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Abstract

A path u1, u2, ..., un in a connected graph G such that for i, j with
j ≥ i+ 3, there does not exist an edge uiuj, is called a monophonic-
triangular path or mt-path. The monophonic-triangular distance or
mt-distance dmt(u, v) from u to v is defined as the length of a longest
u − v mt-path in G. The mt-eccentricity emt(v) of a vertex v in
G is defined as the maximum mt-distance between v and other ver-
tices in G. The mt-radius radmt(G) is defined as the minimum mt-
eccentricity among the vertices of G and the mt-diameter diammt(G)
is defined as the maximum mt-eccentricity among the vertices of G.
It is shown that radmt(G) ≤ diammt(G) for every connected graph
G. Some realization and characterization results are given based on
mt-radius, mt-diameter, mt-center and mt-periphery of a connected
graph.
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1. Introduction

In this paper, a non-trivial simple finite undirected connected graph G with
vertex set V and edge set E is considered. Let p and q be the order and
size of G, respectively. We refer [1, 3] for basic definitions and results.
The distance between two vertices u and v in G is defined as the minimum
length of a u− v path in G and it is denoted by d(u, v). It is known that
the distance d is a metric on V .

The eccentricity e(v) of a vertex v in a connected graph G is defined
as the distance between v and a vertex farthest from v in G. The radius
rad(G) is defined as the minimum eccentricity among the vertices of G
and the diameter diam(G) is defined as the maximum eccentricity among
the vertices of G. If e(v) = rad(G), then v is a central vertex and if
e(v) = diam(G), then v is a peripheral vertex. The center C(G) of G is
the subgraph induced by the central vertices of G and periphery P (G) of
G is the subgraph induced by the peripheral vertices of G.

In 2005, Chartrand et al. [2] introduded a new distance viz. detour
distance based on a longest path joining any two vertices in a connected
graph. The detour distance between two vertices u and v in G is defined
as the maximum length of a u− v path in G and it is denoted by D(u, v).
A longest u − v path is called a u − v detour. It is also known that the
detour distance D is a metric on V . The detour eccentricity eD(v) of a
vertex v in a connected graph G is defined as the maximum detour dis-
tance between u and other vertices in G. The detour radius radD(G) is
defined as the minimum detour eccentricity among the vertices of G and
the detour diameter diamD(G) is defined as the maximum detour eccen-
tricity among the vertices of G. If eD(v) = radD(G), then v is a detour
central vertex and if eD(v) = diamD(G), then v is a detour peripheral
vertex. The detour center CD(G) of G is defined as the subgraph in-
duced by the detour central vertices of G and detour periphery PD(G) of
G is defined as the subgraph induced by the detour peripheral vertices of G.

A chord of a path P is an edge joining two non-adjacent vertices of P .
A chordless path is called a monophonic path. In 2012, Santhakumaran
et al. [5] introduced a new distance based on a longest monophonic path
joining any two vertices in a connected graph and further investigated in
[6]. The monophonic distance between any two vertices u and v in G
is defined as the maximum length of a u − v monophonic path in G and
it is denoted by dm(u, v). The usual distance and the detour distance
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are metrics on the vertex set of a connected graph, whereas the mono-
phonic distance is not a metric on the vertex set of a connected graph. The
monophonic eccentricity em(v) of a vertex v in a connected graph G is de-
fined as the maximum monophonic distance between v and other vertices
in G. The monophonic radius radm(G) is defined as the minimum mono-
phonic eccentricity among the vertices of G and the monophonic diameter
diamm(G) is defined as the maximum monophonic eccentricity among the
vertices of G. If em(v) = radm(G), then v is a monophonic central vertex
and if em(v) = diamm(G), then v is a monophonic peripheral vertex. The
monophonic center Cm(G) of G is defined as the subgraph induced by the
monophonic central vertices of G and monophonic periphery Pm(G) of G
is defined as the subgraph induced by the monophonic peripheral vertices
of G.

The concept of distance (usual distance) in graphs is a major component
in graph theory with its centrality and convexity concepts having numerous
applications to real life problems. There are several interesting applications
of these concepts to facility location in real life situations. The paths intro-
duced here are monophonic-triangular so that intervention by hackers or
rioters is not possible to the respective facilities provided. In fact, the two
major applications provided by this path with security and protection are
service facility and emergency facility in real life situations of a large city
network. Further, as monophonic-triangular paths are secured and longer
than geodesics, it is advantageous to more customers in providing protected
service of facility locations.

In this article, we introduce the monophonic-triangular distance in a
connected graph and based on this new distance, two new graph invari-
ants known as mt-radius and mt-diameter of a graph are introduced and
investigated. Also, the relation between mt-radius and mt-diameter with
(detour or monophonic) radius and (detour or monophonic) diameter are
given. Moreover, realization theorems for these graph parameters are pre-
sented. Throughout this article, G denotes a non-trivial simple connected
graph.

2. Monophonic-triangular Distance

Definition 2.1. A path u1, u2, ..., un in G such that for i, j with j ≥ i+3,
there does not exist an edge uiuj , is called a monophonic-triangular path
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or mt-path. The monophonic-triangular distance or mt-distance dmt(u, v)
from u to v is defined as the length of a longest u− v mt-path in G.

Example 2.2. Consider the graph G given in Figure 2.1. For the vertices
v1 and v7, P1 : v1, v5, v7 is a v1 − v7 geodesic, P2 : v1, v5, v2, v3, v4, v8, v7 is
a v1 − v7 detour, P3 : v1, v2, v8, v7 is a longest v1 − v7 monophonic path,
P4 : v1, v2, v3, v8, v7 is a longest v1 − v7 mt-path and so d(v1, v7) = 2,
D(v1, v7) = 6, dm(v1, v7) = 3, and dmt(v1, v7) = 4, respectively. Thus, the
mt-distance dmt is different from the known distances such as d, D and dm
in graphs.

Figure 2.1: G

The usual distance d and the detour distance D are metrics on V ,
and the monophonic distance dm is not a metric on V . Now, it is seen
that the mt-distance dmt is also not a metric on V . For the cycle C5 :
v1, v2, v3, v4, v5, v1, dmt(v1, v2) = 1, dmt(v2, v3) = 1 and dmt(v1, v3) = 3.
Hence dmt(v1, v3) > dmt(v1, v2) + dmt(v2, v3) and so the triangle inequality
is not satisfied for the mt-distance.

Note Amt-path P is either a monophonic path or the subgraph induced by
P contains only triangles. Hence a monophonic path is obviously amt-path
and the converse need not be true. For the graph G given in Figure 2.1,
P4 : v1, v2, v3, v8, v7 is a v1−v7 mt-path, but P4 is not a v1−v7 monophonic
path.

The following result is trivial from the respective definitions.

Remark 2.3. For any two vertices x and y in a connected graph G of
order p, 0 ≤ d(x, y) ≤ dm(x, y) ≤ dmt(x, y) ≤ D(x, y) ≤ p − 1. The
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bounds in this chain inequalities are sharp. In any non-trivial connected
graph G, if x = y, then d(x, y) = dm(x, y) = dmt(x, y) = D(x, y) = 0. In
a non-trivial path P on p vertices, if x and y are end vertices of P , then
d(x, y) = dm(x, y) = dmt(x, y) = D(x, y) = p− 1. Also, all the inequalities
in this chain are strict. For the graph G given in Figure 2.1, d(v1, v7) = 2,
dm(v1, v7) = 3, dmt(v1, v7) = 4, D(v1, v7) = 6, p = 8 and so 0 < d(v1, v7) <
dm(v1, v7) < dmt(v1, v7) < D(v1, v7) < p− 1.

Result 2.4. Let x and y be any two vertices in a connected graph G of
order p. Then
(i)dmt(x, y) = 0 if and only if x = y.
(ii)dmt(x, y) = 1 if and only if xy is either a cut edge or an edge in a
smallest cycle of order at least 4.

Result 2.5. For every pair of distinct vertices x and y in G, dmt(x, y) = 2
if and only if G = Kp (p ≥ 3). For any two vertices x and y in G, d(x, y) =
dm(x, y) = dmt(x, y) = D(x, y) if and only if G is a tree. It is possible,
however, that for a connected graph, which is not a tree, there exists a pair
of vertices x and y such that d(x, y) = dm(x, y) = dmt(x, y) = D(x, y). For
example, if x and y are antipodal vertices in an even cycle C2n(n ≥ 2),
d(x, y) = dm(x, y) = dmt(x, y) = D(x, y) = n.

Definition 2.6. Let G be a connected graph. The mt-eccentricity emt(v)
of a vertex v in G is emt(v) = max{dmt(v, x) : x ∈ V }. The mt − radius,
radmt(G) of G is radmt(G) = min{emt(v) : v ∈ V } and the mt−diameter,
diammt(G) of G is diammt(G) = max{emt(v) : v ∈ V }. A vertex y in G is
a mt− eccentric vertex of a vertex x in G if emt(x) = dmt(x, y).

Example 2.7. For the graph G given in Figure 2.1, the eccentricity, mono-
phonic eccentricity, mt-eccentricity, detour eccentricity and the set of all
mt-eccentric vertices of every vertex of G is given in Table 2.1.
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Table 2.1.

Note Since d(u, v) = dm(u, v) = dmt(u, v) = D(u, v) for any two vertices
u and v in a tree T , it follows that rad(T ) = radm(T ) = radmt(T ) =
radD(T ) and diam(T ) = diamm(T ) = diammt(T ) = diamD(T ). Also,
since dmt(u, v) = 2 for any two distinct vertices of a complete graph Kp,
radmt(Kp) = diammt(Kp) = 2. Also, Table 2.2 shows the mt-radius and
the mt-diameter of some standard graphs.

Table 2.2.

Since 0 ≤ d(x, y) ≤ dm(x, y) ≤ dmt(x, y) ≤ D(x, y) ≤ p−1, the following
proposition is trivial.

Proposition 2.8. Let G be a connected graph. Then
(i)e(x) ≤ em(x) ≤ emt(x) ≤ eD(x) for any vertex x in G.
(ii)rad(G) ≤ radm(G) ≤ radmt(G) ≤ radD(G).
(iii)diam(G) ≤ diamm(G) ≤ diammt(G) ≤ diamD(G).

Marisol Martínez
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Theorem 2.9. For any two vertices x and y in G, dm(x, y) ≤ dmt(x, y) ≤
2dm(x, y).

Proof. Since any monophonic path is a mt-path and dmt(x, y) is the
length of a longest mt-path, we have dm(x, y) ≤ dmt(x, y). Now, claim that
dmt(x, y) ≤ 2dm(x, y). If not, there is an x − y mt-path, say P , of length
l > 2dm(x, y). Then by the definition of mt-path, the induced subgraph
hV (P )i of P contains at most l

2 triangles. Form a new path Q from P
by replacing the common edges of both P and the triangles in hV (P )i by
the remaining edge of the triangles in hV (P )i. It is clear that Q is an
x− y monophonic path of length at least l − l

2 =
l
2 > dm(x, y), which is a

contradiction. Hence dmt(x, y) ≤ 2dm(x, y). 2

Theorem 2.10. (a) For integers a, b, c and d with 3 ≤ a < b < c ≤ d and
c ≤ 2b, there is a connected graph G such that rad(G) = a, radm(G) = b,
radmt(G) = c and radD(G) = d.
(b) For integers a, b, c and d with 3 ≤ a < b < c ≤ d and c ≤ 2b, there is a
connected graph G such that diam(G) = a, diamm(G) = b, diammt(G) = c
and diamD(G) = d.

Proof. (a) This part is proved by considering two cases.

Case 1. b+ 1 ≤ c ≤ 2b− a+ 3.
Let R1 : x1, x2, . . . , xa−1 and R2 : x

0
1, x

0
2, . . . , x

0
a−1 be two copies of the

path Pa−1 of order a−1, letR3 : y1, y2, . . . , yb−a+3 andR4 : y
0
1, y

0
2, . . . , y

0
b−a+3

be two copies of the path Pb−a+3 of order b−a+3, and let R5 be the com-
plete graph of order d − c + 3 with V (R5) = {z1, z2, . . . , zd−c+3}. Let H
be the graph obtained from R1, R2, R3, R4 and R5 by (i) identifying the
vertices z1 in R5 and y1 in R3; also identifying the vertices zd−c+3 in R5
and y

0
1 in R4, (ii) identifying the vertices yb−a+3 in R3 and x2 in R1; and

identifying the vertices y
0
b−a+3 in R4 and x

0
2 in R2, and (iii) joining each

vertex yi (2 ≤ i ≤ b− a+2) in R3 and x1 in R1; and joining each vertex y
0
i

(2 ≤ i ≤ b− a+ 2) in R4 and x
0
1 in R2. Let G be the graph obtained from

H by adding 2(c− b− 1) new vertices u1, u2, . . . , uc−b−1, u
0
1, u

0
2, . . . , u

0
c−b−1

and joining each ui with the vertices x1, yi and yi+1 (1 ≤ i ≤ c− b− 1) and
joining each u

0
i with the vertices x

0
1, y

0
i and y

0
i+1 (1 ≤ i ≤ c − b − 1). The

graph G is shown in Figure 2.3.

It is clear that
P1 : z2, z1, x1, x2, . . . , xa−1; P2 : z2, z1, y2, y3, . . . , yb−a+2, x2, x3, . . . , xa−1;
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P3 : z2, zd−c+3, z1, u1, y2, u2, y3, u3, y4, . . . , yc−b−1, uc−b−1, yc−b, yc−b+1,
. . . , yb−a+2, x2, x3, . . . , xa−1 and P4 : z2, z3, z4, . . . , zd−c+3, z1, u1, y2, u2, y3, u3, y4,
. . . , yc−b−1, uc−b−1, yc−b, yc−b+1, . . . , yb−a+2, x2, x3, . . . , xa−1
are a z2−xa−1 geodesic, a longest z2−xa−1 monophonic, a longest z2−xa−1
mt-path, and a z2−xa−1 detour path, respectively. Hence d(z2, xa−1) = a,
dm(z2, xa−1) = b, dmt(z2, xa−1) = c and D(z2, xa−1) = d. Also, it is easily
verified that d(z2, t) ≤ a, dm(z2, t) ≤ b, dmt(z2, t) ≤ c, D(z2, t) ≤ d for any
vertex t in G and so e(z2) = a, em(z2) = b, emt(z2) = c and eD(z2) = d.
In a similar way we can verify that e(v) = a if v ∈ V (R5); e(v) > a if
v ∈ V (G)−V (R5), em(v) = b if v ∈ V (R5); em(v) > b if v ∈ V (G)−V (R5),
emt(v) = c if v ∈ V (R5); emt(v) > c if v ∈ V (G) − V (R5), eD(v) = d if
v ∈ V (R5); eD(v) > d if v ∈ V (G) − V (R5). It follows that rad(G) = a,
radm(G) = b, radmt(G) = c and radD(G) = d.

Figure 2.3: G

Marisol Martínez
2-3




Monophonic-triangular distance in graphs 283

Case 2. 2b− a+ 4 ≤ c ≤ 2b.

Let G be the graph obtained from H by adding 2(c − b − 1) new ver-
tices u1, u2, . . . , uc−b−1,−u

0
1, u

0
2, . . . , u

0
c−b−1 and (i) joining each ui (1 ≤ i ≤

b− a+ 2) with the vertices x1, yi and yi+1 (1 ≤ i ≤ b− a+ 2), (ii) joining
each ui (b − a + 3 ≤ i ≤ c − b − 1) with the vertices xi−b+a−1 and xi−b+a
(b − a + 3 ≤ i ≤ c − b − 1), (iii) joining each u

0
i (1 ≤ i ≤ b − a + 2)

with the vertices x
0
1, y

0
i and y

0
i+1 (1 ≤ i ≤ b − a + 2), (iv) joining each

u
0
i (b − a + 3 ≤ i ≤ c − b − 1) with the vertices x

0
i−b+a−1 and x

0
i−b+a

(b− a+ 3 ≤ i ≤ c− b− 1). The graph G is shown in Figure 2.4.

It is clear that
P1 : z2, z1, x1, x2, . . . , xa−1; P2 : z2, z1, y2, y3, . . . , yb−a+2, x2, x3, . . . , xa−1;
P3 : z2, zd−c+3, z1, u1, y2, u2, y3, u3, y4, . . . , yb−a+2, ub−a+2, x2, ub−a+3, x3,
ub−a+4, x4, . . . , xc−2b+a−2, uc−b−1, xc−2b+a−1, xc−2b+a, xc−2b+a+1, . . . , xa−1, and
P4 : z2, z3, z4, . . . , zd−c+3, z1, u1, y2, u2, y3, u3, y4, . . . , yb−a+2, ub−a+2, x2, ub−a+3,
x3, ub−a+4, x4, . . . , xc−2b+a−2, uc−b−1, xc−2b+a−1, xc−2b+a, xc−2b+a+1, . . . , xa−1
are a z2−xa−1 geodesic, a longest z2−xa−1 monophonic, a longest z2−xa−1
mt-path, and a z2−xa−1 detour path, respectively. Hence d(z2, xa−1) = a,
dm(z2, xa−1) = b, dmt(z2, xa−1) = c and D(z2, xa−1) = d. Also, it is eas-
ily verified that d(z2, t) ≤ a, dm(z2, t) ≤ b, dmt(z2, t) ≤ c, D(z2, t) ≤ d
for any vertex t in G and so e(z2) = a, em(z2) = b, emt(z2) = c and
eD(z2) = d. We can similarly verify that e(v) = a if v ∈ V (R5); e(v) > a if
v ∈ V (G)−V (R5), em(v) = b if v ∈ V (R5); em(v) > b if v ∈ V (G)−V (R5),
emt(v) = c if v ∈ V (R5); emt(v) > c if v ∈ V (G) − V (R5), eD(v) = d if
v ∈ V (R5); eD(v) > d if v ∈ V (G) − V (R5). It follows that rad(G) = a,
radm(G) = b, radmt(G) = c and radD(G) = d.
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Figure 2.4: G

(b) This part is proved by considering two cases.

LetR1 : x1, x2, . . . , xa−1 be a path of order a−1, letR2 : y1, y2, . . . , yb−a+3
be a path of order b − a + 3 and let R3 be the complete graph of order
d− c+ 3 with V (R3) = {z1, z2, . . . , zd−c+3}. Let H be the graph obtained
from R1, R2 and R3 by (i) identifying the vertices z1 in R3 and y1 in R2;
(ii) identifying the vertices yb−a+3 in R2 and x2 in R1; and (iii) joining
each vertex yi (2 ≤ i ≤ b− a+ 2) in R2 and x1 in R1. Now, the graph G
is constructed as in the following two cases.

Case 1. b+ 1 ≤ c ≤ 2b− a+ 3.
Let G be the graph obtained from H by adding c− b− 1 new vertices

u1, u2, . . . , uc−b−1 and joining each ui (1 ≤ i ≤ c− b− 1) with the vertices
x1, yi and yi+1 (1 ≤ i ≤ c− b− 1). The graph G is shown in Figure 2.5.

Marisol Martínez
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Figure 2.5: G

Case 2. 2b− a+ 4 ≤ c ≤ 2b.
Let G be the graph obtained from H by adding c− b− 1 new vertices

u1, u2, . . . , uc−b−1 and joining each ui (1 ≤ i ≤ b− a+ 2) with the vertices
x1, yi and yi+1 (1 ≤ i ≤ b−a+2) and joining each ui (b−a+3 ≤ i ≤ c−b−1)
with the vertices xi−b+a−1 and xi−b+a (b−a+3 ≤ i ≤ c−b−1). The graph
G is shown in Figure 2.6.

In both cases, it is easily verified that e(v) = a if v ∈ (V (R3)− {z1}) ∪
{xa−1}; e(v) < a if v ∈ V (R2) ∪ (V (R1) − {xa−1}), em(v) = b if v ∈
(V (R3) − {z1}) ∪ {xa−1}; e(v) < b if v ∈ V (R2) ∪ (V (R1) − {xa−1}),
emt(v) = c if v ∈ (V (R3) − {z1}) ∪ {xa−1}; em(v) < c if v ∈ V (R2) ∪
(V (R1)−{xa−1}), and eD(v) = d if v ∈ (V (R3)−{z1})∪{xa−1}; e(v) < d if
v ∈ V (R2)∪(V (R1)−{xa−1}). It follows that diam(G) = a, diamm(G) = b,
diammt(G) = c and diamD(G) = d. 2

Marisol Martínez
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Figure 2.6: G

In any connected graph G, the radius and diameter are related by the
inequality rad(G) ≤ diam(G) ≤ 2rad(G), and the detour radius and detour
diameter are related by the inequality radD(G) ≤ diamD(G) ≤ 2radD(G).
But Santhakumaran et. al. [5] showed that this inequality is not true
in the case of monophonic distance. Similar to monophonic distance, this
inequality is not true in the case of mt-distance. For the graph G given in
Figure 2.7, it is clear that for any vertex v inG, 2 ≤ emt(v) ≤ 5, emt(x1) = 2
and emt(x2) = 5. It follows that radmt(G) = 2 and diammt(G) = 5 and so
diammt(G) > 2radmt(G).

Figure 2.7: G
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Ostrand [4] showed that every two positive integers a and b with a ≤
b ≤ 2a are realizable as the radius and diameter, respectively, of some
connected graph. Similarly, Chartrand et al. [2] showed that every two
positive integers a and b with a ≤ b ≤ 2a are realizable as the detour
radius and detour diameter, respectively, of some connected graph. Also,
Santhakumaran et al. [5] showed that every two positive integers a and
b with a ≤ b are realizable as the monophonic radius and monophonic
diameter, respectively, of some connected graph. Now we have a realization
theorem for radmt(G) ≤ diammt(G).

Theorem 2.11. For each pair a, b of positive integers with 2 ≤ a ≤ b,
there exists a connected graph G with radmt(G) = a, diammt(G) = b.

Proof. For a = b ≥ 2, the cycle Ca+2 has the desired property. For
2 ≤ a < b, let C : x1, x2, . . . , xb−a+3, x1 be a cycle of order b− a+3 and let
P : y1, y2, . . . , ya−1 be a path of order a− 1. Let G be the graph obtained
from C and P by joining the vertex y1 of P with the vertices x1 and x2 of
C, and joining the vertex x1 with every vertex xi (3 ≤ i ≤ b− a+ 2) in C.
The graph G is shown in Figure 2.8.

It is clear that dmt(x1, ya−1) = a and dmt(x1, x) ≤ a for any vertex x in
G and so emt(x1) = a. Similarly, it is clear that dmt(xb−a+3, ya−1) = b and
dmt(xb−a+3, x) ≤ b for any vertex x in G and so emt(xb−a+3) = b. Also, it
is clear that a ≤ emt(x) ≤ b for any vertex x in G. Hence radmt(G) = a
and diammt(G) = b. 2

Figure 2.8: G
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3. Mt-center and Mt-periphery

Definition 3.1. A vertex v in a connected graph G is called a mt-central
vertex if emt(v) = radmt(G) and the subgraph induced by the mt-central
vertices of G is the mt-center Cmt(G) of G. A vertex v in a connected
graph G is called a mt-peripheral vertex if emt(v) = diammt(G) and the
subgraph induced by the mt-peripheral vertices of G is the mt-periphery
Pmt(G) of G.

In [1], it is shown that every graph is the center of some connected graph
and Chartrand et al. [2] proved that every graph is the detour center of
some connected graph. Also, Santhakumaran et al. [6] proved that every
graph is the monophonic center of some connected graph. Now, we have a
similar theorem.

Theorem 3.2. Every graph is the mt-center of some connected graph.

Proof. Let G be a graph. We prove this theorem by considering two
cases.

Case 1. G = Kn.
Let H be the graph obtained from the graph G by adding the new edges

xy and uv, and joining every vertex of G with the vertices y and u. The
graph H is shown in Figure 3.1. It is clear that emt(z) = 2 if z ∈ V (G),
emt(y) = emt(u) = 3 and emt(x) = emt(v) = 4. Hence V (G) is the set of all
mt-central vertices of H and so Cmt(H) = G.

Figure 3.1: H
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Case 2. G 6= Kn.
Let d = max {diammt(Gi) : Gi is a component of G}. Let P1 :

x1, x2, . . . , xd+1 and P2 : y1, y2, . . . , yd+1 be two copies of the path P of
order d + 1. Let H be the graph obtained from G, P1 and P2 by joining
every vertex of G with x1 in P1 and y1 in P2, and if G contains isolated ver-
tices, say z1, z2, . . . , zk, then add two more vertices u and v, and join u with
the vertices z1, z2, . . . , zk and x1, and join v with the vertices z1, z2, . . . , zk
and y1. It is clear that emt(x) = d + 2 if x ∈ V (G) and emt(x) > d + 2 if
x ∈ V (H)−V (G) in H. Hence V (G) is the set of all mt-central vertices of
H and so Cmt(H) = G. The graph in Figure 3.2 shows the construction of
the graph H when G = K2 ∪ P3 6= K5. 2

Figure 3.2: H

Now, we have the following observations for the mt-center of a graph
which are similar to ordinary center, detour center, and monophonic center
of a graph.

Observation 3.3. (i) The mt-center Cmt(G) of every connected graph G
is a subgraph of some block of G.
(ii) The mt-center of every tree is isomorphic to K1 or K2.

Definition 3.4. A connected graph G is mt-self centered if radmt(G) =
diammt(G).

Theorem 3.5. Every connected mt-self centered graph contains no cut-
vertex.
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Proof. Since mt-center Cmt(G) of any connected graph G is a subgraph
of some block of G, no cut-vertex lies in the center Cmt(G) of G. Hence,
if G contains a cut-vertex, then G is not a mt-self centered graph. Thus,
every connected mt-self centered graph contains no cut-vertex. 2

Since 1 ≤ emt(x) ≤ p−1 for any vertex x ∈ G, we have 1 ≤ radmt(G) ≤
p−1. The following theorem gives a characterisation result for radmt(G) =
1 or 2 with some conditions.

Theorem 3.6. Let G be a connected graph. Then
(i) G is mt-self centered graph with radmt(G) = 1 if and only if G = K2.
(ii) G is mt-self centered graph with radmt(G) = 2 if and only if G is either
Kp (p ≥ 3) or Km,n (m,n ≥ 2).

Proof. (i) Let G be a mt-self centered graph with radmt(G) = 1. If
G 6= K2, then there exists a vertex, say x, in G such that emt(x) ≥ 2. Since
radmt(G) = 1, there exists a vertex, say y, in G such that emt(y) = 1.
Hence emt(x) 6= emt(y) and so G is not a mt-self centered graph, which is
a contradiction.

Conversely, if G = K2, then emt(x) = 1 for any vertex x in K2 and so
radmt(G) = 1 and G is a mt-self centered graph.

(ii) Let G be a mt-self centered graph with radmt(G) = 2. Then by
Theorem 3.5, G has no cut-vertices. If p = 3, then G = K3 has the desired
property. Now, let p ≥ 4. If G = Kp, then G has the desired property. If
G 6= Kp, then we claim that G = Km,n (m,n ≥ 2). If there exists a vertex,
say x, in G with emt(x) ≥ 3, then radmt(G) ≥ 3 or G is not a mt-self
centered graph with radmt(G) = 2, which is a contradiction. Similarly, if
there exists a vertex, say x, in G with emt(x) = 1, then radmt(G) = 1,
which is a contradiction. Hence emt(x) = 2 for any vertex x in G. Let u be
a vertex in G and let U be the set of all vertices of G with even distance
from u and letW = V (G)−U . Let u ∈ U and w ∈W . If uw is not an edge
in G, then since G is connected with p ≥ 4, there exists an u− w mt-path
with dmt(u,w) ≥ 3. Hence emt(u) ≥ 3, which is a contradiction. Now we
claim that no two vertices in U are adjacent and also no two vertices in W
are adjacent in G. Let u1, u2 ∈ U and u1u2 is an edge in G. Since G 6= Kp,
there exist two vertices x and y in G with xy not an edge in G. Then either
x, y ∈ U or x, y ∈ W. If x, y ∈ U, then either x /∈ {u1, u2} or y /∈ {u1, u2}.
If x /∈ {u1, u2}, then x,wi, u1, u2 is an x − u2 mt-path, for some wi in W,
and so emt(x) = 3, which is a contradiction. Similarly, if y /∈ {u1, u2}, then
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y,wi, u1, u2 is an y − u2 mt-path, for some wi in W, and so emt(y) = 3,
which is a contradiction. If x, y ∈ W, then x, u1, u2, y is an x− y mt-path
and so emt(x) = 3, which is a contradiction. Hence G = Km,n with the
partite sets U and W . Since G has no cut-vertices, we have m and n are
at least 2. The converse is clear. 2

Theorem 3.7. Let G be a connected graph of order p. Then radmt(G) =
p− 1 if and only if G = K2 or K3.

Proof. Let radmt(G) = p − 1. Then diammt(G) = p − 1 and so G is
a mt-self centered graph. By Theorem 3.5, G has no cut-vertex. If p = 2,
then G = K2 has the desired property and if p = 3, then G = K3 has the
desired property. Now, let p ≥ 4. Since G is a mt-self centered graph with
radmt(G) = p−1, emt(x) = p−1 for every vertex x in G. Let y be a vertex
in G with dmt(x, y) = p − 1, and let P be an x − y mt-path with length
dmt(x, y). Since every vertex of G lies on P and G has no cut-vertex, we
have xy is an edge in G. Hence P ∪{xy} is a hamiltonian cycle of length at
least 4 in G and so P is not an x−y mt-path in G, which is a contradiction.
Hence G is either K2 or K3. Converse is clear. 2

Theorem 3.8. Let G be a non-trivial connected graph. Then radmt(G) =
1 if and only if G is a star.

Proof. Let radmt(G) = 1. Then there exists a vertex, say x, in G such
that emt(x) = 1. If G is not a tree, then G contains a cycle, say C, of order
at least 3. If x is a vertex of C, then there exists a vertex y in C such that
dmt(x, y) ≥ 2 and so emt(x) ≥ 2, which is a contradiction. Similarly, if x is
not a vertex in C, then there exists a vertex y in C such that dmt(x, y) ≥ 2
and so emt(x) ≥ 2, which is a contradiction. Hence G is a tree. If G is not
a star, then emt(x) ≥ 2 for any vertex x in G and so radmt(G) ≥ 2, which
is a contradiction. Hence G is a star. Converse is clear. 2
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