Some inequalities between degree- and distance-based topological indices

Imran Nadeem
Government College of Science, Pakistan
Received: December 2022. Accepted: July 2023

Abstract

The first Zagreb index M_{1} and the second Zagreb index M_{2} belong to the class of degree-based topological indices which are defined for a simple connected graph \mathbf{G} with vertex set $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ as $M_{1}(\mathbf{G})=\sum_{i=1}^{n} d_{i}^{2}$ and $M_{2}(\mathbf{G})=\sum_{v_{i} \sim v_{j}} d_{i} d_{j}$, where d_{i} is the degree of vertex v_{i} and $v_{i} \sim v_{j}$ represents the adjacency of vertices v_{i} and v_{j} in \mathbf{G}. The eccentric connectivity index (ECI) is a distance based topological index, denoted by ξ^{c}, is defined as $\xi^{c}(\mathbf{G})=\sum_{i=1}^{n} \varepsilon_{i} d_{i}$, where ε_{i} is the eccentricity of v_{i} in \mathbf{G}. The aim of this paper is to derive the inequalities between ECI and the Zagreb indices. Moreover, we establish the inequalities between some variants of ECI and the Zagreb indices.

Keyword: Degree (of vertex), eccentricity (of vertex), Zagreb indices, eccentricity-based topological indices.

Mathematics Subject Classification: 05C07; 05C35; 92E10.

1. Introduction

All the graphs concerned in this paper are finite, undirected and simple. Let \mathbf{G} be a graph with vertex set $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $E=E(\mathbf{G})$, where $n=|V|$ and $m=|E|$ are known as order and size of \mathbf{G}, respectively. The minimum number of edges lying in the paths connecting the vertices v_{i} and v_{j} is known as distance between them and is represented by $d(i, j)$. If $d(i, j)=1$, then we write $v_{i} \sim v_{j}$. The eccentricity ε_{i} of vertex $v_{i} \in V$ is defined as $\varepsilon_{i}=\max _{v_{j} \in V}\{d(i, j)\}$. Then, the radius r and the diameter d of \mathbf{G} is defined as $r=\min _{v_{i} \in V}\left\{\varepsilon_{i}\right\}$ and $d=\max _{v_{i} \in V}\left\{\varepsilon_{i}\right\}$, respectively. Assume that the sequence of vertex eccentricities $\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right)$ satisfies $d=\varepsilon_{1} \geq \varepsilon_{2} \geq \cdots \geq \varepsilon_{n}=r>0$. If this sequence is constant, i.e., $\varepsilon_{i}=r=d$, for every vertex v_{i} in \mathbf{G}, then \mathbf{G} is named as a self-centered graph. For a given vertex v_{i}, let $N\left(v_{i}\right)=\left\{v_{j} \in V \mid d(i, j)=1\right\}$, then the degree d_{i} of vertex v_{i}, is defined as $d_{i}=\left|N\left(v_{i}\right)\right|$. Also, the minimum degree δ and maximum degree Δ of \mathbf{G} is defined as $\delta=\min _{v_{i} \in V}\left\{d_{i}\right\}$ and $\Delta=\max _{v_{i} \in V}\left\{d_{i}\right\}$, respectively. We assume that the sequence $\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ satisfies $\Delta=d_{1} \geq d_{2} \geq \cdots \geq d_{n}=\delta>0$. If this sequence is constant, i.e., $d_{i}=\delta=\Delta$, for every vertex v_{i} in \mathbf{G}, then \mathbf{G} is termed a regular graph. Further, for a given vertex v_{i}, we define $S_{i}=\sum_{v_{i} \sim v_{j}} d_{j}$. It is easy to observe that $\delta^{2}=\min _{v_{i} \in V}\left\{S_{i}\right\}$ and $\Delta^{2}=\max _{v_{i} \in V}\left\{S_{i}\right\}$.

Graph theory has contributed to the development of chemistry by providing a variety of valuable mathematical tools, like as topological indices [28]. Molecular structures of molecules and chemical compounds are usually modeled by graphs. A unique number that is calculated from the parameters of a graph, is declared a topological index (TI) if it correlates with some molecular property of the corresponding molecule/chemical compound. TIs are the conclusive results of a mathematical and logical procedure that converts the chemical phenomena hidden inside a molecule's symbolic representation into a useful number, and they have been shown to be useful in modelling a variety of physicochemical properties in various QSAR and QSPR studies. [8, 27].

Topological indices are generally classified into three types: degreebased indices [4, 16, 20], distance-based indices [3, 24] and spectrum-based indices [17, 22, 23]. The Zagreb indices (ZIs) are among the oldest, best known and most studied vertex degrees-based topological indices which
were put forward in [14]. Later, they were enhanced in [15] and utilized in the modeling of structure-property relationship [27]. The first and second Zagreb indices $M_{i}(\mathbf{G})(i=1,2)$ of G are respectively defined as:

$$
M_{1}(\mathbf{G})=\sum_{i=1}^{n} d_{i}^{2} \text { and } M_{2}(\mathbf{G})=\sum_{v_{i} \sim v_{j}} d_{i} d_{j} .
$$

Eccentricity-based topological indices (ETIs) relate to the class of distancebased topological indices which can be defined in three ways, as follows:

$$
\begin{align*}
& \operatorname{ETI}_{1}(\mathbf{G})=\sum_{i=1}^{n} F\left(\varepsilon_{i}, d_{i}\right), \tag{1.1}\\
& \operatorname{ETI}_{2}(\mathbf{G})=\sum_{i=1}^{n} H\left(\varepsilon_{i}, S_{i}\right), \tag{1.2}
\end{align*}
$$

and

$$
\begin{equation*}
E T I_{3}(\mathbf{G})=\sum_{i=1}^{n} Z\left(\varepsilon_{i}\right) \tag{1.3}
\end{equation*}
$$

where F, H and Z are suitably selected functions and the sum runs over all vertices of \mathbf{G}.

Sharma et al. [26] proposed a classical ETI, named as eccentric connectivity index (ECI), denoted as ξ^{c}, and is defined by taking the function $F=\varepsilon_{i} d_{i}$ in 1.1. From the following fact: For every function $\theta:[1, \infty) \rightarrow R$, we have

$$
\sum_{v_{i} \sim v_{j}}\left(\theta\left(v_{i}\right)+\theta\left(v_{j}\right)\right)=\sum_{i=1}^{n} d_{i} \theta\left(v_{i}\right),
$$

we can write ECI as follows:

$$
\xi^{c}(\mathbf{G})=\sum_{i=1}^{n} \varepsilon_{i} d_{i}=\sum_{v_{i} \sim v_{j}}\left(\varepsilon_{i}+\varepsilon_{j}\right) .
$$

ECI has been successfully utilized to build a variety of mathematical models for the prediction of biological activities of diverse nature [13, 24, 25]. Another version of ECI was proposed by Gupta et al. [12], named as connective eccentric index (CEI), represented by $\xi^{c e}$, and is formulated by choosing the function $F=\frac{d_{i}}{\varepsilon_{i}}$ in 1.1. A modified version of ECI was proposed in
[1], called the modified eccentric connectivity index (MECI) which is represented by ξ_{c} and is defined by setting the function $H=\varepsilon_{i} S_{i}$ in 1.2. The Ediz eccentric connectivity index (EECI) was put forward in [10]. This index is symbolized by ${ }^{E} \zeta^{c}$ and is defined by selecting the function $H=\frac{S_{i}}{\varepsilon_{i}}$ in 1.2. Another version of ECI based on vertex eccentricities was presented in [11], called the total eccentricity index (TEI). This index is represented by ζ and is defined by taking the function $Z=\varepsilon_{i}$ in 1.3. Similar to this index, Dankelmann et al. [5] proposed the average eccentricity index (AEI) which is symbolized by avec and is defined by selecting the function $Z=\frac{1}{n} \varepsilon_{i}$ in 1.3.

Das and Trinajstić [6] studied the comparison between ECI and ZIs. They investigated that for a tree T with $\Delta \leq 4, \xi^{c}(T) \geq M_{i}(T), i=1,2$. Further, they proved that for a graph G with $\Delta \leq 4$ and $d \geq 7, \xi^{c}(\mathbf{G})>M_{1}(\mathbf{G})$. Recently, the inequalities between some ETIs and some degree-based topological indices (other than the ZIs), have been put forward in [19]. In this paper, we derive the inequalities between some ETIs such as ECI, CEI, MECI, and EECI and the ZIs.

2. Some known inequalities

We will review some analytic inequalities for real number sequences before moving on to the rest of the paper.
The following result may be found in [2].
Theorem 1. Let p_{i} and q_{i} be sequences of positive real numbers, then for real constants p, q, P, and Q, we have

$$
\begin{equation*}
\left|n \sum_{i=1}^{n} p_{i} q_{i}-\sum_{i=1}^{n} p_{i} \sum_{i=1}^{n} q_{i}\right| \leq \tau(n)(P-p)(Q-q) \tag{2.1}
\end{equation*}
$$

where $p \leq p_{i} \leq P$ and $q \leq q_{i} \leq Q$, for each $i, 1 \leq i \leq n$, and $\tau(n)=$ $n\left\lceil\frac{n}{2}\right\rceil\left(1-\frac{1}{n}\left\lceil\frac{n}{2}\right\rceil\right)$. Further, equality attains if and only if $p_{1}=p_{2}=\cdots=$ p_{n} and $q_{1}=q_{2}=\cdots=q_{n}$.

We find the following Diaz-Metcalf inequality in [9].
Lemma 1. Let a_{i} and b_{i} be real numbers for which t and T are real constants such that $t a_{i} \leq b_{i} \leq T a_{i}$ holds for each $i(1 \leq i \leq n)$. Then

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i}^{2}+t T \sum_{i=1}^{n} a_{i}^{2} \leq(t+T) \sum_{i=1}^{n} a_{i} b_{i}, \tag{2.2}
\end{equation*}
$$

where equality is attained if and only if $b_{i}=t a_{i}$ or $b_{i}=T a_{i}$.
The following generalized Diaz-Metcalf's inequality can be found in [18].

Theorem 2. Let p and q be real numbers with the condition $0<q \leq p<$ $1, p+q=1$ and let w_{k}, a_{k} and b_{k} be real numbers for which t and T are real constants such that $t a_{k} \leq b_{k} \leq T a_{k}$ holds for each $k(1 \leq k \leq m)$. Then

$$
\begin{equation*}
p \sum_{k=1}^{m} w_{k} b_{k}^{2}+t T \sum_{k=1}^{n} q w_{k} a_{k}^{2} \leq(q t+p T) \sum_{k=1}^{m} w_{k} a_{k} b_{k} \tag{2.3}
\end{equation*}
$$

and equality is attained if and only if $b_{k}=t a_{k}$ or $b_{k}=T a_{k}$.
In [21], we find the following Radon's inequality.
Lemma 2. If $a_{i} \geq 0$ and $b_{i}>0(1 \leq i \leq n)$ are real numbers, then for real number $p>0$,

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{a_{i}^{p+1}}{b_{i}^{p}} \geq \frac{\left(\sum_{i=1}^{n} a_{i}\right)^{p+1}}{\left(\sum_{i=1}^{n} b_{i}\right)^{p}} \tag{2.4}
\end{equation*}
$$

with equality is attained if and only if $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\cdots=\frac{a_{n}}{b_{n}}$.

3. Relations between some ETIs and the first Zagreb index

In this section, we derive the relation of each ECI, CEI, MECI, and EECI with the first Zagreb index.

Theorem 3. Let \mathbf{G} be a connected graph having the defined parameters n, m, δ, Δ, r and d. Then

$$
\begin{equation*}
\xi^{c}(\mathbf{G}) \leq \frac{1}{n}[2 m \zeta(\mathbf{G})+\tau(n)(\Delta-\delta)(d-r)] \tag{3.1}
\end{equation*}
$$

where $\tau(n)=n\left\lceil\frac{n}{2}\right\rceil\left(1-\frac{1}{n}\left\lceil\frac{n}{2}\right\rceil\right)$ and equality is attained if and only if \mathbf{G} is a self-centered regular graph.

Proof. We choose $p_{i}=d_{i}, q_{i}=\varepsilon_{i}, p=\delta, P=\Delta, q=r$, and $Q=d$, for which

$$
\delta \leq d_{i} \leq \Delta \text { and } r \leq \varepsilon_{i} \leq d
$$

for each $i(1 \leq i \leq n)$. Then, inequality (2.1) becomes

$$
n \sum_{i=1}^{n} d_{i} \varepsilon_{i}-\sum_{i=1}^{n} d_{i} \sum_{i=1}^{n} \varepsilon_{i} \leq \tau(n)(\Delta-\delta)(d-r)
$$

where $\tau(n)=n\left\lceil\frac{n}{2}\right\rceil\left(1-\frac{1}{n}\left\lceil\frac{n}{2}\right\rceil\right)$.
Since $\sum_{i=1}^{n} d_{i}=2 m$. So, we have

$$
n \xi^{c}(\mathbf{G})-2 m \zeta(\mathbf{G}) \leq \tau(n)(\Delta-\delta)(d-r)
$$

and the required inequality (3.1) follows.
Equality attains in (2.1) if and only if $p_{1}=p_{2}=\cdots=p_{n}$ and $q_{1}=q_{2}=$ $\cdots=q_{n}$. This means that equality attains in (3.1) if and only if $d_{i}=\delta=\Delta$ and $\varepsilon_{i}=r=d$, for every vertex $v_{i} \in V$. This is equivalent to \mathbf{G} being a self-centered regular graph.
In [7], we find the following relation between the average eccentricity and the first Zagreb index.

Theorem 4. Let \mathbf{G} be a connected graph with the defined parameters n and m. Then

$$
\begin{equation*}
\operatorname{avec}(\mathbf{G}) \leq \sqrt{\frac{M_{1}(\mathbf{G})+n^{3}-4 m n}{n}} \tag{3.2}
\end{equation*}
$$

with equality is attained if and only if $\mathbf{G} \cong K_{n}$ or \mathbf{G} is isomorphic to a unique ($n-2$)-regular graph.

Corollary 1. Let \mathbf{G} be a connected graph having the defined parameters n, m, δ, Δ, r and d. Then

$$
\begin{equation*}
\xi^{c}(\mathbf{G}) \leq 2 m \sqrt{\frac{n^{3}-4 m n+M_{1}(\mathbf{G})}{n}}+\frac{\tau(n)}{n}(\Delta-\delta)(d-r) \tag{3.3}
\end{equation*}
$$

where $\tau(n)=n\left\lceil\frac{n}{2}\right\rceil\left(1-\frac{1}{n}\left\lceil\frac{n}{2}\right\rceil\right)$ and the equality attains if and only if $\mathbf{G} \cong K_{n}$.

Proof. The relation between TEI and AEI, for a connected graph G with order n, as follows:

$$
\operatorname{avec}(\mathbf{G})=\frac{1}{n} \zeta(\mathbf{G}) .
$$

With this, (3.2) becomes

$$
\begin{equation*}
\zeta(\mathbf{G}) \leq n \sqrt{\frac{M_{1}(\mathbf{G})+n^{3}-4 m n}{n}} \tag{3.4}
\end{equation*}
$$

From (3.1) and (3.4), we get

$$
\xi^{c}(\mathbf{G}) \leq 2 m \sqrt{\frac{n^{3}-4 m n+M_{1}(\mathbf{G})}{n}}+\frac{\tau(n)}{n}(\Delta-\delta)(d-r)
$$

where $\tau(n)=n\left\lceil\frac{n}{2}\right\rceil\left(1-\frac{1}{n}\left\lceil\frac{n}{2}\right\rceil\right)$.
Since every Complete graph K_{n} is a regular self-centered graph, whereas ($n-2$)-regular graph may not be a self-centered graph. Therefore, from (3.1) and (3.2), equality attains in (3.3) if and only if $\mathbf{G} \cong K_{n}$.

Theorem 5. Let \mathbf{G} be a connected graph having the defined parameters n, δ, Δ, r and d. Then

$$
\begin{equation*}
\xi^{c e}(\mathbf{G}) \geq \frac{1}{\Delta d+\delta r}\left[\frac{n^{3} \Delta \delta r d}{(\zeta(\mathbf{G}))^{2}}+M_{1}(\mathbf{G})\right] \tag{3.5}
\end{equation*}
$$

and equality attains if and only if \mathbf{G} is a self-centered regular graph.
Proof. We take $a_{i}=d_{i}, b_{i}=\frac{1}{\varepsilon_{i}}, t=\frac{1}{\Delta d}$, and $T=\frac{1}{\delta r}$, for which

$$
\frac{1}{\Delta d} \leq \frac{b_{i}}{a_{i}} \leq \frac{1}{\delta r}
$$

for each $i(1 \leq i \leq n)$. Then, inequality (2.2) takes the form

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{\varepsilon_{i}^{2}}+\frac{1}{\Delta d \delta r} \sum_{i=1}^{n} d_{i}^{2} \leq\left(\frac{1}{\Delta d}+\frac{1}{\delta r}\right) \sum_{i=1}^{n} \frac{d_{i}}{\varepsilon_{i}} . \tag{3.6}
\end{equation*}
$$

For $a_{i}=1, b_{i}=\varepsilon_{i}$ and $p=2$, the inequality (2.4) becomes

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{\varepsilon_{i}^{2}} \geq \frac{\left(\sum_{i=1}^{n} 1\right)^{3}}{\left(\sum_{i=1}^{n} \varepsilon_{i}\right)^{2}} \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), it implies that

$$
\begin{aligned}
& \frac{\left(\sum_{i=1}^{n} 1\right)^{3}}{\left(\sum_{i=1}^{n} \varepsilon_{i}\right)^{2}}+\frac{1}{\Delta d \delta r} M_{1}(\mathbf{G}) \leq\left(\frac{\Delta d+\delta r}{\Delta d \delta r}\right) \xi^{c e}(\mathbf{G}), \\
& \frac{n^{3}}{(\zeta(\mathbf{G}))^{2}}+\frac{1}{\Delta d \delta r} M_{1}(\mathbf{G}) \leq\left(\frac{\Delta d+\delta r}{\Delta d \delta r}\right) \xi^{c e}(\mathbf{G}),
\end{aligned}
$$

and the desired inequality (3.5) is achieved.
Equality holds in (2.2) if and only if $b_{i}=t a_{i}$ or $b_{i}=T a_{i}$, for $1 \leq i \leq n$. This implies that equality attains in (3.6) if and only if $d_{i} \varepsilon_{i}=\Delta d$ or $d_{i} \varepsilon_{i}=\delta r$, for every vertex $v_{i} \in V$, i.e., $d_{i} \varepsilon_{i}=c=$ constant, for every vertex $v_{i} \in V$. Also, equality attains in (2.4) if and only if $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\cdots=\frac{a_{n}}{b_{n}}$. This means that equality attains in (3.7) if and only if $\frac{1}{\varepsilon_{i}}=c_{2}=$ constant, for every vertex $v_{i} \in V$. Let $v_{i}, v_{j} \in V$, then $d_{i} \varepsilon_{i}=d_{j} \varepsilon_{j}$ and $\frac{1}{\varepsilon_{i}}=\frac{1}{\varepsilon_{j}} \Rightarrow \varepsilon_{i}=\varepsilon_{j}$. Then, equality attain in (3.6) and (3.7) if and only if $\varepsilon_{i}=\varepsilon_{j}=c_{3}=$ constant and $d_{i} c_{3}=d_{j} c_{3} \Rightarrow d_{i}=d_{j}$. Finally, we conclude that equality attains in (3.5) if and only if \mathbf{G} is a self-centered regular graph.

The
following Corollary of Theorem 5 can be proved by the similar arguments, presented in Corollary 1.

Corollary 2. Let \mathbf{G} be a connected graph with the defined parameters n, m, δ, Δ, r and d. Then

$$
\xi^{c e}(\mathbf{G}) \geq \frac{1}{\Delta d+\delta r}\left[\frac{n^{2} \Delta \delta r d}{n\left(n^{2}-4 m\right)+M_{1}(\mathbf{G})}+M_{1}(\mathbf{G})\right]
$$

and equality attains if and only if $\mathbf{G} \cong K_{n}$.
Theorem 6. Let \mathbf{G} be a connected graph with the defined parameters n, δ, Δ, r and d. Then

$$
\begin{equation*}
\xi_{c}(\mathbf{G}) \leq \frac{1}{n}\left[M_{1}(\mathbf{G}) \zeta(\mathbf{G})+\tau(n)\left(\Delta^{2}-\delta^{2}\right)(d-r)\right] \tag{3.8}
\end{equation*}
$$

where $\tau(n)=n\left\lceil\frac{n}{2}\right\rceil\left(1-\frac{1}{n}\left\lceil\frac{n}{2}\right\rceil\right)$ and equality attains if and only if \mathbf{G} is a self-centered regular graph.

Proof. We define $p_{i}=S_{i}, q_{i}=\varepsilon_{i}, p=\delta^{2}, P=\Delta^{2}, q=r$, and $Q=d$, for which

$$
\delta^{2} \leq S_{i} \leq \Delta^{2} \text { and } r \leq \varepsilon_{i} \leq d
$$

for each $i(1 \leq i \leq n)$. Then, from inequality (2.1), we have

$$
\begin{equation*}
n \sum_{i=1}^{n} S_{i} \varepsilon_{i}-\sum_{i=1}^{n} S_{i} \sum_{i=1}^{n} \varepsilon_{i} \leq \tau(n)\left(\Delta^{2}-\delta^{2}\right)(d-r) \tag{3.9}
\end{equation*}
$$

where $\tau(n)=n\left\lceil\frac{n}{2}\right\rceil\left(1-\frac{1}{n}\left\lceil\frac{n}{2}\right\rceil\right)$.
It is easy to observe that

$$
\begin{equation*}
M_{1}(\mathbf{G})=\sum_{i=1}^{n} d_{i}^{2}=\sum_{i=1}^{n} S_{i} . \tag{3.10}
\end{equation*}
$$

From (3.9) and (3.10), we have

$$
n \xi_{c}(\mathbf{G})-M_{1}(\mathbf{G}) \zeta(\mathbf{G}) \leq \tau(n)\left(\Delta^{2}-\delta^{2}\right)(d-r)
$$

and we obtain inequality (3.8).
Equality attains in (2.1) if and only if $p_{1}=p_{2}=\cdots=p_{n}$ and $q_{1}=q_{2}=$ $\cdots=q_{n}$. This implies that equality attains in (3.8) if and only if $\varepsilon_{i}=r=d$ and $S_{i}=\delta^{2}=\Delta^{2}$, for every vertex $v_{i} \in V$. This is equivalent to \mathbf{G} being a self-centered graph and $d_{i}=\delta=\Delta$, for every vertex $v_{i} \in V$. Consequently, equality attains in (3.8) if and only if \mathbf{G} is a self-centered regular graph.

By the similar arguments presented in Corollary 1, the following corollary of Theorem 6 can be proved.

Corollary 3. Let \mathbf{G} be a connected graph \mathbf{G} having the defined parameters n, δ, Δ, r and d. Then

$$
\xi_{c}(\mathbf{G}) \leq M_{1}(\mathbf{G}) \sqrt{\frac{M_{1}(\mathbf{G})+n^{3}-4 m n}{n}}+\frac{\tau(n)}{n}\left(\Delta^{2}-\delta^{2}\right)(d-r),
$$

where $\tau(n)=n\left\lceil\frac{n}{2}\right\rceil\left(1-\frac{1}{n}\left\lceil\frac{n}{2}\right\rceil\right)$ and equality is attained if and only if $\mathbf{G} \cong K_{n}$.

Theorem 7. Let \mathbf{G} be a connected graph having the defined parameters n, δ, Δ, r and d. Then

$$
\begin{equation*}
{ }^{E} \zeta^{c}(\mathbf{G}) \geq \frac{1}{\Delta^{2} d+\delta^{2} r}\left[\frac{n^{3}}{(\zeta(\mathbf{G}))^{2}}+\frac{M_{1}(\mathbf{G})}{n}\right] \tag{3.11}
\end{equation*}
$$

where equality is attained if and only if \mathbf{G} is a self-centered regular graph.

Proof. We choose $a_{i}=S_{i}, b_{i}=\frac{1}{\varepsilon_{i}}, t=\frac{1}{\Delta^{2} d}, T=\frac{1}{\delta^{2} r}$, for which

$$
\frac{1}{\Delta^{2} d} \leq \frac{b_{i}}{a_{i}} \leq \frac{1}{\delta^{2} r} .
$$

for each $i(1 \leq i \leq n)$. Then, inequality (2.2) becomes

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{\varepsilon_{i}^{2}}+\frac{1}{\Delta^{2} d \delta^{2} r} \sum_{i=1}^{n} S_{i}^{2} \leq\left(\frac{1}{\Delta^{2} d}+\frac{1}{\delta^{2} r}\right) \sum_{i=1}^{n} \frac{S_{i}}{\varepsilon_{i}} . \tag{3.12}
\end{equation*}
$$

For $a_{i}=S_{i}, b_{i}=1$, and $p=1$, inequality (2.4) becomes

$$
\begin{equation*}
\sum_{i=1}^{n} S_{i}^{2} \geq \frac{\left(\sum_{i=1}^{n} S_{i}\right)^{2}}{\sum_{i=1}^{n} 1} \tag{3.13}
\end{equation*}
$$

From (3.7) and (3.13), inequality (3.12) becomes

$$
\begin{aligned}
& \frac{\left(\sum_{i=1}^{n} 1\right)^{3}}{\left(\sum_{i=1}^{n} \varepsilon_{i}\right)^{2}}+\frac{1}{\Delta^{2} d \delta^{2} r} \frac{\left(\sum_{i=1}^{n} S_{i}\right)^{2}}{\left(\sum_{i=1}^{n} 1\right)} \leq\left(\frac{\Delta^{2} d+\delta^{2} r}{\Delta^{2} d \delta^{2} r}\right){ }^{E} \zeta^{c}(\mathbf{G}) \\
& \frac{n^{3}}{(\zeta(\mathbf{G}))^{2}}+\frac{1}{\Delta^{2} d \delta^{2} r} \frac{\left(M_{1}(\mathbf{G})\right)^{2}}{n} \leq\left(\frac{\Delta^{2} d+\delta^{2} r}{\Delta^{2} d \delta^{2} r}\right){ }^{E} \zeta^{c}(\mathbf{G})
\end{aligned}
$$

and we achieve the required inequality (3.11).
Equality attains in (2.2) if and only if $b_{i}=t a_{i}$ or $b_{i}=T a_{i}$, for $1 \leq k \leq n$. This means that equality holds in (3.12) if and only if $S_{i} \varepsilon_{i}=\Delta^{2} d$ or $S_{i} \varepsilon_{i}=\delta^{2} r$, for every vertex $v_{i} \in V$, i.e., $S_{i} \varepsilon_{i}=c=$ constant, for every vertex $v_{i} \in V$. Let $v_{i}, v_{j} \in V$, then $S_{i} \varepsilon_{i}=S_{j} \varepsilon_{j}$. Also, equality attains in (2.4) if and only if $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\cdots=\frac{a_{n}}{b_{n}}$. This implies that equality attains in (3.13) if and only if $S_{i}=c_{1}=$ constant, for every vertex $v_{i} \in V$. Thus, equality attains in (3.12) and (3.13) if and only if $S_{i}=c_{1}$ and $c_{1} \varepsilon_{i}=c_{1} \varepsilon_{j} \Rightarrow \varepsilon_{i}=\varepsilon_{j}$. We have already proved in Theorem 5 that equality attains in (3.7) if and only if \mathbf{G} is a self-centered graph. Finally, we conclude that equality attains in (3.11) if and only if \mathbf{G} is a self-centered regular graph. \square From the similar arguments given in Corollary 1, the following Corollary of Theorem 7 can be proved.

Corollary 4. Let \mathbf{G} be a connected graph \mathbf{G} having the defined parameters n, m, δ, Δ, r and d. Then

$$
{ }^{E} \zeta^{c}(\mathbf{G}) \geq \frac{1}{\Delta^{2} d+\delta^{2} r}\left[\frac{n^{2}}{n^{3}-4 m n+M_{1}(\mathbf{G})}+\frac{M_{1}(\mathbf{G})}{n}\right]
$$

where equality attains if and only if $\mathbf{G} \cong K_{n}$.

4. Relations between some ETIs and the second Zagreb index

In this section, we establish the following relations: between ECI and the second Zagreb index, between CEI, MECI, and the second Zagreb index, and between ECI, EECI, and the second Zagreb index.

Theorem 8. Let \mathbf{G} be a connected graph having the defined parameters δ, Δ, r and d. Then

$$
\begin{equation*}
\frac{\xi^{c}(\mathbf{G})}{M_{2}(\mathbf{G})}+\frac{4 r d}{\Delta^{2} \delta^{2}} \frac{M_{2}(\mathbf{G})}{\xi^{c}(\mathbf{G})} \leq 2\left(\frac{d}{\delta^{2}}+\frac{r}{\Delta^{2}}\right) \tag{4.1}
\end{equation*}
$$

and equality attains if and only if \mathbf{G} is a self-centered regular graph.

Proof. Let \mathbf{G} be a connected graph with size m. For each edge e_{k}, incident to the vertices v_{i} and v_{j}, we define $a_{k}=d_{i} d_{j}, b_{k}=\varepsilon_{i}+\varepsilon_{j}$, $w_{k}=\frac{1}{d_{i} d_{j}}$, $t=\frac{2 r}{\Delta^{2}}$, and $T=\frac{2 d}{\delta^{2}}$, for which

$$
\frac{2 r}{\Delta^{2}} \leq \frac{b_{k}}{a_{k}}=\frac{\varepsilon_{i}+\varepsilon_{j}}{d_{i} d_{j}} \leq \frac{2 d}{\delta^{2}}
$$

for each $k(1 \leq k \leq m)$, and by taking $p=q=\frac{1}{2}$, inequality (2.3) becomes

$$
\begin{equation*}
\sum_{v_{i} \sim v_{j}} \frac{\left(\varepsilon_{i}+\varepsilon_{j}\right)^{2}}{d_{i} d_{j}}+\frac{4 r d}{\Delta^{2} \delta^{2}} \sum_{v_{i} \sim v_{j}} d_{i} d_{j} \leq\left(\frac{2 r}{\Delta^{2}}+\frac{2 d}{\delta^{2}}\right) \sum_{v_{i} \sim v_{j}}\left(\varepsilon_{i}+\varepsilon_{j}\right) . \tag{4.2}
\end{equation*}
$$

Also, we define $a_{k}=\varepsilon_{i}+\varepsilon_{j}$ and $b_{k}=d_{i} d_{j}$. By taking $p=1$, inequality (2.4) becomes

$$
\begin{equation*}
\sum_{v_{i} \sim v_{j}} \frac{\left(\varepsilon_{i}+\varepsilon_{j}\right)^{2}}{d_{i} d_{j}} \geq \frac{\left(\sum_{v_{i} \sim v_{j}}\left(\varepsilon_{i}+\varepsilon_{j}\right)\right)^{2}}{\sum_{v_{i} \sim v_{j}} d_{i} d_{j}} \tag{4.3}
\end{equation*}
$$

From (4.2) and (4.3), we have

$$
\begin{aligned}
& \frac{\left(\sum_{v_{i} \sim v_{j}}\left(\varepsilon_{i}+\varepsilon_{j}\right)\right)^{2}}{\sum_{v_{i} \sim v_{j}} d_{i} d_{j}}+\frac{4 r d}{\Delta^{2} \delta^{2}} M_{2}(\mathbf{G}) \leq 2\left(\frac{d}{\delta^{2}}+\frac{r}{\Delta^{2}}\right) \xi^{c}(\mathbf{G}), \\
& \quad \frac{\left(\xi^{c}(\mathbf{G})\right)^{2}}{M_{2}(\mathbf{G})}+\frac{4 r d}{\Delta^{2} \delta^{2}} M_{2}(\mathbf{G}) \leq 2\left(\frac{d}{\delta^{2}}+\frac{r}{\Delta^{2}}\right) \xi^{c}(\mathbf{G})
\end{aligned}
$$

and we obtain the required inequality (4.1).
Equality holds in (2.3) if and only if $b_{i}=t a_{i}$ or $b_{i}=T a_{i}$ for $1 \leq i \leq n$. This implies that equality attains in (4.2) if and only if either $2 r d_{i} d_{j}=\Delta^{2}\left(\varepsilon_{i}+\varepsilon_{j}\right)$ or $2 d d_{i} d_{j}=\delta^{2}\left(\varepsilon_{i}+\varepsilon_{j}\right)$ for every edge of \mathbf{G}, i.e., $\frac{d_{i} d_{j}}{\varepsilon_{i}+\varepsilon_{j}}=c=$ constant, for every edge of \mathbf{G}. Also, equality attains in (4.3) if and only if $\frac{\varepsilon_{i}+\varepsilon_{j}}{d_{i} d_{j}}=c_{1}=$ constant, for every edge of \mathbf{G}. Let v_{j}, v_{t} be vertices adjacent to vertex v_{i}, that is $v_{i} \sim v_{j}$ and $v_{i} \sim v_{t}$, then $\frac{d_{i} d_{j}}{\varepsilon_{i}+\varepsilon_{j}}=\frac{d_{i} d_{t}}{\varepsilon_{i}+\varepsilon_{t}} \Rightarrow \frac{d_{j}}{\varepsilon_{i}+\varepsilon_{j}}=\frac{d_{t}}{\varepsilon_{i}+\varepsilon_{t}}$. This implies that equality attains in (4.2) and (4.3) if and only if $d_{j}=d_{t}=c_{2}=$ constant and $\frac{c_{2}}{\varepsilon_{i}+\varepsilon_{j}}=\frac{c_{2}}{\varepsilon_{i}+\varepsilon_{t}} \Rightarrow \varepsilon_{i}+\varepsilon_{j}=\varepsilon_{i}+\varepsilon_{t} \Rightarrow \varepsilon_{j}=\varepsilon_{t}$. Hence, equality attains in (4.1) if and only if \mathbf{G} is a self-centered regular graph.

Observation 1. Let G be a graph. From the definition of $M_{2}(G)$, it is easy to observe that

$$
\begin{equation*}
M_{2}(\mathbf{G})=\sum_{v_{i} \sim v_{j}} d_{i} d_{j}=\frac{1}{2} \sum_{i=1}^{n} d_{i} \sum_{v_{j} \in N\left(v_{i}\right)} d_{j}=\frac{1}{2} \sum_{i=1}^{n} d_{i} S_{i} \tag{4.4}
\end{equation*}
$$

Theorem 9. Let \mathbf{G} be a connected graph \mathbf{G} having the defined parameters n, δ, Δ, r and d. Then

$$
\begin{equation*}
M_{2}(\mathbf{G}) \geq \frac{\Delta \delta}{2 n\left(\Delta^{3} d^{2}+\delta^{3} r^{2}\right)}\left[\left(\xi_{c}(\mathbf{G})\right)^{2}+\Delta \delta\left(r d \xi^{c e}(\mathbf{G})\right)^{2}\right] \tag{4.5}
\end{equation*}
$$

and equality is attained if and only if \mathbf{G} is a self-centered regular graph.
Proof. We take $a_{i}=\frac{d_{i}}{\varepsilon_{i}}, b_{i}=\varepsilon_{i} S_{i}, t=\frac{r^{2} \delta^{2}}{\Delta}$, and $T=\frac{d^{2} \Delta^{2}}{\delta}$, for which

$$
\frac{r^{2} \delta^{2}}{\Delta} \leq \frac{b_{i}}{a_{i}}=\frac{\varepsilon_{i}^{2} S_{i}}{d_{i}} \leq \frac{d^{2} \Delta^{2}}{\delta}
$$

for each $i(1 \leq i \leq n)$. Then, from inequality (2.2), we have

$$
\sum_{i=1}^{n}\left(\varepsilon_{i} S_{i}\right)^{2}+\frac{r^{2} \delta^{2} d^{2} \Delta^{2}}{\Delta \delta} \sum_{i=1}^{n}\left(\frac{d_{i}}{\varepsilon_{i}}\right)^{2} \leq\left(\frac{r^{2} \delta^{2}}{\Delta}+\frac{d^{2} \Delta^{2}}{\delta}\right) \sum_{i=1}^{n} d_{i} S_{i} .
$$

From (4.4), we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\varepsilon_{i} S_{i}\right)^{2}+r^{2} d^{2} \Delta \delta \sum_{i=1}^{n}\left(\frac{d_{i}}{\varepsilon_{i}}\right)^{2} \leq 2 M_{2}(G)\left(\frac{\Delta^{3} d^{2}+\delta^{3} r^{2}}{\Delta \delta}\right) \tag{4.6}
\end{equation*}
$$

For $a_{i}=\varepsilon_{i} S_{i}, b_{i}=1$ and $p=1$, inequality (2.4) becomes

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\varepsilon_{i} S_{i}\right)^{2} \geq \frac{\left(\sum_{i=1}^{n} \varepsilon_{i} S_{i}\right)^{2}}{\sum_{i=1}^{n} 1} \tag{4.7}
\end{equation*}
$$

Also, for $a_{i}=\frac{d_{i}}{\varepsilon_{i}}, b_{i}=1$ and $p=1$, inequality (2.4) becomes

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\frac{d_{i}}{\varepsilon_{i}}\right)^{2} \geq \frac{\left(\sum_{i=1}^{n} \frac{d_{i}}{\varepsilon_{i}}\right)^{2}}{\sum_{i=1}^{n} 1} . \tag{4.8}
\end{equation*}
$$

From inequalities (4.6), (4.7) and (4.8), we have

$$
\begin{aligned}
& \frac{\left(\sum_{i=1}^{n} \varepsilon_{i} S_{i}\right)^{2}}{\sum_{i=1}^{n} 1}+r^{2} d^{2} \Delta \delta \frac{\left(\sum_{i=1}^{n} \frac{d_{i}}{\varepsilon_{i}}\right)^{2}}{\sum_{i=1}^{n} 1} \leq 2 M_{2}(\mathbf{G})\left(\frac{\Delta^{3} d^{2}+\delta^{3} r^{2}}{\Delta \delta}\right), \\
& \frac{\left(\xi_{c}(\mathbf{G})\right)^{2}}{n}+r^{2} d^{2} \Delta \delta \frac{\left(\xi^{c e}(\mathbf{G})\right)^{2}}{n} \leq 2 M_{2}(\mathbf{G})\left(\frac{\Delta^{3} d^{2}+\delta^{3} r^{2}}{\Delta \delta}\right)
\end{aligned}
$$

and here we obtain the desired inequality (4.5).
Equality attains in (2.3) if and only if $b_{i}=t a_{i}$ or $b_{i}=T a_{i}$ for $1 \leq k \leq n$. This means that equality holds in (4.6) if and only if $\frac{\varepsilon_{i}^{2} S_{i}}{d_{i}}=\frac{r^{2} \delta^{2}}{\Delta}$ or $\frac{\varepsilon_{i}^{2} S_{i}}{d_{i}}=$ $\frac{d^{2} \Delta^{2}}{\delta}$, for every vertex $v_{i} \in V$, i.e., $\frac{\varepsilon_{i}^{2} S_{i}}{d_{i}}=c=$ constant, for every vertex $v_{i} \in V$. Also, equality attains in (4.7) if and only if $\varepsilon_{i} S_{i}=c_{1}=$ constant, for every vertex $v_{i} \in V$. Further, equality attains in (4.8) if and only if $\frac{d_{i}}{\varepsilon_{i}}=c_{2}=$ constant, for every vertex $v_{i} \in V$. By combining $\varepsilon_{i} S_{i}=c_{1}$
and $\frac{d_{i}}{\varepsilon_{i}}=c_{2}$, we have $S_{i} d_{i}=c_{3}=$ constant, for every vertex $v_{i} \in V$. We claim that G is a regular graph. For otherwise, $d_{i} \neq d_{j}$, for some vertices $v_{i}, v_{j} \in V$. Also, by the definition of $S_{i}, S_{i} \geq d_{i}$ for every vertex $v_{i} \in V$. For $d_{i} \neq d_{j}$, we have $S_{i} \geq d_{i}$ and $S_{j} \geq d_{j}$. This implies that $S_{i} d_{i} \neq S_{j} d_{j}$, i.e. $S_{i} d_{i} \neq$ constant. This contradicts to the given statement that $S_{i} d_{i}=c_{3}=$ constant, for every vertex $v_{i} \in V$. Hence, \mathbf{G} is a regular graph. So, $d_{i}=c_{4}=$ constant and $S_{i}=c_{4}^{2}$, for every vertex $v_{i} \in V$. Then, $\frac{\varepsilon_{i}^{2} S_{i}}{d_{i}}=c \Rightarrow \frac{\varepsilon_{i}^{2} c_{4}^{2}}{c_{4}}=c \Rightarrow \varepsilon_{i}=c_{5}=$ constant, for every vertex $v_{i} \in V$. Finally, we conclude that equality attains in (4.5) if and only if \mathbf{G} is a self-centered regular graph.

Theorem 10. Let \mathbf{G} be a connected graph having the defined parameters n, δ, Δ, r and d. Then

$$
\begin{equation*}
M_{2}(\mathbf{G}) \leq \frac{1}{2 n}\left[{ }^{E} \zeta^{c}(\mathbf{G}) \xi^{c}(\mathbf{G})+\frac{\tau(n)}{r d}(\Delta d-\delta r)\left(\Delta^{2} d-\delta^{2} r\right)\right] \tag{4.9}
\end{equation*}
$$

where $\tau(n)=n\left\lceil\frac{n}{2}\right\rceil\left(1-\frac{1}{n}\left\lceil\frac{n}{2}\right\rceil\right)$ and equality attains if and only if \mathbf{G} is a self-centered regular graph.

Proof. We define $p_{i}=\frac{S_{i}}{\varepsilon_{i}}, q_{i}=\varepsilon_{i} d_{i}, p=\frac{\delta^{2}}{d}, P=\frac{\Delta^{2}}{r}, q=r \delta$, and $Q=d \Delta$, for which

$$
\frac{\delta^{2}}{d} \leq p_{i} \leq \frac{\Delta^{2}}{r} \text { and } r \delta \leq q_{i} \leq d \Delta
$$

for each $i(1 \leq i \leq n)$. Then, inequality (2.1) takes the form

$$
n \sum_{i=1}^{n} d_{i} S_{i}-\sum_{i=1}^{n} \frac{S_{i}}{\varepsilon_{i}} \sum_{i=1}^{n} \varepsilon_{i} d_{i} \leq \tau(n)\left(\frac{\Delta^{2}}{r}-\frac{\delta^{2}}{d}\right)(\Delta d-\delta r)
$$

where $\tau(n)=n\left\lceil\frac{n}{2}\right\rceil\left(1-\frac{1}{n}\left\lceil\frac{n}{2}\right\rceil\right)$.
From (4.4), it follows that

$$
2 n M_{2}(\mathbf{G})-{ }^{E} \zeta^{c}(\mathbf{G}) \xi^{c}(\mathbf{G}) \leq \frac{\tau(n)}{r d}\left(\Delta^{2} d-\delta^{2} r\right)(\Delta d-\delta r)
$$

and the desired inequality (4.9) follows.
Equality attains in (2.1) if and only if $p_{1}=p_{2}=\cdots=p_{n}$ and $q_{1}=$ $q_{2}=\cdots=q_{n}$. This implies that equality attains in (4.9) if and only
if $\frac{S_{i}}{\varepsilon_{i}}=\frac{\delta^{2}}{d}=\frac{\Delta^{2}}{r}$ and $\varepsilon_{i} d_{i}=r \delta=d \Delta$, for every vertex $v_{i} \in V$, i.e., $\frac{S_{i}}{\varepsilon_{i}}=c=$ constant and $\varepsilon_{i} d_{i}=c_{1}=$ constant, for every vertex $v_{i} \in V$. By combining, we have $S_{i} d_{i}=c_{2}=$ constant, for every vertex $v_{i} \in V$. This implies that \mathbf{G} is a regular graph, i.e., $d_{i}=c_{3}=$ constant. Also, $\varepsilon_{i} d_{i}=c_{1} \Rightarrow \varepsilon_{i} c_{3}=c_{1} \Rightarrow \varepsilon_{i}=c_{4}=$ constant, for every vertex $v_{i} \in V$. Hence, we conclude that equality attains in (4.9) if and only if \mathbf{G} is a self-centered regular graph.

References

[1] A. R. Ashrafi and M. Ghorbani, "A study of fullerenes by MEC polynomials", Electronic Materials Letters, Vol. 6, No. 2, pp. 87-90, 2010.
[2] M. Biernacki, H. Pidek and C. Ryll-Nardzewsk, "Sur une inégalité entre des intégrales définies", Maria Curie-Sklodowska University, Vol. A4, pp. 1-4, 1950.
[3] M. Cancan, M. Hussain and H. Ahmad, "Distance and eccentricity based polynomials and indices of m-level Wheel graph", Proyecciones, Vol. 39, No. 4, pp. 869-885, 2020.
[4] M. Cancan, I. Ahmed and S. Ahmad, "Study of topology of block shift networks via topological indices", Proyecciones, Vol. 39, No. 4, pp. 887-902, 2020.
[5] P. Dankelmann, W. Goddard and C.S. Swart, "The average eccentricity of a graph and its subgraphs", Utilitas Mathematica, Vol. 65, pp. 41-51, 2004.
[6] K. C. Das and N. Trinajstić "Relationship between the eccentric connectivity index and Zagreb indices", Computers \& Mathematics with Applications, Vol. 62, pp. 1758-1764, 2011.
[7] K. C. Das, A. D. Maden, I. N. Cangül and A.S. Cevik, "On average eccentricity of graphs", Proceedings of the National Academy of Sciences, India, Section A: Physical Sciences, Vol. 87, pp. 23-30, 2017.
[8] J. Dearden, "The use of topological indices in QSAR and QSPR modeling. In Advances in QSAR Modeling", Springer, Cham, Switzerland, pp. 57-88, 2017.
[9] S. S. Dragomir, "A survey on Cauchy-Bunyakovosky-Schwarz type discrete inequalities", Journal of Inequalities in Pure and Applied Mathematics, Vol. 4, No. 3, Article 63, 2003.
[10] S. Ediz, "Computing Ediz eccentric connectivity index of an infinite class of nanostar dendrimers", Optoelectronics and Advanced Materials, Rapid Communications, Vol. 4, pp. 1847-1848, 2010.
[11] K. Fathalikhani, "Total Eccentricity of some Graph Operations", Electronic Notes in Discrete Mathematics, Vol. 45, pp. 125-131, 2014.
[12] S. Gupta, M. Singh and A. K. Madan, "Connective eccentricity index: a novel topological descriptor for predicting biological activity", Journal of Molecular Graphics and Modelling, Vol. 18, pp. 18-25, 2000.
[13] S. Gupta and M. Singh, Application of graph theory: Relationship of eccentric connectivity index and Wieners index with antiinflammatory activity, Journal of Mathematical Analysis and Applications, Vol. 266, pp. 259-268, 2002.
[14] I. Gutman and N. Trinajstić, "Graph theory and molecular orbitals, total π-electron energy of alternate hydrocarbons", Chemical Physics Letters, Vol. 17, pp. 535-538, 1972.
[15] I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, "Graph theory and molecular orbitals, XII, acyclic polyenes", Journal of Chemical Physics, Vol. 62, pp. 3399-3405, 1975.
[16] A. J. M. Khalaf, A. Javed, M. K. Jamil, M. Alaeiyan and M. R. Farahani, "Topological properties of four types of porphyrin dendrimers", Proyecciones, Vol. 39, No. 4, pp. 979-993, 2020.
[17] X. Li, Y.Shi and I.Gutman, "Graph Energy", Springer, NewYork, 2012.
[18] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, "Classical and New Inequalities in Analysis", Kluwer Academic Publishers, Dordrecht, 1993.
[19] I. Nadeem and H. Shaker, "Inequalities between degree-and distancebased graph invariants", Journal of Inequalities and Applications, Article No. 39, 2018.
[20] I. Nadeem and S. Siddique, "More on the Zagreb indices inequality", MATCH Communications in Mathematical and in Computer Chemistry, Vol. 87, No. 1, pp. 115-123, 2022.
[21] J. Radon, "Theorie und Anwendungen der absolut additiven Mengenfunktionen", Sitzungsberichte / Akademie der Wissenschaften in Wien, Vol. 122, pp. 1295-1438, 1913.
[22] B. A. Rather and M. Imran, "A note on energy and sombor energy of graphs", MATCH Communications in Mathematical and in Computer Chemistry, Vol. 89, pp. 467-477, 2023.
[23] M. S. Sardar, M. Cancan, S. Ediz and W. Sajjad, "Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P_{2} and $K_{n} "$, Proyecciones, Vol. 39, No. 4, pp. 919-932, 2020.
[24] S. Sardana and A.K. Madan, "Application of graph theory: Relationship of molecular connectivity index, Wieners index and eccentric connectivity index with diuretic activity", MATCH Communications in Mathematical and in Computer Chemistry, Vol. 43, pp. 85-98, 2001.
[25] S. Sardana and A.K. Madan, "Application of graph theory: Relationship of antimycobacterial activity of quinolone derivatives with eccentric connectivity index and Zagreb group parameters", MATCH Communications in Mathematical and in Computer Chemistry, Vol. 45, pp. 35-53, 2002.
[26] V. Sharma, R. Goswami and A.K. Madan, "Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structureactivity studies", Journal of Chemical Information and Modeling, Vol. 37, pp. 273-282, 1997.
[27] R. Todeschini and V. Consonni, "Handbook of Molecular Descriptors", WileyVCH, Weinheim, 2000.
[28] N. Trinajstić, "Chemical Graph Theory", CRC Press, Boca Raton, 2nd revised (eds.), 1992.

Imran Nadeem

Higher Education Department,
Government Graduate College of Science,
Lahore,
Pakistan
e-mail: imran7355@gmail.com

