Graph folding and chromatic number

Francis Joseph H. Campeña (D)
De La Salle University, Philippines
and
Severino V. Gervacio
De La Salle University, Philippines
Received: November 2022. Accepted: March 2023

Abstract

Given a connected graph G, identify two vertices if they have a common neighbor and then reduce the resulting multiple edges to simple edges. Repeat the process until the result is a complete graph. This process is called folding a graph.

We show here that any connected graph G which is not complete folds onto the connected graph K_{p} where $p=\chi(G)$, the chromatic number of G. Furthermore, the set of all integers p such that G folds onto K_{p} consist of consecutive integers, the smallest of which is $\chi(G)$.

One particular result of this study is that a sharp upper bound was obtained on the largest complete graph which a graph can be folded onto.

Keywords: Chromatic number, Folding, Bipartite graph, Complete graph

AMS 2020 Subject Classification: 05C50, 05C76.

1. Introduction

Consider the path P_{3} of order 3 . We may imagine the two edges of the path to be pieces of thin rectangular plates 1 unit long hinged at the common vertex of the two edges of P_{3}. An illustration is given in Figure 1.

Figure 1: Folding the path P_{3}

As is usually done, the vertex-set of a graph G is denoted by $V(G)$, and its edge-set is denoted by $E(G)$. In a graph G, the neighbor-set of a vertex x, denoted by $N_{G}(x)$ or simply $N(x)$, is defined as the set of all vertices y adjacent to x.

Definition 1. To fold a graph G means to identify two non-adjacent vertices x and y satisfying $N(x) \cap N(y) \neq \emptyset$ and then reducing multiple edges to simple edges. We say that G folds onto the graph H if H can be obtained from G by applying a sequence (possibly empty) of foldings.

It follows from the definition that if G folds onto G_{1} and G_{1} folds onto G_{2} then G folds onto G_{2}. Also, every graph folds onto itself (by the empty sequence of foldings).

Since any two distinct vertices in a complete graph are adjacent, then the complete graph K_{n} folds onto K_{n} only and to no other graph.

By a sequence of foldings any connected graph folds onto some complete graph because each time we fold, we decrease the number of pairs of nonadjacent vertices.

The above definition of folding can be found in [5]. It was first defined by the author in 2001. However, this concept was defined even earlier by

Cook and Evans in [3] in 1979 from the notion of graph homomorphisms. In their paper, they defined the following. An elementary homomorphism is an identification of two non-adjacent vertices. By the identification of nonadjacent vertices u and v in a graph G, we mean constructing another graph G^{\prime} from G by removing the vertices u and v and all edges incident with u and v from G and adding a vertex w and edges from w to all vertices adjacent to either u or v. A homomorphism for us means a sequence of elementary homomorphisms, and a simple fold is an elementary homomorphism in which the identified vertices have a common neighbor. Kholy and Esawy [4] defined a similar concept in 2005 and they also used the term folding.

As an example, let us fold the Petersen graph shown in Figure 2 onto the complete graph K_{5}. Shown in the same figure is the result of identifying 1 and b, and reducing multiple edges to simple edges.

Petersen graph

$\{1, b\}$-folding

Figure 2: Folding the Petersen graph

For convenience let $\{x, y\}$-folding mean identifying the non-adjacent vertices x and y with $N(x) \cap N(y) \neq \emptyset$ and then reducing multiple edges to simple edges.

One way of folding the Petersen graph onto the complete graph K_{5} is by applying the following sequence of foldings:

$$
\begin{array}{ll}
1 & :\{1, b\} \text {-folding } \\
2 & :\{2, c\} \text {-folding } \\
3 & :\{3, d\} \text {-folding } \\
4 & :\{4, e\} \text {-folding } \\
5 & :\{5, a\} \text {-folding }
\end{array}
$$

We show here that if a connected graph has chromatic number p then it folds onto the complete graph K_{p}. Furthermore, orders of the complete
graphs onto which connected graph folds form a set of consecutive integers, the smallest of which is the chromatic number of the graph.

2. Folding graphs onto complete graphs

An assignment of colors to the vertices of a graph from a set of k colors such that adjacent vertices get different colors is called a proper k-vertex coloring of the graph, or simply, a k-coloring.

More formally, a k-coloring of a graph G is a mapping $\lambda: V(G) \rightarrow$ $\{1,2, \ldots, k\}$ such that $\lambda(a) \neq \lambda(b)$ if $a b \in E(G)$. The smallest integer k for which a graph G has a k-coloring is called the chromatic number of G, denoted by $\chi(G)$. Note that if a graph G has a c-coloring, then $\chi(G) \leq c$.

If G is a graph with connected components $G_{1}, G_{2}, \ldots, G_{c}$ then a sequence of foldings will transform G to a disjoint union of c complete graphs because each G_{i} folds onto some complete graph by applying a sequence of foldings. For this reason, we confine ourselves to folding connected graphs.

Our first theorem gives the effect of folding on the chromatic number of a graph. The result in Theorem 1 was stated without proof as a corollary to an analogous Theorem from [6] in terms of elementary homomorphism. We provide an explicit proof of this result for completeness.

Theorem 1. Let H be obtained from G by an $\{a, b\}$-folding. Then $\chi(G) \leq$ $\chi(H) \leq 1+\chi(G)$.

Proof. Let H be obtained from G by an $\{a, b\}$-folding. Let $\chi(G)=p$ and $\chi(H)=q$. Consider a p-coloring α of G using p. Define a $(p+1)$ coloring β of H as follows: If $x \in V(H) \backslash\{a, b\}$, let $\beta(x)=\alpha(x)$. Color the vertex $v=\{a, b\}$ in H arising from the identification of a and b using the color $\beta(v)=p+1$. Then $\chi(H) \leq p+1$. Now consider a coloring γ of H using q colors. Define a q-coloring λ of G as follows: If $x \notin\{a, b\}$, let $\lambda(x)=\gamma(x)$. Let $\lambda(a)=\lambda(b)=\gamma(v)$, where v is the vertex obtained by identifying a and b. Then $\chi(G) \leq q$. Hence, $\chi(G) \leq \chi(H) \leq \chi(G)+1$.

The next theorem states that we can properly choose a folding so that the chromatic number is preserved.

Theorem 2. If G is a connected graph which is not complete, then there exists vertices $a, b \in V(G)$ with $N(a) \cap N(b) \neq \emptyset$ such that the graph G_{1} obtained from G by the $\{a, b\}$-folding satisfies $\chi\left(G_{1}\right)=\chi(G)$.

Proof. Let G be a connected graph which is not complete. If G is a cycle C_{n}, then $n \geq 4$. Let $1,2, \ldots, n$ be the consecutive vertices of C_{n}. By the $\{1, n-1\}$-folding followed by the $\{n, 2\}$-folding we get the cycle C_{n-2} in case $n>4$ and K_{2} in case $n=4$. In both cases, the chromatic number is preserved.

If G is not a cycle, then $\chi(G) \leq \Delta$, the maximum degree of a vertex in G according to Brooks' theorem [1]. Let $\chi(G)=c$ and let $\lambda: V(G) \rightarrow$ $\{1,2, \ldots, c\}$ be a coloring of G. Denote by S_{i} the set of vertices in G with color $i, i=1,2, \ldots, c$. Let x be a vertex in G with $\operatorname{deg}(x)=\Delta$. Since $\Delta \geq c$, then x must have two neighbor a and b belong to a common set S_{i}. Let G_{1} be the graph resulting from the $\{a, b\}$-folding. Clearly, G_{1} is c-colorable and so $\chi\left(G_{1}\right) \leq c$. By Theorem 1, $\chi\left(G_{1}\right) \geq \chi(G)$. Therefore, $\chi\left(G_{1}\right)=\chi(G)$.

Theorem 3. A connected graph folds onto the complete graph K_{2} if and only if it is bipartite. Furthermore, a connected bipartite graph folds only onto K_{2} and to no other complete graph.

Proof. Let G be a connected bipartite graph. Then $V(G)$ can be partitioned into two sets A and B such that every edge of G is of the form $x y$ where $x \in A$ and $y \in B$. By Theorem $4, G$ folds onto K_{2} since $\chi(G)=2$. Let $a, b \in V(G)$ and $N(a) \cap N(b) \neq \emptyset$. Without loss of generality we may assume that both a and b belong to A. If G_{1} is the result of the $\{a, b\}$ folding of G then clearly G_{1} is bipartite. Thus, if $G=G_{0} \rightarrow G_{1} \rightarrow G_{2} \rightarrow$ $\cdots \rightarrow G_{k}=K_{p}$, then $p=2$ since each G_{i} is a bipartite graph. Therefore, G folds onto K_{2} and to no other complete graph.

Conversely, let G be a connected graph that folds onto K_{2}. By Theorem $1, \chi(G) \leq \chi\left(K_{2}\right)=2$. Therefore, $\chi(G)=1$ or 2 . If $\chi(G)=1, G$ is the trivial graph and it cannot fold onto K_{2}. It follows that $\chi(G)=2$ and so G is bipartite.

Figure 3 illustrates a way of folding the planar grid $P_{3} \times P_{3}$ onto the complete graph K_{2} using a sequence of 7 foldings.

Figure 3: Folding $P_{3} \times P_{3}$ onto K_{2}

It is known, and easy to verify, that the chromatic number of the Petersen graph is 3 . The Petersen graph folds onto K_{3}, as our next result will show.

Theorem 4. If G is a connected graph with chromatic number $\chi(G)=p$, then G folds onto the complete graph K_{p} and to no other smaller complete graph.

Proof. The theorem is trivially true if G is complete so assume that G is not complete. By Lemma 2, there exist vertices a and b in the graph G with $N(a) \cap N(b) \neq \emptyset$ such that the graph G_{1} obtained from G by the $\{a, b\}$-folding has the same chromatic number as G. We repeatedly apply the Lemma until we obtain a complete graph with chromatic number $\chi(G)$. Thus the order of the complete graph is $\chi(G)$. Theorem 1 states that folding a graph never decreases the chromatic number. Therefore, the smallest
order of a complete graph onto which G folds is $\chi(G)$.

We have seen that the Petersen graph folds onto the complete graph K_{5} and onto K_{3} as well. Thus, in general, a connected graph folds onto some complete graph that is not unique.

Theorem 5. Let G be a connected graph and let q be the largest order of a complete graph onto which G folds. Then for every integer r with $\chi(G) \leq r \leq q, G$ folds onto K_{r}.

Proof. Let $G=G_{0} \rightarrow G_{1} \rightarrow G_{2} \rightarrow \cdots \rightarrow G_{k}=K_{p}$ be a sequence of foldings that folds G onto K_{q}. By Theorem 1, $\chi\left(G_{i}\right) \leq \chi\left(G_{i+1}\right) \leq \chi\left(G_{i}\right)+1$ for $i=0,1, \ldots, k-1$ Therefore for each r satisfying $\chi(G) \leq r \leq q$, there exists a graph G_{i} in the sequence $G_{0}, G_{1}, \ldots, G_{k}$ with $\chi\left(G_{i}\right)=r$. By Theorem $4, G_{i}$ folds onto K_{r}. Since G folds onto G_{i} and G_{i} folds onto K_{r}, then G folds onto K_{r}.

The sum of two graphs G and H, denoted by $G+H$, is formed by taking the disjoint union of G and H and then adding all edges of the form $a b$ where $a \in V(G)$ and $b \in V(H)$.

Theorem 6. Let G and H be connected graphs. Then $G+H$ folds onto K_{n} if and only if for some integers p and q with $p+q=n, G$ folds onto K_{p} and H folds onto K_{q}.

Proof. In the graph $G+H$, every vertex in G is adjacent to each vertex in H. Therefore folding $G+H$ is accomplished by identifying vertices in G or vertices in H only.

3. Largest complete folding of a graph

We have seen that every connected graph folds onto a set of complete graphs whose orders form a set of consecutive integers. Thus, there is a largest complete folding of a connected graph.

Theorem 7. Let G be a connected graph of order n and size m. If G folds onto K_{r} then

$$
\chi(G) \leq r \leq\left\lfloor\frac{1}{2}(3+\sqrt{8(m-n)+9})\right\rfloor
$$

Proof. We already know that $r \geq \chi(G)$ because of Theorem 4. Let $G=G_{0} \rightarrow G_{1} \rightarrow \cdots \rightarrow G_{k}=K_{r}$ be a folding of G onto some complete graph K_{r}. In each step, the order decreases by 1 and the size (number of edges) decreases by at least 1 . Therefore we must have $m-k \geq\binom{ n-k}{2}$. Setting $r=n-k$, we have $m-n+r \geq\binom{ r}{2}$, which gives

$$
\begin{aligned}
\binom{r}{2} & \leq m-n+r \\
r(r-1) & \leq 2(m-n)+2 r \\
r^{2}-3 r-2(m-n) & \leq 0 \\
r & \leq \frac{1}{2}(3+\sqrt{8(m-n)+9}) \\
r & \leq\left\lfloor\frac{1}{2}(3+\sqrt{8(m-n)+9})\right\rfloor
\end{aligned}
$$

This completes the proof of the theorem.
The bound given in the theorem is sharp because its value is 5 for the Petersen graph and the Petersen graph folds onto K_{5}.

References

[1] R. L. Brooks, "On colouring the nodes of a netw ork", Mathenatical Proceedngs of theCarmridgePhilosoprical Socity,vol. 37, pp. 194-197, 1941
[2] F. J. H. Campeña and S. V. Gervacio, "On the fold thickness of graphs", Arabianjormal of Mathenatics doi: 10.1007/s40065-020-00276-z
[3] C. R. Cook, and A. B. Evans, Graph folding, In: Proceedngs of the 10th South Eastern Corferenceon Contbinatorics, Graph Theory, and Computing pp. 305-314, 1979.
[4] E. El-K holy and A. El-Esaw y, "Graph folding of some special graphs", Journal of Matheratics and Statistics, vol. 1, no. 1, pp. 66-70, 2005. doi: 10.3844/jmssp.2005.66.70
[5] S. V. Gervacio, R. C. Guerrero, and H. M. R ara, "Folding wheels and fans", Graphs and Combinatorics, vol. 18, no. 4, pp. 731-737, 2002. doi: 10.1007/s003730200058
[6] F. Harary, S. Hedetniemi, and G. Prins, "An Interpolation Theorem for Graphical Homomorphisms", Portugglie Mathematica, vol. 20, pp. 453-462, 1967.

Francis Joseph H. Campeña
Department of Mathematics and Statistics
De La Salle University
2401 Taft Avenue, 0922 Manila
Philippines
e-mail: francis.campena@dlsu.edu.ph
Corresponding author
and
Severino V. Gervacio
Department of Mathematics and Statistics
De La Salle University
2401 Taft Avenue, 0922 Manila
Philippines
e-mail: severino.gervacio@dlsu.edu.ph

