{m}(x, y) \leq d_{m t}(x, y) \leq D(x, y) \leq p-1$, the following proposition is trivial.

Proposition 2.8. Let G be a connected graph. Then
(i)e $(x) \leq e_{m}(x) \leq e_{m t}(x) \leq e_{D}(x)$ for any vertex x in G.
$(i i) \operatorname{rad}(G) \leq \operatorname{rad}_{m}(G) \leq \operatorname{rad}_{m t}(G) \leq \operatorname{rad}_{D}(G)$.
$(i i i) \operatorname{diam}(G) \leq \operatorname{diam}_{m}(G) \leq \operatorname{diam}_{m t}(G) \leq \operatorname{diam}_{D}(G)$.

Theorem 2.9. For any two vertices x and y in $G, d_{m}(x, y) \leq d_{m t}(x, y) \leq$ $2 d_{m}(x, y)$.

Proof. Since any monophonic path is a $m t$-path and $d_{m t}(x, y)$ is the length of a longest $m t$-path, we have $d_{m}(x, y) \leq d_{m t}(x, y)$. Now, claim that $d_{m t}(x, y) \leq 2 d_{m}(x, y)$. If not, there is an $x-y m t$-path, say P, of length $l>2 d_{m}(x, y)$. Then by the definition of $m t$-path, the induced subgraph $\langle V(P)\rangle$ of P contains at most $\frac{l}{2}$ triangles. Form a new path Q from P by replacing the common edges of both P and the triangles in $\langle V(P)\rangle$ by the remaining edge of the triangles in $\langle V(P)\rangle$. It is clear that Q is an $x-y$ monophonic path of length at least $l-\frac{l}{2}=\frac{l}{2}>d_{m}(x, y)$, which is a contradiction. Hence $d_{m t}(x, y) \leq 2 d_{m}(x, y)$.

Theorem 2.10. (a) For integers a, b, c and d with $3 \leq a<b<c \leq d$ and $c \leq 2 b$, there is a connected graph G such that $\operatorname{rad}(G)=a, \operatorname{rad}_{m}(G)=b$, $\operatorname{rad}_{m t}(G)=c$ and $\operatorname{rad}_{D}(G)=d$.
(b) For integers a, b, c and d with $3 \leq a<b<c \leq d$ and $c \leq 2 b$, there is a connected graph G such that $\operatorname{diam}(G)=a, \operatorname{diam}_{m}(G)=b, \operatorname{diam}_{m t}(G)=c$ and $\operatorname{diam}_{D}(G)=d$.

Proof. (a) This part is proved by considering two cases.
Case 1. $b+1 \leq c \leq 2 b-a+3$.
Let $R_{1}: x_{1}, x_{2}, \ldots, x_{a-1}$ and $R_{2}: x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{a-1}^{\prime}$ be two copies of the path P_{a-1} of order $a-1$, let $R_{3}: y_{1}, y_{2}, \ldots, y_{b-a+3}$ and $R_{4}: y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{b-a+3}^{\prime}$ be two copies of the path P_{b-a+3} of order $b-a+3$, and let R_{5} be the complete graph of order $d-c+3$ with $V\left(R_{5}\right)=\left\{z_{1}, z_{2}, \ldots, z_{d-c+3}\right\}$. Let H be the graph obtained from $R_{1}, R_{2}, R_{3}, R_{4}$ and R_{5} by (i) identifying the vertices z_{1} in R_{5} and y_{1} in R_{3}; also identifying the vertices z_{d-c+3} in R_{5} and y_{1}^{\prime} in R_{4}, (ii) identifying the vertices y_{b-a+3} in R_{3} and x_{2} in R_{1}; and identifying the vertices y_{b-a+3}^{\prime} in R_{4} and x_{2}^{\prime} in R_{2}, and (iii) joining each vertex $y_{i}(2 \leq i \leq b-a+2)$ in R_{3} and x_{1} in R_{1}; and joining each vertex y_{i}^{\prime} ($2 \leq i \leq b-a+2$) in R_{4} and x_{1}^{\prime} in R_{2}. Let G be the graph obtained from H by adding $2(c-b-1)$ new vertices $u_{1}, u_{2}, \ldots, u_{c-b-1}, u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{c-b-1}^{\prime}$ and joining each u_{i} with the vertices x_{1}, y_{i} and $y_{i+1}(1 \leq i \leq c-b-1)$ and joining each u_{i}^{\prime} with the vertices $x_{1}^{\prime}, y_{i}^{\prime}$ and $y_{i+1}^{\prime}(1 \leq i \leq c-b-1)$. The graph G is shown in Figure 2.3.

It is clear that
$P_{1}: z_{2}, z_{1}, x_{1}, x_{2}, \ldots, x_{a-1} ; P_{2}: z_{2}, z_{1}, y_{2}, y_{3}, \ldots, y_{b-a+2}, x_{2}, x_{3}, \ldots, x_{a-1} ;$
$P_{3}: z_{2}, z_{d-c+3}, z_{1}, u_{1}, y_{2}, u_{2}, y_{3}, u_{3}, y_{4}, \ldots, y_{c-b-1}, u_{c-b-1}, y_{c-b}, y_{c-b+1}$,
$\ldots, y_{b-a+2}, x_{2}, x_{3}, \ldots, x_{a-1}$ and $P_{4}: z_{2}, z_{3}, z_{4}, \ldots, z_{d-c+3}, z_{1}, u_{1}, y_{2}, u_{2}, y_{3}, u_{3}, y_{4}$,
$\ldots, y_{c-b-1}, u_{c-b-1}, y_{c-b}, y_{c-b+1}, \ldots, y_{b-a+2}, x_{2}, x_{3}, \ldots, x_{a-1}$
are a $z_{2}-x_{a-1}$ geodesic, a longest $z_{2}-x_{a-1}$ monophonic, a longest $z_{2}-x_{a-1}$ $m t$-path, and a $z_{2}-x_{a-1}$ detour path, respectively. Hence $d\left(z_{2}, x_{a-1}\right)=a$, $d_{m}\left(z_{2}, x_{a-1}\right)=b, d_{m t}\left(z_{2}, x_{a-1}\right)=c$ and $D\left(z_{2}, x_{a-1}\right)=d$. Also, it is easily verified that $d\left(z_{2}, t\right) \leq a, d_{m}\left(z_{2}, t\right) \leq b, d_{m t}\left(z_{2}, t\right) \leq c, D\left(z_{2}, t\right) \leq d$ for any vertex t in G and so $e\left(z_{2}\right)=a, e_{m}\left(z_{2}\right)=b, e_{m t}\left(z_{2}\right)=c$ and $e_{D}\left(z_{2}\right)=d$. In a similar way we can verify that $e(v)=a$ if $v \in V\left(R_{5}\right) ; e(v)>a$ if $v \in V(G)-V\left(R_{5}\right), e_{m}(v)=b$ if $v \in V\left(R_{5}\right) ; e_{m}(v)>b$ if $v \in V(G)-V\left(R_{5}\right)$, $e_{m t}(v)=c$ if $v \in V\left(R_{5}\right) ; e_{m t}(v)>c$ if $v \in V(G)-V\left(R_{5}\right), e_{D}(v)=d$ if $v \in V\left(R_{5}\right) ; e_{D}(v)>d$ if $v \in V(G)-V\left(R_{5}\right)$. It follows that $\operatorname{rad}(G)=a$, $\operatorname{rad}_{m}(G)=b, \operatorname{rad}_{m t}(G)=c$ and $\operatorname{rad}_{D}(G)=d$.

Figure 2.3: G

Case 2. $2 b-a+4 \leq c \leq 2 b$.

Let G be the graph obtained from H by adding $2(c-b-1)$ new vertices $u_{1}, u_{2}, \ldots, u_{c-b-1},-u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{c-b-1}^{\prime}$ and (i) joining each $u_{i}(1 \leq i \leq$ $b-a+2)$ with the vertices x_{1}, y_{i} and $y_{i+1}(1 \leq i \leq b-a+2)$, (ii) joining each $u_{i}(b-a+3 \leq i \leq c-b-1)$ with the vertices $x_{i-b+a-1}$ and x_{i-b+a} $(b-a+3 \leq i \leq c-b-1)$, (iii) joining each $u_{i}^{\prime}(1 \leq i \leq b-a+2)$ with the vertices $x_{1}^{\prime}, y_{i}^{\prime}$ and $y_{i+1}^{\prime}(1 \leq i \leq b-a+2)$, (iv) joining each $u_{i}^{\prime}(b-a+3 \leq i \leq c-b-1)$ with the vertices $x_{i-b+a-1}^{\prime}$ and x_{i-b+a}^{\prime} $(b-a+3 \leq i \leq c-b-1)$. The graph G is shown in Figure 2.4.

It is clear that
$P_{1}: z_{2}, z_{1}, x_{1}, x_{2}, \ldots, x_{a-1} ; P_{2}: z_{2}, z_{1}, y_{2}, y_{3}, \ldots, y_{b-a+2}, x_{2}, x_{3}, \ldots, x_{a-1} ;$ $P_{3}: z_{2}, z_{d-c+3}, z_{1}, u_{1}, y_{2}, u_{2}, y_{3}, u_{3}, y_{4}, \ldots, y_{b-a+2}, u_{b-a+2}, x_{2}, u_{b-a+3}, x_{3}$, $u_{b-a+4}, x_{4}, \ldots, x_{c-2 b+a-2}, u_{c-b-1}, x_{c-2 b+a-1}, x_{c-2 b+a}, x_{c-2 b+a+1}, \ldots, x_{a-1}$, and $P_{4}: z_{2}, z_{3}, z_{4}, \ldots, z_{d-c+3}, z_{1}, u_{1}, y_{2}, u_{2}, y_{3}, u_{3}, y_{4}, \ldots, y_{b-a+2}, u_{b-a+2}, x_{2}, u_{b-a+3}$, $x_{3}, u_{b-a+4}, x_{4}, \ldots, x_{c-2 b+a-2}, u_{c-b-1}, x_{c-2 b+a-1}, x_{c-2 b+a}, x_{c-2 b+a+1}, \ldots, x_{a-1}$ are a $z_{2}-x_{a-1}$ geodesic, a longest $z_{2}-x_{a-1}$ monophonic, a longest $z_{2}-x_{a-1}$ $m t-$ path, and a $z_{2}-x_{a-1}$ detour path, respectively. Hence $d\left(z_{2}, x_{a-1}\right)=a$, $d_{m}\left(z_{2}, x_{a-1}\right)=b, d_{m t}\left(z_{2}, x_{a-1}\right)=c$ and $D\left(z_{2}, x_{a-1}\right)=d$. Also, it is easily verified that $d\left(z_{2}, t\right) \leq a, d_{m}\left(z_{2}, t\right) \leq b, d_{m t}\left(z_{2}, t\right) \leq c, D\left(z_{2}, t\right) \leq d$ for any vertex t in G and so $e\left(z_{2}\right)=a, e_{m}\left(z_{2}\right)=b, e_{m t}\left(z_{2}\right)=c$ and $e_{D}\left(z_{2}\right)=d$. We can similarly verify that $e(v)=a$ if $v \in V\left(R_{5}\right) ; e(v)>a$ if $v \in V(G)-V\left(R_{5}\right), e_{m}(v)=b$ if $v \in V\left(R_{5}\right) ; e_{m}(v)>b$ if $v \in V(G)-V\left(R_{5}\right)$, $e_{m t}(v)=c$ if $v \in V\left(R_{5}\right)$; $e_{m t}(v)>c$ if $v \in V(G)-V\left(R_{5}\right), e_{D}(v)=d$ if $v \in V\left(R_{5}\right) ; e_{D}(v)>d$ if $v \in V(G)-V\left(R_{5}\right)$. It follows that $\operatorname{rad}(G)=a$, $\operatorname{rad}_{m}(G)=b, \operatorname{rad}_{m t}(G)=c$ and $\operatorname{rad}_{D}(G)=d$.

Figure 2.4: G
(b) This part is proved by considering two cases.

Let $R_{1}: x_{1}, x_{2}, \ldots, x_{a-1}$ be a path of order $a-1$, let $R_{2}: y_{1}, y_{2}, \ldots, y_{b-a+3}$ be a path of order $b-a+3$ and let R_{3} be the complete graph of order $d-c+3$ with $V\left(R_{3}\right)=\left\{z_{1}, z_{2}, \ldots, z_{d-c+3}\right\}$. Let H be the graph obtained from R_{1}, R_{2} and R_{3} by (i) identifying the vertices z_{1} in R_{3} and y_{1} in R_{2}; (ii) identifying the vertices y_{b-a+3} in R_{2} and x_{2} in R_{1}; and (iii) joining each vertex $y_{i}(2 \leq i \leq b-a+2)$ in R_{2} and x_{1} in R_{1}. Now, the graph G is constructed as in the following two cases.

Case 1. $b+1 \leq c \leq 2 b-a+3$.
Let G be the graph obtained from H by adding $c-b-1$ new vertices $u_{1}, u_{2}, \ldots, u_{c-b-1}$ and joining each $u_{i}(1 \leq i \leq c-b-1)$ with the vertices x_{1}, y_{i} and $y_{i+1}(1 \leq i \leq c-b-1)$. The graph G is shown in Figure 2.5.

Figure 2.5: G

Case 2. $2 b-a+4 \leq c \leq 2 b$.
Let G be the graph obtained from H by adding $c-b-1$ new vertices $u_{1}, u_{2}, \ldots, u_{c-b-1}$ and joining each $u_{i}(1 \leq i \leq b-a+2)$ with the vertices x_{1}, y_{i} and $y_{i+1}(1 \leq i \leq b-a+2)$ and joining each $u_{i}(b-a+3 \leq i \leq c-b-1)$ with the vertices $x_{i-b+a-1}$ and $x_{i-b+a}(b-a+3 \leq i \leq c-b-1)$. The graph G is shown in Figure 2.6.

In both cases, it is easily verified that $e(v)=a$ if $v \in\left(V\left(R_{3}\right)-\left\{z_{1}\right\}\right) \cup$ $\left\{x_{a-1}\right\} ; e(v)<a$ if $v \in V\left(R_{2}\right) \cup\left(V\left(R_{1}\right)-\left\{x_{a-1}\right\}\right), e_{m}(v)=b$ if $v \in$ $\left(V\left(R_{3}\right)-\left\{z_{1}\right\}\right) \cup\left\{x_{a-1}\right\} ; e(v)<b$ if $v \in V\left(R_{2}\right) \cup\left(V\left(R_{1}\right)-\left\{x_{a-1}\right\}\right)$, $e_{m t}(v)=c$ if $v \in\left(V\left(R_{3}\right)-\left\{z_{1}\right\}\right) \cup\left\{x_{a-1}\right\} ; e_{m}(v)<c$ if $v \in V\left(R_{2}\right) \cup$ $\left(V\left(R_{1}\right)-\left\{x_{a-1}\right\}\right)$, and $e_{D}(v)=d$ if $v \in\left(V\left(R_{3}\right)-\left\{z_{1}\right\}\right) \cup\left\{x_{a-1}\right\} ; e(v)<d$ if $v \in V\left(R_{2}\right) \cup\left(V\left(R_{1}\right)-\left\{x_{a-1}\right\}\right)$. It follows that $\operatorname{diam}(G)=a, \operatorname{diam}_{m}(G)=b$, $\operatorname{diam}_{m t}(G)=c$ and $\operatorname{diam}_{D}(G)=d$.

Figure 2.6: G

In any connected graph G, the radius and diameter are related by the inequality $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)$, and the detour radius and detour diameter are related by the inequality $\operatorname{rad}_{D}(G) \leq \operatorname{diam}_{D}(G) \leq 2 \operatorname{rad}_{D}(G)$. But Santhakumaran et. al. [5] showed that this inequality is not true in the case of monophonic distance. Similar to monophonic distance, this inequality is not true in the case of $m t$-distance. For the graph G given in Figure 2.7, it is clear that for any vertex v in $G, 2 \leq e_{m t}(v) \leq 5, e_{m t}\left(x_{1}\right)=2$ and $e_{m t}\left(x_{2}\right)=5$. It follows that $\operatorname{rad}_{m t}(G)=2$ and $\operatorname{diam}_{m t}(G)=5$ and so $\operatorname{diam}_{m t}(G)>2 \operatorname{rad}_{m t}(G)$.

Figure 2.7: G

Ostrand [4] showed that every two positive integers a and b with $a \leq$ $b \leq 2 a$ are realizable as the radius and diameter, respectively, of some connected graph. Similarly, Chartrand et al. [2] showed that every two positive integers a and b with $a \leq b \leq 2 a$ are realizable as the detour radius and detour diameter, respectively, of some connected graph. Also, Santhakumaran et al. [5] showed that every two positive integers a and b with $a \leq b$ are realizable as the monophonic radius and monophonic diameter, respectively, of some connected graph. Now we have a realization theorem for $\operatorname{rad}_{m t}(G) \leq \operatorname{diam}_{m t}(G)$.

Theorem 2.11. For each pair a, b of positive integers with $2 \leq a \leq b$, there exists a connected graph G with $\operatorname{rad}_{m t}(G)=a, \operatorname{diam}_{m t}(G)=b$.

Proof. For $a=b \geq 2$, the cycle C_{a+2} has the desired property. For $2 \leq a<b$, let $C: x_{1}, x_{2}, \ldots, x_{b-a+3}, x_{1}$ be a cycle of order $b-a+3$ and let $P: y_{1}, y_{2}, \ldots, y_{a-1}$ be a path of order $a-1$. Let G be the graph obtained from C and P by joining the vertex y_{1} of P with the vertices x_{1} and x_{2} of C, and joining the vertex x_{1} with every vertex $x_{i}(3 \leq i \leq b-a+2)$ in C. The graph G is shown in Figure 2.8.

It is clear that $d_{m t}\left(x_{1}, y_{a-1}\right)=a$ and $d_{m t}\left(x_{1}, x\right) \leq a$ for any vertex x in G and so $e_{m t}\left(x_{1}\right)=a$. Similarly, it is clear that $d_{m t}\left(x_{b-a+3}, y_{a-1}\right)=b$ and $d_{m t}\left(x_{b-a+3}, x\right) \leq b$ for any vertex x in G and so $e_{m t}\left(x_{b-a+3}\right)=b$. Also, it is clear that $a \leq e_{m t}(x) \leq b$ for any vertex x in G. Hence $\operatorname{rad}_{m t}(G)=a$ and $\operatorname{diam}_{m t}(G)=b$.

Figure 2.8: G

3. Mt-center and Mt-periphery

Definition 3.1. A vertex v in a connected graph G is called a mt-central vertex if $e_{m t}(v)=\operatorname{rad}_{m t}(G)$ and the subgraph induced by the mt-central vertices of G is the mt-center $C_{m t}(G)$ of G. A vertex v in a connected graph G is called a mt-peripheral vertex if $e_{m t}(v)=\operatorname{diam}_{m t}(G)$ and the subgraph induced by the mt-peripheral vertices of G is the mt-periphery $P_{m t}(G)$ of G.

In [1], it is shown that every graph is the center of some connected graph and Chartrand et al. [2] proved that every graph is the detour center of some connected graph. Also, Santhakumaran et al. [6] proved that every graph is the monophonic center of some connected graph. Now, we have a similar theorem.

Theorem 3.2. Every graph is the mt-center of some connected graph.
Proof. Let G be a graph. We prove this theorem by considering two cases.

Case 1. $G=\overline{K_{n}}$.
Let H be the graph obtained from the graph G by adding the new edges $x y$ and $u v$, and joining every vertex of G with the vertices y and u. The graph H is shown in Figure 3.1. It is clear that $e_{m t}(z)=2$ if $z \in V(G)$, $e_{m t}(y)=e_{m t}(u)=3$ and $e_{m t}(x)=e_{m t}(v)=4$. Hence $V(G)$ is the set of all $m t$-central vertices of H and so $C_{m t}(H)=G$.

Figure 3.1: H

Case 2. $G \neq \overline{K_{n}}$.
Let $d=\max \left\{\operatorname{diam}_{m t}\left(G_{i}\right): G_{i}\right.$ is a component of $\left.G\right\}$. Let P_{1} : $x_{1}, x_{2}, \ldots, x_{d+1}$ and $P_{2}: y_{1}, y_{2}, \ldots, y_{d+1}$ be two copies of the path P of order $d+1$. Let H be the graph obtained from G, P_{1} and P_{2} by joining every vertex of G with x_{1} in P_{1} and y_{1} in P_{2}, and if G contains isolated vertices, say $z_{1}, z_{2}, \ldots, z_{k}$, then add two more vertices u and v, and join u with the vertices $z_{1}, z_{2}, \ldots, z_{k}$ and x_{1}, and join v with the vertices $z_{1}, z_{2}, \ldots, z_{k}$ and y_{1}. It is clear that $e_{m t}(x)=d+2$ if $x \in V(G)$ and $e_{m t}(x)>d+2$ if $x \in V(H)-V(G)$ in H. Hence $V(G)$ is the set of all $m t$-central vertices of H and so $C_{m t}(H)=G$. The graph in Figure 3.2 shows the construction of the graph H when $G=\overline{K_{2}} \cup P_{3} \neq \overline{K_{5}}$.

Figure 3.2: H
Now, we have the following observations for the $m t$-center of a graph which are similar to ordinary center, detour center, and monophonic center of a graph.

Observation 3.3. (i) The $m t$-center $C_{m t}(G)$ of every connected graph G is a subgraph of some block of G.
(ii) The mt-center of every tree is isomorphic to K_{1} or K_{2}.

Definition 3.4. A connected graph G is mt-self centered if $\operatorname{rad}_{m t}(G)=$ $\operatorname{diam}_{m t}(G)$.

Theorem 3.5. Every connected mt-self centered graph contains no cutvertex.

Proof. Since $m t$-center $C_{m t}(G)$ of any connected graph G is a subgraph of some block of G, no cut-vertex lies in the center $C_{m t}(G)$ of G. Hence, if G contains a cut-vertex, then G is not a $m t$-self centered graph. Thus, every connected $m t$-self centered graph contains no cut-vertex.

Since $1 \leq e_{m t}(x) \leq p-1$ for any vertex $x \in G$, we have $1 \leq \operatorname{rad}_{m t}(G) \leq$ $p-1$. The following theorem gives a characterisation result for $\operatorname{rad}_{m t}(G)=$ 1 or 2 with some conditions.

Theorem 3.6. Let G be a connected graph. Then
(i) G is $m t$-self centered graph with $\operatorname{rad}_{m t}(G)=1$ if and only if $G=K_{2}$.
(ii) G is $m t$-self centered graph with $\operatorname{rad}_{m t}(G)=2$ if and only if G is either $K_{p}(p \geq 3)$ or $K_{m, n}(m, n \geq 2)$.

Proof. (i) Let G be a $m t$-self centered graph with $\operatorname{rad}_{m t}(G)=1$. If $G \neq K_{2}$, then there exists a vertex, say x, in G such that $e_{m t}(x) \geq 2$. Since $\operatorname{rad}_{m t}(G)=1$, there exists a vertex, say y, in G such that $e_{m t}(y)=1$. Hence $e_{m t}(x) \neq e_{m t}(y)$ and so G is not a $m t$-self centered graph, which is a contradiction.

Conversely, if $G=K_{2}$, then $e_{m t}(x)=1$ for any vertex x in K_{2} and so $\operatorname{rad}_{m t}(G)=1$ and G is a $m t$-self centered graph.
(ii) Let G be a $m t$-self centered graph with $\operatorname{rad}_{m t}(G)=2$. Then by Theorem 3.5, G has no cut-vertices. If $p=3$, then $G=K_{3}$ has the desired property. Now, let $p \geq 4$. If $G=K_{p}$, then G has the desired property. If $G \neq K_{p}$, then we claim that $G=K_{m, n}(m, n \geq 2)$. If there exists a vertex, say x, in G with $e_{m t}(x) \geq 3$, then $\operatorname{rad}_{m t}(G) \geq 3$ or G is not a $m t$-self centered graph with $\operatorname{rad}_{m t}(G)=2$, which is a contradiction. Similarly, if there exists a vertex, say x, in G with $e_{m t}(x)=1$, then $\operatorname{rad}_{m t}(G)=1$, which is a contradiction. Hence $e_{m t}(x)=2$ for any vertex x in G. Let u be a vertex in G and let U be the set of all vertices of G with even distance from u and let $W=V(G)-U$. Let $u \in U$ and $w \in W$. If $u w$ is not an edge in G, then since G is connected with $p \geq 4$, there exists an $u-w m t$-path with $d_{m t}(u, w) \geq 3$. Hence $e_{m t}(u) \geq 3$, which is a contradiction. Now we claim that no two vertices in U are adjacent and also no two vertices in W are adjacent in G. Let $u_{1}, u_{2} \in U$ and $u_{1} u_{2}$ is an edge in G. Since $G \neq K_{p}$, there exist two vertices x and y in G with $x y$ not an edge in G. Then either $x, y \in U$ or $x, y \in W$. If $x, y \in U$, then either $x \notin\left\{u_{1}, u_{2}\right\}$ or $y \notin\left\{u_{1}, u_{2}\right\}$. If $x \notin\left\{u_{1}, u_{2}\right\}$, then x, w_{i}, u_{1}, u_{2} is an $x-u_{2} m t$-path, for some w_{i} in W, and so $e_{m t}(x)=3$, which is a contradiction. Similarly, if $y \notin\left\{u_{1}, u_{2}\right\}$, then
y, w_{i}, u_{1}, u_{2} is an $y-u_{2} m t$-path, for some w_{i} in W, and so $e_{m t}(y)=3$, which is a contradiction. If $x, y \in W$, then x, u_{1}, u_{2}, y is an $x-y m t$-path and so $e_{m t}(x)=3$, which is a contradiction. Hence $G=K_{m, n}$ with the partite sets U and W. Since G has no cut-vertices, we have m and n are at least 2. The converse is clear.

Theorem 3.7. Let G be a connected graph of order p. Then $\operatorname{rad}_{m t}(G)=$ $p-1$ if and only if $G=K_{2}$ or K_{3}.

Proof. Let $\operatorname{rad}_{m t}(G)=p-1$. Then $\operatorname{diam}_{m t}(G)=p-1$ and so G is a $m t$-self centered graph. By Theorem $3.5, G$ has no cut-vertex. If $p=2$, then $G=K_{2}$ has the desired property and if $p=3$, then $G=K_{3}$ has the desired property. Now, let $p \geq 4$. Since G is a $m t$-self centered graph with $\operatorname{rad}_{m t}(G)=p-1, e_{m t}(x)=p-1$ for every vertex x in G. Let y be a vertex in G with $d_{m t}(x, y)=p-1$, and let P be an $x-y m t$-path with length $d_{m t}(x, y)$. Since every vertex of G lies on P and G has no cut-vertex, we have $x y$ is an edge in G. Hence $P \cup\{x y\}$ is a hamiltonian cycle of length at least 4 in G and so P is not an $x-y m t$-path in G, which is a contradiction. Hence G is either K_{2} or K_{3}. Converse is clear.

Theorem 3.8. Let G be a non-trivial connected graph. Then $\operatorname{rad}_{m t}(G)=$ 1 if and only if G is a star.

Proof. Let $\operatorname{rad}_{m t}(G)=1$. Then there exists a vertex, say x, in G such that $e_{m t}(x)=1$. If G is not a tree, then G contains a cycle, say C, of order at least 3. If x is a vertex of C, then there exists a vertex y in C such that $d_{m t}(x, y) \geq 2$ and so $e_{m t}(x) \geq 2$, which is a contradiction. Similarly, if x is not a vertex in C, then there exists a vertex y in C such that $d_{m t}(x, y) \geq 2$ and so $e_{m t}(x) \geq 2$, which is a contradiction. Hence G is a tree. If G is not a star, then $e_{m t}(x) \geq 2$ for any vertex x in G and so $\operatorname{rad}_{m t}(G) \geq 2$, which is a contradiction. Hence G is a star. Converse is clear.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood city, CA, 1990.
[2] G. Chartrand, H. Escuadro and P. Zhang, Detour Distance in Graphs, J.Combin. Math. Combin. Comput., Vol. 53, pp. 75-94, 2005.
[3] F. Harary, Graph Theory, Addison-Wesley, 1969.
[4] P. A. Ostrand, Graphs with Specified Radius and Diameter, Discrete Mathematics, Vol. 4, pp. 71-75, 1973.
[5] A. P. Santhakumaran and P. Titus, Monophonic Distance in Graphs, Discrete Mathematics, Algorithms and Applications, Vol. 3, No. 2, pp. 159-169, 2011.
[6] A. P. Santhakumaran and P. Titus, A Note on "Monophonic Distance in Graphs", Discrete Mathematics, Algorithms and Applications, Vol. 4, No. 2, 2012, DOI: 10.1142 s1793830912500188.

P. Titus

Department of Mathematics
University College of Engineering Nagercoil
Anna University, Tirunelveli Region
Nagercoil-629 004,
India
e-mail: titusvino@yahoo.com
Corresponding author
J. Ajitha Fancy

Department of Mathematics
Scott Christian College (Autonomous)
Nagercoil-629 003, India
e-mail: ajithafancy@gmail.com
and
A. P. Santhakumaran

Former Professor,
Department of Mathematics
Hindustan Institute of Technology and Science
Chennai-603 103,
India
e-mail: apskumar1953@gmail.com

