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Abstract

In the present note we study determinantal arrangements con-
structed with use of the 3-minors of a 3 × 5 generic matrix of inde-
terminates. In particular, we show that certain naturally constructed
hypersurface arrangements in P14C are free.
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1. Introduction

The main aim of the present note is to find new examples of free hyper-
surfaces arrangements constructed as the so-called determinantal arrange-
ments. These arrangements possess many interesting homological proper-
ties and some of them will be outlined. On the other side, computations
related to these arrangements are very involving and this is probably the
main reason why these objects are not well-studied yet. In the note we
focus on determinantal arrangements constructed via the 3 minors of a
3× 5 generic matrix. Before we present our main results, let us summarize
briefly the basic concepts (see [4,5] for more details).

Let C ⊂ Pn be an arrangement of reduced and irreducible hypersurfaces
and let C = V (F ), where F = f1 · · · fd with GCD(fi, fj) = 1. In the note
by Der(S) = S · ∂x0 ⊕ ... ⊕ S · ∂xn the ring of polynomial derivations,
where S = K[x0, ..., xn] and K is a field of characteristic zero. If we take
θ ∈ Der(S), then by Leibniz formula

θ(f1 · · · fd) = f1 · θ(f2 · · · fd) + f2 · · · fd · θ(f1).

Now we can define the ring of polynomial derivations tangent to C as

D(C) = {θ ∈ Der(S) : θ(F ) ∈ F · S}.

An inductive application of the Leibniz formula leads us to the following
characterization of D(C), namely

D(C) = {θ ∈ Der(S) : θ(fi) ∈ fi · S for i ∈ {1, ..., d}}.

We have the following (automatic) decomposition

D(C) ' E ⊕D0(C),

where E is the Euler derivation and D0(C) = syz(JF ) is the module of syzy-
gies for the Jacobian ideal JF = h∂x0F, ..., ∂xnF i of the defining polynomial
F . The freeness of C boils down to a question of whether pdim(S/JF ) = 2,
which is equivalent to JF being Cohen-Macaulay. One can show that a
reduced hypersurfaces C ⊂ Pn given by a homogeneous polynomial F is
free if the following condition holds: the minimal resolution of the Milnor
algebra M(F ) = S/JF has the following short form

0→
nM
i=1

S(−di − (d− 1))→ Sn+1(−d+ 1)→ S,
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where d is the deegre of F and the multiset of integers (d1, ..., dn) with
d1 ≤ ... ≤ dn is called the set of exponents of D0(C), and we will denote it
by exp(C).

The literature devoted to determinantal arrangements is not robust. In
this context it is worth recalling a general result by Yim [6,Theorem 3.3],
where he focuses on determinantal arrangements in P2n−1C defined by the
products of the 2-minors. For i < j we denote the 2-minor of the matrix

N =

Ã
x1 x2 x3 ... xn
y1 y2 y3 ... yn

!

by 4ij = xiyj − xjyi. Consider the arrangement A defined by the polyno-
mial F =

Q
1≤i<j≤n4ij with n ≥ 3. Then the arrangement A is free and a

basis of D(A) can be very explicitly described.
Our research is motivated by the following question [6,Question 3.4].

Question 1.1. Let M be the m × n matrix of indeterminates, and let F
be the product of all maximal minors of M . Is the arrangement defined by
F free for any n > m > 2?

Remark 1.2. First of all, if C : F = 0 is the hypersurface defined by the
determinant of a generic 3× 3 matrix of indeterminates, then C is far away
from being free. Buchweitz and Mond in [1] showed that the arrangement
defined by the product of the maximal minors of a generic n×(n+1) matrix
of indeterminates is free (and it means that we have the freeness property
when m = 3 and n = 4), so the first non-trivial and unsolved case (to the
best of our knowledge) is when m = 3 and n = 5.

Let us consider the 3× 5 matrix of indeterminates

M =

⎛⎜⎝ x1 x2 x3 x4 x5
y1 y2 y3 y4 y5
z1 z2 z3 z4 z5

⎞⎟⎠ .

Now for a triple {i, j, k} with i < j < k we construct the 3-minor
of M by taking i-th, j-th, and k-th column. Using the 3-minors we can
get 10 hypersurfaces Hl ⊂ P14 which are given by the following defining
polynomials:

f1 = −x3y2z1 + x2y3z1 + x3y1z2 − x1y3z2 − x2y1z3 + x1y2z3,

f2 = −x4y2z1 + x2y4z1 + x4y1z2 − x1y4z2 − x2y1z4 + x1y2z4,
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f3 = −x4y3z1 + x3y4z1 + x4y1z3 − x1y4z3 − x3y1z4 + x1y3z4,

f4 = −x4y3z2 + x3y4z2 + x4y2z3 − x2y4z3 − x3y2z4 + x2y3z4,

f5 = −x5y2z1 + x2y5z1 + x5y1z2 − x1y5z2 − x2y1z5 + x1y2z5,

f6 = −x5y3z1 + x3y5z1 + x5y1z3 − x1y5z3 − x3y1z5 + x1y3z5,

f7 = −x5y3z2 + x3y5z2 + x5y2z3 − x2y5z3 − x3y2z5 + x2y3z5,

f8 = −x5y4z1 + x4y5z1 + x5y1z4 − x1y5z4 − x4y1z5 + x1y4z5,

f9 = −x5y4z2 + x4y5z2 + x5y2z4 − x2y5z4 − x4y2z5 + x2y4z5,

f10 = −x5y4z3 + x4y5z3 + x5y3z4 − x3y5z4 − x4y3z5 + x3y4z5.

Using these 3-minors we would like to explore new examples of free
divisors constructed as determinantal arrangements of hypersurfaces.

In order to show the freeness of such arrangements, we are going to use
the following criterion due to Saito (see for instance [4, Theorem 8.1]). Let
C ⊂ Pn be a reduced effective divisor defined by a homogeneous equation
f = 0. Now we define the graded module of all Jacobian syzygies as

AR(f) :=

(
r = (a0, ..., an) ∈ Sn+1 : a0 · ∂x0(f) + ...+ an · ∂xn(f) = 0

)
.

To each Jacobian relation r ∈ AR(f) one can associate a derivation

D(r) = a0 · ∂x0 + ...+ an · ∂xn

that kills f , i.e., D(r)(f) = 0. One can additionally show that in fact
AR(f) is isomorphic, as a graded S-module, with D0(C).

Theorem 1.3 ([4). , Theorem 8.1] The homogeneous Jacobian syzygies
ri = (a0i, . . . , ani) ∈ AR(f) for i ∈ {1, ..., n} form a basis of this S-module
if and only if

φ(f) = c · f,
where φ(f) is the determinant of the (n + 1) × (n + 1) matrix Φ(f) =
(aij)0≤i,j≤n, where r0 = (a00, ..., an0) := (x0, ..., xn) is the first column of
the matrix and c is a non-zero constant.

Saito’s criterion is a very powerful tool under the assumption that we
have a set of potential candidates that might form a basis of AR(f), so our
work boils down to finding appropriate sets of Jacobian relations that will
lead us to a basis of AR(f) for a given arrangement C : f = 0.

Here is our first result of the note.
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Theorem 1.4. Let us consider the following hypersurfaces arrangements

Cj : Fj = f1f2f3f4fj for j ∈ {5, ..., 10}.

Then Cj is free with the exponents (1, ..., 1| {z }
14 times

).

Corollary 1.5. In the setting of the above theorem, one has

reg(S/JFj ) = 13

for each j ∈ {5, ..., 10}, so we reach an upper bound for the regularity
according to the content of [2, Proposition 2.7 (the regularity bound in the
proof)], where by reg(·) we mean the Castelnuovo-Mumford regularity

Remark 1.6. Of course, not every combination of 5 defining equations
fi, fj , fk, fl, fm leads to an example of a free determinantal arrangement.
Consider A : f1f2f3f5f10 = 0, then the minimal free resolution of the
Milnor algebra M(F ) = S/JF with F = f1f2f3f5f10 has the following
form:

0→ S3(−19)→ S4(−18)⊕ S13(−15)→ S15(−14)→ S,

so the projective dimension is equal to 3.
Moreover, not every choice of 5 consecutive hyperplanes leads to a free

arrangement. Consider B : f6f7f8f9f10 = 0, then the minimal free resolu-
tion of the Milnor algebra has the following form

0→ S3(−16)→ S1(−18)⊕ S16(−15)→ S15(−14)→ S,

so B is not free.

The ultimate goal of the present paper is the understand whether we
can expect a positive answer on a (sub)question devoted to the freeness of
the full determinantal arrangement in P14.

Question 1.7. Let us consider the following hypersurfaces arrangements
H : F = 0 defined by F = f1f2f3f4f5f6f7f8f9f10. Is it true that H is free?

Towards approaching the above question, we study mid-step defined ar-
rangements, namely those having the defining equation Qk = f1f2f3f4f5fk
with k ∈ {6, 7, 8, 9, 10}. In particular, we can show the following results.
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Theorem 1.8. Let us consider the hypersurfaces arrangement

Hk : Qk = 0

given by Qk = f1f2f3f4f5fk with k ∈ {6, 7, 8, 9}. Then Hk is free with the
exponents (1, ..., 1| {z }

13 times

, 4).

Corollary 1.9. In the setting of the above theorem, one has

reg(S/JQk
) = 19

for each k ∈ {6, 7, 8, 9}, so we reach an upper bound for the regularity
according to the content of [2, Proposition 2.7 (the regularity bound in the
proof)].

Remark 1.10. If we consider the arrangement H10 defined by Q10, then
it is not free since the minimal free resolution of the Milnor algebra has the
following form:

0→ S3(−22)→ S5(−21)⊕ S12(−18)→ S15(−17)→ S,

which is quite surprising.

Our very ample numerical experiments suggest that the full deter-
minantal arrangement H : f1 · · · f10 = 0 should be free with the ex-
ponents (1, ..., 1| {z }

9 times

, 4, ..., 4| {z }
5 times

). In order to verify our claim we also checked

other larger arrangements of hyperplanes, for instance we can verify that
C : f1f2f3f4f7f8f9 = 0 is free with the exponents (1, ..., 1| {z }

12 times

, 4, 4). However,

the derivations of degree 4 seem to have no natural geometric or algebraic
explanation, so it is very hard to find the basis of derivations for H. We
hope to solve this problem in the nearest future.

2. Proofs

We start with our proof of Theorem 1.4.
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Proof. We are going to apply Saito’s Criterion directly. In order to do
so, we need to find a basis of the S-modules AR(Fj) for each j ∈ {5, ..., 10}.
This means that in each case, we need to find 14 derivations for AR(Fj).
Since for each choice of Fj the procedure goes along the same lines, let us
focus on the first case F5 = f1f2f3f4f5.

We start with a group of (obvious to see) derivations, namely

θ1 = z1 · ∂x1 + z2 · ∂x2 + z3 · ∂x3 + z4 · ∂x4 + z5 · ∂x5 ,
θ2 = z1 · ∂y1 + z2 · ∂y2 + z3 · ∂y3 + z4 · ∂y4 + z5 · ∂y5 ,
θ3 = y1 · ∂x1 + y2 · ∂x2 + y3 · ∂x3 + y4 · ∂x4 + y5 · ∂x5 ,
θ4 = y1 · ∂z1 + y2 · ∂z2 + y3 · ∂z3 + y4 · ∂z4 + y5 · ∂z5 ,
θ5 = x1 · ∂y1 + x2 · ∂y2 + x3 · ∂y3 + x4 · ∂y4 + x5 · ∂y5 ,
θ6 = x1 · ∂z1 + x2 · ∂z2 + x3 · ∂z3 + x4 · ∂z4 + x5 · ∂z5 ,
θ7 = x2 · ∂x5 + y2 · ∂y5 + z2 · ∂z5 ,
θ8 = x1 · ∂x5 + y1 · ∂y5 + z1 · ∂z5 ,
θ9 = y1 · ∂y1 + y2 · ∂y2 + y3 · ∂y3 + y4 · ∂y4 + y5 · ∂y5
−z1∂z1 − z2∂z2 − z3∂z3 − z4∂z4 − z5∂z5 .

We have additionally 5 non-obvious-to-see relations among the partials
derivatives (we have found them with use of Singular [3]), namely:

θ10 = 5x5 · ∂x5 + 5y5 · ∂y5 − z1 · ∂z1 − z2 · ∂z2 − z3 · ∂z3 − z4 · ∂z4 + 4z5 · ∂z5 ,
θ11 = 5x4 · ∂x4 + 5y4 · ∂y4 − 3z1 · ∂z1 − 3z2 · ∂z2 − 3z3 · ∂z3 + 2z4 · ∂z4 − 3z5 · ∂z5 ,
θ12 = 5x3 · ∂x3 − 3y1 · ∂y1 − 3y2 · ∂y2 + 2y3 · ∂y3 − 3y4 · ∂y4 − 3y5 · ∂y5 + 5z3 · ∂z3 ,
θ13 = 5x1 · ∂x1 + 5y1 · ∂y1 + z1 · ∂z1 − 4z2 · ∂z2 − 4z3 · ∂z3 − 4z4 · ∂z4 − 4z5 · ∂z5 ,

and

θ14 = 5x2 · ∂x2 − 3y1 · ∂y1 + 2y2 · ∂y2 − 3y3 · ∂y3 − 3y4 · ∂y4 − 3y5 · ∂y5
−z1 · ∂z1 + 4z2 · ∂z2 − z3 · ∂z3 − z4 · ∂z4 − z5 · ∂z5 .

Now we are going to construct Saito’s matrix. In order to do so,
let us write the coefficients of all θi’s as the columns, and for the Eu-
ler derivation E =

P5
i=1 xi · ∂xi +

P5
j=1 yj · ∂yj +

P5
i=k zk · ∂zk we write

r0 = (x1, ..., x5, y1, ..., y5, z1, ..., z5)
t.
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Then we get the following matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 z1 0 y1 0 0 0 0 0 0 0 5x1 0 0 0
x2 z2 0 y2 0 0 0 0 0 5x2 0 0 0 0 0
x3 z3 0 y3 0 0 0 0 5x3 0 0 0 0 0 0
x4 z4 0 y4 0 0 0 5x4 0 0 0 0 0 0 0
x5 z5 0 y5 0 0 5x5 0 0 0 x2 0 x1 0 0
y1 0 z1 0 y1 0 0 0 −3y1 −3y1 0 5y1 0 x1 0
y2 0 z2 0 y2 0 0 0 −3y2 2y2 0 0 0 x2 0
y3 0 z3 0 y3 0 0 0 2y3 −3y3 0 0 0 x3 0
y4 0 z4 0 y4 0 0 5y4 −3y4 −3y4 0 0 0 x4 0
y5 0 z5 0 y5 0 5y5 0 −3y5 −3y5 y2 0 y1 x5 0
z1 0 0 0 −z1 y1 −z1 −3z1 0 −z1 0 z1 0 0 x1
z2 0 0 0 −z2 y2 −z2 −3z2 0 4z2 0 −4z2 0 0 x2
z3 0 0 0 −z3 y3 −z3 −3z3 5z3 −z3 0 −4z3 0 0 x3
z4 0 0 0 −z4 y4 −z4 2z4 0 −z4 0 −4z4 0 0 x4
z5 0 0 0 −z5 y5 4z5 −3z5 0 −z5 z2 −4z5 z1 0 x5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By straightforward computation, we obtain

Det(A) = 9375 · F5,

which completes the proof. 2

Now we are going to sketch the proof of Theorem 1.8.

Proof. Once again, we are going to apply Saito’s Criterion. We focus
on the case k = 7 since the other cases can be shown in an analogical way.
The proof is heavily based on Singular computations and experiments.
We can find polynomial derivations that preserves H, namely

θ1 = z1 · ∂x1 + z2 · ∂x2 + z3 · ∂x3 + z4 · ∂x4 + z5 · ∂x5 ,
θ2 = z1 · ∂y1 + z2 · ∂y2 + z3 · ∂y3 + z4 · ∂y4 + z5 · ∂y5 ,
θ3 = y1 · ∂x1 + y2 · ∂x2 + y3 · ∂x3 + y4 · ∂x4 + y5 · ∂x5 ,
θ4 = y1 · ∂z1 + y2 · ∂z2 + y3 · ∂z3 + y4 · ∂z4 + y5 · ∂z5 ,
θ5 = 3x5 · ∂x5 + 3y5 · ∂y5 − z1 · ∂z1 − z2 · ∂z2 − z3 · ∂z3 − z4 · ∂z4 + 2z5 · ∂z5 ,
θ6 = 2x4 · ∂x4 + 2y4 · ∂y4 − z1 · ∂z1 − z2 · ∂z2 − z3 · ∂z3 + z4 · ∂z4 − z5 · ∂z5 ,
θ7 = 3x3 · ∂x3 + 3y3 · ∂y3 − 2z1 · ∂z1 − 2z2 · ∂z2 + z3 · ∂z3 − 2z4 · ∂z4 − 2z5 · ∂z5 ,
θ8 = 6x2 · ∂x2 + 6y2 · ∂y2 − 5z1 · ∂z1 + z2 · ∂z2 − 5z3 · ∂z3 − 5z4 · ∂z4 − 5z5 · ∂z5 ,
θ9 = x2 · ∂x5 + y2 · ∂y5 + z2 · ∂z5 ,
θ10 = 3x1 · ∂x1 + 3y1 · ∂y1 + z1 · ∂z1 − 2z2 · ∂z2 − 2z3 · ∂z3 − 2z4 · ∂z4 − 2z5 · ∂z5 ,
θ11 = x1 · ∂y1 + x2 · ∂y2 + x3 · ∂y3 + x4 · ∂y4 + x5 · ∂y5 ,
θ12 = x1 · ∂z1 + x2 · ∂z2 + x3 · ∂z3 + x4 · ∂z4 + x5 · ∂z5 ,

θ13 = y1 · ∂y1 + y2 · ∂y2 + y3 · ∂y3 + y4 · ∂y4 + y5 · ∂y5 − z1 · ∂z1 − z2 · ∂z2
-z3 · ∂z3 − z4 · ∂z4 − z5 · ∂z5 ,

and
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θ14 = 3x1x3y2z2 · ∂x2 + 180x1x2y3z3 · ∂x3 + (192x1x2y4z3 − 9x1x3y4z2
+12x1x3y2z4 − 12x1x2y3z4) · ∂x4 + (15x1x3y5z2 − 12x1x3y2z5) · ∂x5
+(3x3y1y2z2 + 60x2y1y2z3 − 60x1y22z3) · ∂y2 + (3x3y1y3z2 − 3x1y23z2
−120x3y1y2z3 + 180x2y1y3z3 + 120x1y2y3z3) · ∂y3 + (12x4y1y3z2
−9x3y1y4z2 − 12x1y3y4z2 − 132x4y1y2z3 + 192x2y1y4z3 + 132x1y2y4z3
+12x3y1y2z4 − 12x2y1y3z4) · ∂y4 + (15x3y1y5z2 − 12x5y1y3z2 + 12x1y3y5z2
+60x2y1y5z3 − 60x1y2y5z3 − 12x3y1y2z5 + 12x2y1y3z5 − 12x1y2y3z5)
· ∂y5 + (4x1y3z22 − x3y1z

2
2 + 4x3y2z1z2 − 4x2y3z1z2 + 176x2y2z1z3

−204x2y1z2z3 + 28x1y2z2z3) · ∂z2 + (204x2y3z1z3 − 28x3y2z1z3 − 24x2y1z23
+28x1y2z

2
3 + 181x1y3z2z3 − 181x3y1z2z3) · ∂z3 + (8x4y3z1z2 − 8x3y4z1z2

−40x4y2z1z3 + 216x2y4z1z3 − 180x4y1z2z3 + 180x1y4z2z3 + 12x3y2z1z4
−12x2y3z1z4 − x3y1z2z4 − 8x1y3z2z4 − 24x2y1z3z4 + 40x1y2z3z4) · ∂z4
+(16x3y5z1z2 − 16x5y3z1z2 − 16x5y2z1z3 + 192x2y5z1z3 − 72x5y1z2z3
+12x1y5z2z3 − 12x3y2z1z5 + 12x2y3z1z5 − x3y1z2z5 + 4x1y3z2z5
−132x2y1z3z5 + 16x1y2z3z5) · ∂z5 .

We claim that the set {E, θ1, θ2, ..., θ14} gives us a basis for D(H). It is
enough to observe that the determinant of Saito’s matrix A is equal to

Det(A) = 23328 ·Q7,

which completes the proof. 2

3. Further numerical experiments

In order to understand better the geometry of determinantal hyperplane
arrangements, we decided to investigate all possible arrangements C given
by triplets Fijk = fifjfk and given by 4-tuples Fijkl = fifjfkfl provided
that the indices are pairwise distinct. Our first observation is the following.

Proposition 3.1. Let C ⊂ P14C be a determinantal arrangement defined
by the equation Fijk = fifjfk, where i, j, k ∈ {1, ..., 10} and the indices are
pairwise distinct. Then C is never free.
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Proof. Using a simple Singular routine, we examined all choices of
indices, obtaining 120 determinantal arrangements, and in each case
pdim(S/JFijk) > 2, which completes the proof. 2

After that, we focused on determinantal arrangements C given by
Fijkl = fifjfkfl. We have exactly 210 such arrangements, and among them,
we have exactly 5 special arrangements, namely

a) C1 ⊂ P14C given by F1234,

b) C2 ⊂ P14C given by F1567,

c) C3 ⊂ P14C given by F2589,

d) C4 ⊂ P14C given by F36810,

e) C5 ⊂ P14C given by F47910.

These arrangements can be viewed as determinantal arrangements con-
structed as products of the maximal minors of appropriate generic 3 × 4
matrix of indeterminates. Thus, due to Buchweitz and Mond [1] arrange-
ments Ci with i ∈ {1, 2, 3, 4, 5} are free.

Another important class of hypersurface arrangements was introduced
by Buśe, Dimca, Schenck, and Sticlaru, and such arrangements are called
nearly-free.

Definition 3.2. ([2, Definition 2.6]) A reduced hypersurface C ⊂ Pn
C given

by F = 0 is nearly-free if its Milnor algebra M(F ) admits a graded free
resolution of the form

0→ S(−dn−d)→ S(−dn−d+1)⊕
Ã
⊕n−1i=0 S(−di−d+1)

!
→ Sn+1(d+1)→ S

for some integers d0 ≤ d1 ≤ d2 ≤ . . . ≤ dn, where d = deg(F ).

Next, we checked whether some of the remaining 205 determinantal
arrangements C given by Fijkl = 0 are nearly-free. It turns out that among
205 arrangements we found 58 having this peculiar property that their
Milnor algebras M(Fijkl) have the following minimal resolution:

0→ S(−15)→ S15(−12)→ S15(−11)→ S,

so these are not nearly-free arrangements, but to some extend are close to
them. Having a complete picture of the minimal resolution we can also
calculate the regularity of S/JFijkl which is equal to

reg(S/JFijkl) = 12.



A note on free determinantal hypersurface arrangements in P14C 1103

Acknowledgments

We would like to warmly thank Piotr Pokora for his useful comments and
suggestions.
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[5] H. Schenck and Ş. O. Tohǎneanu, "Freeness of Conic-Line Arrangements in
P2", Commentarii Mathematici Helvetici, vol. 84, pp. 235-258, 2009.

[6] A. Yim, “Homological properties of determinantal arrangements”, Journal of 
Algebra, vol. 471, pp. 220-239, 2017. doi: 10.1016/j.jalgebra.2016.09.019



1104 Marek Janasz and Paulina Wísniewska
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