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Abstract

The first Zagreb index M1 and the second Zagreb index M2 belong
to the class of degree-based topological indices which are defined for
a simple connected graph G with vertex set V = {υ1, υ2, · · · , υn} as
M1(G) =

Pn
ı̇=1 d

2
ı̇ and M2(G) =

P
υı̇∼υj̇ dı̇dj̇, where dı̇ is the degree

of vertex υi and υı̇ ∼ υj̇ represents the adjacency of vertices υı̇ and
υj̇ in G. The eccentric connectivity index (ECI) is a distance based
topological index, denoted by ξc, is defined as ξc(G) =

Pn
i=1 εı̇dı̇,

where εı̇ is the eccentricity of υı̇ in G. The aim of this paper is to
derive the inequalities between ECI and the Zagreb indices. Moreover,
we establish the inequalities between some variants of ECI and the
Zagreb indices.
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1. Introduction

All the graphs concerned in this paper are finite, undirected and sim-
ple. Let G be a graph with vertex set V = {υ1, υ2, · · · , υn} and edge
set E = E(G), where n = |V | and m = |E| are known as order and
size of G, respectively. The minimum number of edges lying in the paths
connecting the vertices υı̇ and υj̇ is known as distance between them and
is represented by d(ı̇, j̇). If d(ı̇, j̇) = 1, then we write υı̇ ∼ υj̇. The ec-
centricity εı̇ of vertex υı̇ ∈ V is defined as εı̇ = maxυj̇∈V {d(ı̇, j̇)}. Then,
the radius r and the diameter d of G is defined as r = minυı̇∈V {εı̇} and
d = maxυı̇∈V {εı̇}, respectively. Assume that the sequence of vertex ec-
centricities (ε1, ε2, · · · , εn) satisfies d = ε1 ≥ ε2 ≥ · · · ≥ εn = r > 0.
If this sequence is constant, i.e., εı̇ = r = d, for every vertex υı̇ in G,
then G is named as a self-centered graph. For a given vertex υı̇, let
N(υı̇) = {υj̇ ∈ V | d(ı̇, j̇) = 1}, then the degree dı̇ of vertex υı̇, is defined as
dı̇ = |N(υı̇)|. Also, the minimum degree δ and maximum degree ∆ of G is
defined as δ = minυı̇∈V {dı̇} and∆ = maxυı̇∈V {dı̇}, respectively. We assume
that the sequence (d1, d2, · · · , dn) satisfies ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0.
If this sequence is constant, i.e., dı̇ = δ = ∆, for every vertex υı̇ in G,
then G is termed a regular graph. Further, for a given vertex υı̇, we de-
fine Sı̇ =

P
υı̇∼υj̇ dj̇. It is easy to observe that δ2 = minυı̇∈V {Sı̇} and

∆2 = maxυı̇∈V {Sı̇}.

Graph theory has contributed to the development of chemistry by pro-
viding a variety of valuable mathematical tools, like as topological indices
[28]. Molecular structures of molecules and chemical compounds are usu-
ally modeled by graphs. A unique number that is calculated from the
parameters of a graph, is declared a topological index (TI) if it correlates
with some molecular property of the corresponding molecule/chemical com-
pound. TIs are the conclusive results of a mathematical and logical pro-
cedure that converts the chemical phenomena hidden inside a molecule’s
symbolic representation into a useful number, and they have been shown
to be useful in modelling a variety of physicochemical properties in various
QSAR and QSPR studies. [8, 27].

Topological indices are generally classified into three types: degree-
based indices [4, 16, 20], distance-based indices [3, 24] and spectrum-based
indices [17, 22, 23]. The Zagreb indices (ZIs) are among the oldest, best
known and most studied vertex degrees-based topological indices which
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were put forward in [14]. Later, they were enhanced in [15] and utilized in
the modeling of structure-property relationship [27]. The first and second
Zagreb indices Mi(G) (i = 1, 2) of G are respectively defined as:

M1(G) =
nX
ı̇=1

d2ı̇ and M2(G) =
X
υı̇∼υj̇

dı̇dj̇.

Eccentricity-based topological indices (ETIs) relate to the class of distance-
based topological indices which can be defined in three ways, as follows:

ETI1(G) =
nX
ı̇=1

F (εı̇, dı̇),(1.1)

ETI2(G) =
nX
ı̇=1

H(εı̇, Sı̇),(1.2)

and

ETI3(G) =
nX
ı̇=1

Z(εı̇)(1.3)

where F , H and Z are suitably selected functions and the sum runs over
all vertices of G.

Sharma et al. [26] proposed a classical ETI, named as eccentric connectivity
index (ECI), denoted as ξc, and is defined by taking the function F = εı̇dı̇
in 1.1. From the following fact: For every function θ : [1,∞)→ R, we have

X
υı̇∼υj̇

(θ(υı̇) + θ(υj̇)) =
nX
ı̇=1

dı̇θ(υı̇),

we can write ECI as follows:

ξc(G) =
nX
ı̇=1

εı̇dı̇ =
X
υı̇∼υj̇

(εı̇ + εj̇).

ECI has been successfully utilized to build a variety of mathematical models
for the prediction of biological activities of diverse nature [13, 24, 25]. An-
other version of ECI was proposed by Gupta et al. [12], named as connective
eccentric index (CEI), represented by ξce, and is formulated by choosing
the function F = dı̇

εı̇
in 1.1. A modified version of ECI was proposed in
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[1], called the modified eccentric connectivity index (MECI) which is rep-
resented by ξc and is defined by setting the function H = εı̇Sı̇ in 1.2. The
Ediz eccentric connectivity index (EECI) was put forward in [10]. This in-
dex is symbolized by Eζc and is defined by selecting the function H = Sı̇

εı̇
in

1.2. Another version of ECI based on vertex eccentricities was presented in
[11], called the total eccentricity index (TEI). This index is represented by
ζ and is defined by taking the function Z = εı̇ in 1.3. Similar to this index,
Dankelmann et al. [5] proposed the average eccentricity index (AEI) which
is symbolized by avec and is defined by selecting the function Z = 1

nεı̇ in
1.3.
Das and Trinajstić [6] studied the comparison between ECI and ZIs. They
investigated that for a tree T with∆ ≤ 4, ξc(T ) ≥Mi(T ), i = 1, 2. Further,
they proved that for a graph G with ∆ ≤ 4 and d ≥ 7, ξc(G) > M1(G).
Recently, the inequalities between some ETIs and some degree-based topo-
logical indices (other than the ZIs), have been put forward in [19]. In this
paper, we derive the inequalities between some ETIs such as ECI, CEI,
MECI, and EECI and the ZIs.

2. Some known inequalities

We will review some analytic inequalities for real number sequences before
moving on to the rest of the paper.
The following result may be found in [2].

Theorem 1. Let pi and qi be sequences of positive real numbers, then for
real constants p, q, P , and Q, we have¯̄̄̄

¯n
nX
i=1

piqi −
nX
i=1

pi

nX
i=1

qi

¯̄̄̄
¯ ≤ τ(n) (P − p) (Q− q)(2.1)

where p ≤ pi ≤ P and q ≤ qi ≤ Q, for each ı̇, 1 ≤ ı̇ ≤ n, and τ (n) =

n
§n
2

¨ ³
1− 1

n

§n
2

¨´
. Further, equality attains if and only if p1 = p2 = · · · =

pn and q1 = q2 = · · · = qn.

We find the following Diaz−Metcalf inequality in [9].

Lemma 1. Let ai and bi be real numbers for which t and T are real con-
stants such that tai ≤ bi ≤ Tai holds for each i (1 ≤ i ≤ n). Then

nX
i=1

b2i + tT
nX
i=1

a2i ≤ (t+ T )
nX
i=1

aibi,(2.2)
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where equality is attained if and only if bi = tai or bi = Tai.

The following generalized Diaz-Metcalf’s inequality can be found in [18].

Theorem 2. Let p and q be real numbers with the condition 0 < q ≤ p <
1, p+ q = 1 and let wk, ak and bk be real numbers for which t and T are
real constants such that tak ≤ bk ≤ Tak holds for each k (1 ≤ k ≤ m).
Then

p
mX
k=1

wkb
2
k + tT

nX
k=1

qwka
2
k ≤ (qt+ pT )

mX
k=1

wkakbk(2.3)

and equality is attained if and only if bk = tak or bk = Tak.

In [21], we find the following Radon’s inequality.

Lemma 2. If ai ≥ 0 and bi > 0 (1 ≤ i ≤ n) are real numbers, then for real
number p > 0,

nX
i=1

ap+1i

bpi
≥

µ
nP
i=1

ai

¶p+1
µ

nP
i=1

bi

¶p(2.4)

with equality is attained if and only if a1
b1
= a2

b2
= · · · = an

bn
.

3. Relations between some ETIs and the first Zagreb index

In this section, we derive the relation of each ECI, CEI, MECI, and EECI
with the first Zagreb index.

Theorem 3. Let G be a connected graph having the defined parameters
n, m, δ, ∆, r and d. Then

ξc(G) ≤ 1

n
[2mζ(G) + τ(n)(∆− δ)(d− r)](3.1)

where τ (n) = n
§n
2

¨ ³
1− 1

n

§n
2

¨´
and equality is attained if and only if G

is a self-centered regular graph.
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Proof. We choose pi = dı̇, qi = εı̇, p = δ, P = ∆, q = r, and Q = d, for
which

δ ≤ dı̇ ≤ ∆ and r ≤ εı̇ ≤ d

for each ı̇ (1 ≤ ı̇ ≤ n). Then, inequality (2.1) becomes

n
nX
ı̇=1

dı̇εı̇ −
nX
ı̇=1

dı̇

nX
ı̇=1

εı̇ ≤ τ(n)(∆− δ)(d− r),

where τ (n) = n
§n
2

¨ ³
1− 1

n

§n
2

¨´
.

Since
nP
ı̇=1

dı̇ = 2m. So, we have

nξc(G)− 2mζ(G) ≤ τ(n)(∆− δ)(d− r)

and the required inequality (3.1) follows.
Equality attains in (2.1) if and only if p1 = p2 = · · · = pn and q1 = q2 =
· · · = qn. This means that equality attains in (3.1) if and only if dı̇ = δ = ∆
and εı̇ = r = d, for every vertex υı̇ ∈ V . This is equivalent to G being a
self-centered regular graph. 2

In [7], we find the following relation between the average eccentricity and
the first Zagreb index.

Theorem 4. Let G be a connected graph with the defined parameters n
and m. Then

avec(G) ≤
s
M1(G) + n3 − 4mn

n
(3.2)

with equality is attained if and only if G ∼= Kn or G is isomorphic to a
unique (n− 2)-regular graph.

Corollary 1. Let G be a connected graph having the defined parameters
n, m, δ, ∆, r and d. Then

ξc(G) ≤ 2m
s
n3 − 4mn+M1(G)

n
+

τ(n)

n
(∆− δ)(d− r)(3.3)

where τ (n) = n
§
n
2

¨ ³
1− 1

n

§
n
2

¨´
and the equality attains if and only if

G ∼= Kn.
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Proof. The relation between TEI and AEI, for a connected graph G
with order n, as follows:

avec(G) =
1

n
ζ(G).

With this, (3.2) becomes

ζ(G) ≤ n

s
M1(G) + n3 − 4mn

n
.(3.4)

From (3.1) and (3.4), we get

ξc(G) ≤ 2m
s
n3 − 4mn+M1(G)

n
+

τ(n)

n
(∆− δ)(d− r)

where τ (n) = n
§
n
2

¨ ³
1− 1

n

§
n
2

¨´
.

Since every Complete graph Kn is a regular self-centered graph, whereas
(n − 2)-regular graph may not be a self-centered graph. Therefore, from
(3.1) and (3.2), equality attains in (3.3) if and only if G ∼= Kn. 2

Theorem 5. Let G be a connected graph having the defined parameters
n, δ, ∆, r and d. Then

ξce(G) ≥ 1

∆d+ δr

"
n3∆δrd

(ζ(G))2
+M1(G)

#
(3.5)

and equality attains if and only if G is a self-centered regular graph.

Proof. We take ai = dı̇, bi =
1
εı̇
, t = 1

∆d , and T = 1
δr , for which

1

∆d
≤ bi

ai
≤ 1

δr

for each ı̇ (1 ≤ ı̇ ≤ n). Then, inequality (2.2) takes the form

nX
ı̇=1

1

ε2ı̇
+

1

∆dδr

nX
ı̇=1

d2ı̇ ≤
µ
1

∆d
+
1

δr

¶ nX
ı̇=1

dı̇
εı̇
.(3.6)

For ai = 1, bi = εı̇ and p = 2, the inequality (2.4) becomes

nX
ı̇=1

1

ε2ı̇
≥

µ
nP
ı̇=1
1

¶3
µ

nP
ı̇=1

εı̇

¶2 .(3.7)
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From (3.6) and (3.7), it implies thatµ
nP
ı̇=1
1

¶3
µ

nP
ı̇=1

εı̇

¶2 + 1

∆dδr
M1(G) ≤

µ
∆d+ δr

∆dδr

¶
ξce(G),

n3

(ζ(G))2
+

1

∆dδr
M1(G) ≤

µ
∆d+ δr

∆dδr

¶
ξce(G),

and the desired inequality (3.5) is achieved.
Equality holds in (2.2) if and only if bi = tai or bi = Tai, for 1 ≤ i ≤ n. This
implies that equality attains in (3.6) if and only if dı̇εı̇ = ∆d or dı̇εı̇ = δr, for
every vertex υı̇ ∈ V , i.e., dı̇εı̇ = c = constant, for every vertex υı̇ ∈ V . Also,
equality attains in (2.4) if and only if a1b1 =

a2
b2
= · · · = an

bn
. This means that

equality attains in (3.7) if and only if 1
εı̇
= c2 = constant, for every vertex

υı̇ ∈ V . Let υı̇, υj̇ ∈ V , then dı̇εı̇ = dj̇εj̇ and
1
εı̇
= 1

εj̇
⇒ εı̇ = εj̇. Then,

equality attain in (3.6) and (3.7) if and only if εı̇ = εj̇ = c3 = constant and
dı̇c3 = dj̇c3 ⇒ dı̇ = dj̇. Finally, we conclude that equality attains in (3.5) if
and only if G is a self-centered regular graph. 2 The
following Corollary of Theorem 5 can be proved by the similar arguments,
presented in Corollary 1.

Corollary 2. Let G be a connected graph with the defined parameters n,
m, δ, ∆, r and d. Then

ξce(G) ≥ 1

∆d+ δr

"
n2∆δrd

n(n2 − 4m) +M1(G)
+M1(G)

#

and equality attains if and only if G ∼= Kn.

Theorem 6. Let G be a connected graph with the defined parameters n,
δ, ∆, r and d. Then

ξc(G) ≤
1

n

h
M1(G)ζ(G) + τ(n)

³
∆2 − δ2

´
(d− r)

i
,(3.8)

where τ (n) = n
§n
2

¨ ³
1− 1

n

§n
2

¨´
and equality attains if and only if G is a

self-centered regular graph.
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Proof. We define pi = Sı̇, qi = εı̇, p = δ2, P = ∆2, q = r, and Q = d,
for which

δ2 ≤ Sı̇ ≤ ∆2 and r ≤ εı̇ ≤ d

for each ı̇ (1 ≤ ı̇ ≤ n). Then, from inequality (2.1), we have

n
nX
ı̇=1

Sı̇εı̇ −
nX
ı̇=1

Sı̇

nX
ı̇=1

εı̇ ≤ τ(n)
³
∆2 − δ2

´
(d− r)(3.9)

where τ (n) = n
§
n
2

¨ ³
1− 1

n

§
n
2

¨´
.

It is easy to observe that

M1(G) =
nX
ı̇=1

d2ı̇ =
nX
ı̇=1

Sı̇.(3.10)

From (3.9) and (3.10), we have

nξc(G)−M1(G)ζ(G) ≤ τ(n)
³
∆2 − δ2

´
(d− r).

and we obtain inequality (3.8).
Equality attains in (2.1) if and only if p1 = p2 = · · · = pn and q1 = q2 =
· · · = qn. This implies that equality attains in (3.8) if and only if εı̇ = r = d
and Sı̇ = δ2 = ∆2, for every vertex υı̇ ∈ V . This is equivalent to G being a
self-centered graph and dı̇ = δ = ∆, for every vertex υı̇ ∈ V . Consequently,
equality attains in (3.8) if and only if G is a self-centered regular graph.
2

By the similar arguments presented in Corollary 1, the following corollary
of Theorem 6 can be proved.

Corollary 3. Let G be a connected graph G having the defined parame-
ters n, δ, ∆, r and d. Then

ξc(G) ≤M1(G)

s
M1(G) + n3 − 4mn

n
+

τ(n)

n

³
∆2 − δ2

´
(d− r),

where τ (n) = n
§n
2

¨ ³
1− 1

n

§n
2

¨´
and equality is attained if and only if

G ∼= Kn.

Theorem 7. Let G be a connected graph having the defined parameters
n, δ, ∆, r and d. Then

Eζc(G) ≥ 1

∆2d+ δ2r

"
n3

(ζ(G))2
+

M1(G)

n

#
,(3.11)

where equality is attained if and only if G is a self-centered regular graph.
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Proof. We choose ai = Sı̇, bi =
1
εı̇
, t = 1

∆2d , T =
1
δ2r , for which

1

∆2d
≤ bi

ai
≤ 1

δ2r
.

for each ı̇ (1 ≤ ı̇ ≤ n). Then, inequality (2.2) becomes

nX
ı̇=1

1

ε2ı̇
+

1

∆2dδ2r

nX
ı̇=1

S2ı̇ ≤
µ
1

∆2d
+

1

δ2r

¶ nX
ı̇=1

Sı̇
εı̇
.(3.12)

For ai = Sı̇, bi = 1, and p = 1, inequality (2.4) becomes

nX
ı̇=1

S2ı̇ ≥

µ
nP
ı̇=1

Sı̇

¶2
nP
ı̇=1
1

.(3.13)

From (3.7) and (3.13), inequality (3.12) becomes

µ
nP
ı̇=1
1

¶3
µ

nP
ı̇=1

εı̇

¶2 + 1

∆2dδ2r

µ
nP
ı̇=1

Sı̇

¶2
µ

nP
ı̇=1
1

¶ ≤
Ã
∆2d+ δ2r

∆2dδ2r

!
Eζc(G),

n3

(ζ(G))2
+

1

∆2dδ2r

(M1(G))
2

n
≤
Ã
∆2d+ δ2r

∆2dδ2r

!
Eζc(G),

and we achieve the required inequality (3.11).
Equality attains in (2.2) if and only if bi = tai or bi = Tai, for 1 ≤ k ≤ n.
This means that equality holds in (3.12) if and only if Sı̇εı̇ = ∆2d or
Sı̇εı̇ = δ2r, for every vertex υı̇ ∈ V , i.e., Sı̇εı̇ = c = constant, for every
vertex υı̇ ∈ V . Let υı̇, υj̇ ∈ V , then Sı̇εı̇ = Sjεj̇. Also, equality attains in
(2.4) if and only if a1

b1
= a2

b2
= · · · = an

bn
. This implies that equality attains

in (3.13) if and only if Sı̇ = c1 = constant, for every vertex υı̇ ∈ V .
Thus, equality attains in (3.12) and (3.13) if and only if Sı̇ = c1 and
c1εı̇ = c1εj̇ ⇒ εı̇ = εj̇. We have already proved in Theorem 5 that equality
attains in (3.7) if and only ifG is a self-centered graph. Finally, we conclude
that equality attains in (3.11) if and only if G is a self-centered regular
graph. 2 From the similar arguments given in Corollary 1, the following
Corollary of Theorem 7 can be proved.
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Corollary 4. Let G be a connected graph G having the defined parame-
ters n, m, δ, ∆, r and d. Then

Eζc(G) ≥ 1

∆2d+ δ2r

"
n2

n3 − 4mn+M1(G)
+

M1(G)

n

#
,

where equality attains if and only if G ∼= Kn.

4. Relations between some ETIs and the second Zagreb index

In this section, we establish the following relations: between ECI and the
second Zagreb index, between CEI, MECI, and the second Zagreb index,
and between ECI, EECI, and the second Zagreb index.

Theorem 8. Let G be a connected graph having the defined parameters
δ, ∆, r and d. Then

ξc(G)

M2(G)
+
4rd

∆2δ2
M2(G)

ξc(G)
≤ 2

µ
d

δ2
+

r

∆2

¶
(4.1)

and equality attains if and only if G is a self-centered regular graph.

Proof. Let G be a connected graph with size m. For each edge ek,
incident to the vertices υı̇ and υj̇, we define ak = dı̇dj̇, bk = εı̇+εj̇, wk =

1
dı̇dj̇
,

t = 2r
∆2 , and T = 2d

δ2 , for which

2r

∆2
≤ bk

ak
=

εı̇ + εj̇
dı̇dj̇

≤ 2d
δ2

for each k (1 ≤ k ≤ m), and by taking p = q = 1
2 , inequality (2.3) becomes

X
υı̇∼υj̇

(εı̇ + εj̇)
2

dı̇dj̇
+
4rd

∆2δ2

X
υı̇∼υj̇

dı̇dj̇ ≤
µ
2r

∆2
+
2d

δ2

¶ X
υı̇∼υj̇

(εı̇ + εj̇) .(4.2)

Also, we define ak = εı̇ + εj̇ and bk = dı̇dj̇. By taking p = 1, inequality
(2.4) becomes

X
υı̇∼υj̇

(εı̇ + εj̇)
2

dı̇dj̇
≥

Ã P
υı̇∼υj̇

(εı̇ + εj̇)

!2
P

υı̇∼υj̇
dı̇dj̇

.(4.3)
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From (4.2) and (4.3), we haveÃ P
υı̇∼υj̇

(εı̇ + εj̇)

!2
P

υı̇∼υj̇
dı̇dj̇

+
4rd

∆2δ2
M2(G) ≤ 2

µ
d

δ2
+

r

∆2

¶
ξc(G),

(ξc(G))2

M2(G)
+
4rd

∆2δ2
M2(G) ≤ 2

µ
d

δ2
+

r

∆2

¶
ξc(G)

and we obtain the required inequality (4.1).
Equality holds in (2.3) if and only if bi = tai or bi = Tai for 1 ≤ i ≤ n. This
implies that equality attains in (4.2) if and only if either 2rdı̇dj̇ = ∆

2(εı̇+εj̇)

or 2ddı̇dj̇ = δ2(εı̇ + εj̇) for every edge of G, i.e.,
dı̇dj̇
εı̇+εj̇

= c = constant, for

every edge of G. Also, equality attains in (4.3) if and only if
εı̇+εj̇
dı̇dj̇

= c1 =

constant, for every edge of G. Let υj̇, vt be vertices adjacent to vertex υı̇,

that is υı̇ ∼ υj̇ and υı̇ ∼ vt, then
dı̇dj̇
εı̇+εj̇

= dı̇dt
εı̇+εt

⇒ dj̇
εı̇+εj̇

= dt
εı̇+εt

. This

implies that equality attains in (4.2) and (4.3) if and only if dj̇ = dt = c2 =
constant and c2

εı̇+εj̇
= c2

εı̇+εt
⇒ εı̇ + εj̇ = εı̇ + εt ⇒ εj̇ = εt. Hence, equality

attains in (4.1) if and only if G is a self-centered regular graph. 2

Observation 1. Let G be a graph. From the definition of M2(G), it is
easy to observe that

M2(G) =
X
υı̇∼υj̇

dı̇dj̇ =
1

2

nX
ı̇=1

dı̇
X

υj̇∈N(υı̇)
dj̇ =

1

2

nX
ı̇=1

dı̇Sı̇.(4.4)

Theorem 9. LetG be a connected graphG having the defined parameters
n, δ, ∆, r and d. Then

M2(G) ≥
∆δ

2n (∆3d2 + δ3r2)

h
(ξc(G))

2 +∆δ (rdξce(G))2
i

(4.5)

and equality is attained if and only if G is a self-centered regular graph.

Proof. We take ai =
dı̇
εı̇
, bi = εı̇Sı̇, t =

r2δ2

∆ , and T = d2∆2

δ , for which

r2δ2

∆
≤ bi

ai
=

ε2ı̇Sı̇
dı̇
≤ d2∆2

δ
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for each ı̇ (1 ≤ ı̇ ≤ n). Then, from inequality (2.2), we have

nX
ı̇=1

(εı̇Sı̇)
2 +

r2δ2d2∆2

∆δ

nX
ı̇=1

µ
dı̇
εı̇

¶2
≤
Ã
r2δ2

∆
+

d2∆2

δ

!
nX
ı̇=1

dı̇Sı̇.

From (4.4), we have

nX
ı̇=1

(εı̇Sı̇)
2 + r2d2∆δ

nX
ı̇=1

µ
dı̇
εı̇

¶2
≤ 2M2(G)

Ã
∆3d2 + δ3r2

∆δ

!
.(4.6)

For ai = εı̇Sı̇, bi = 1 and p = 1, inequality (2.4) becomes

nX
ı̇=1

(εı̇Sı̇)
2 ≥

µ
nP
ı̇=1

εı̇Sı̇

¶2
nP
ı̇=1
1

.(4.7)

Also, for ai =
dı̇
εı̇
, bi = 1 and p = 1, inequality (2.4) becomes

nX
ı̇=1

µ
dı̇
εı̇

¶2
≥

µ
nP
ı̇=1

dı̇
εı̇

¶2
nP
ı̇=1
1

.(4.8)

From inequalities (4.6), (4.7) and (4.8), we haveµ
nP
ı̇=1

εı̇Sı̇

¶2
nP
ı̇=1
1

+ r2d2∆δ

µ
nP
ı̇=1

dı̇
εı̇

¶2
nP
ı̇=1
1
≤ 2M2(G)

Ã
∆3d2 + δ3r2

∆δ

!
,

(ξc(G))
2

n
+ r2d2∆δ

(ξce(G))2

n
≤ 2M2(G)

Ã
∆3d2 + δ3r2

∆δ

!
and here we obtain the desired inequality (4.5).
Equality attains in (2.3) if and only if bi = tai or bi = Tai for 1 ≤ k ≤ n.

This means that equality holds in (4.6) if and only if
ε2ı̇Sı̇
dı̇
= r2δ2

∆ or
ε2ı̇Sı̇
dı̇
=

d2∆2

δ , for every vertex υı̇ ∈ V , i.e.,
ε2ı̇Sı̇
dı̇

= c = constant, for every vertex
υı̇ ∈ V . Also, equality attains in (4.7) if and only if εı̇Sı̇ = c1 = constant,
for every vertex υı̇ ∈ V . Further, equality attains in (4.8) if and only if
dı̇
εı̇
= c2 = constant, for every vertex υı̇ ∈ V . By combining εı̇Sı̇ = c1
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and dı̇
εı̇
= c2, we have Sı̇dı̇ = c3 = constant, for every vertex υı̇ ∈ V .

We claim that G is a regular graph. For otherwise, di 6= dj , for some
vertices υı̇, υj̇ ∈ V . Also, by the definition of Sı̇, Sı̇ ≥ dı̇ for every vertex
υı̇ ∈ V . For di 6= dj , we have Sı̇ ≥ dı̇ and Sj̇ ≥ dj̇. This implies that
Sı̇dı̇ 6= Sj̇dj̇, i.e. Sı̇dı̇ 6= constant. This contradicts to the given statement
that Sı̇dı̇ = c3 = constant, for every vertex υı̇ ∈ V . Hence, G is a regular
graph. So, dı̇ = c4 = constant and Sı̇ = c24, for every vertex υı̇ ∈ V . Then,
ε2ı̇Sı̇
dı̇
= c⇒ ε2ı̇ c

2
4

c4
= c⇒ εı̇ = c5 = constant, for every vertex υı̇ ∈ V . Finally,

we conclude that equality attains in (4.5) if and only if G is a self-centered
regular graph. 2

Theorem 10. Let G be a connected graph having the defined parameters
n, δ, ∆, r and d. Then

M2(G) ≤
1

2n

∙
Eζc(G)ξc(G) +

τ(n)

rd
(∆d− δr)

³
∆2d− δ2r

´¸
(4.9)

where τ (n) = n
§
n
2

¨ ³
1− 1

n

§
n
2

¨´
and equality attains if and only if G is a

self-centered regular graph.

Proof. We define pi =
Sı̇
εı̇
, qi = εı̇dı̇, p =

δ2

d , P = ∆2

r , q = rδ, and
Q = d∆, for which

δ2

d
≤ pi ≤

∆2

r
and rδ ≤ qi ≤ d∆

for each ı̇ (1 ≤ ı̇ ≤ n). Then, inequality (2.1) takes the form

n
nX
ı̇=1

dı̇Sı̇ −
nX
ı̇=1

Sı̇
εı̇

nX
ı̇=1

εı̇dı̇ ≤ τ(n)

Ã
∆2

r
− δ2

d

!
(∆d− δr)

where τ (n) = n
§n
2

¨ ³
1− 1

n

§n
2

¨´
.

From (4.4), it follows that

2nM2(G)− Eζc(G)ξc(G) ≤ τ(n)

rd

³
∆2d− δ2r

´
(∆d− δr)

and the desired inequality (4.9) follows.
Equality attains in (2.1) if and only if p1 = p2 = · · · = pn and q1 =
q2 = · · · = qn. This implies that equality attains in (4.9) if and only
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if Sı̇
εı̇
= δ2

d = ∆2

r and εı̇dı̇ = rδ = d∆, for every vertex υı̇ ∈ V , i.e.,
Sı̇
εı̇
= c = constant and εı̇dı̇ = c1 = constant, for every vertex υı̇ ∈ V .

By combining, we have Sı̇dı̇ = c2 = constant, for every vertex υı̇ ∈ V .
This implies that G is a regular graph, i.e., dı̇ = c3 = constant. Also,
εı̇dı̇ = c1 ⇒ εı̇c3 = c1 ⇒ εı̇ = c4 = constant, for every vertex υı̇ ∈ V .
Hence, we conclude that equality attains in (4.9) if and only if G is a
self-centered regular graph. 2
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[14] I. Gutman and N. Trinajstić, “Graph theory and molecular orbitals,
total π-electron energy of alternate hydrocarbons”, Chemical Physics
Letters, Vol. 17, pp. 535-538, 1972.
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