On the total edge irregularity strength of certain classes of cycle related graphs

Saranya A. S.
University College (Affiliated to University of Kerala), India
and
Santhosh Kumar K. R.
University College, India
Received: November 2022. Accepted : March 2023

Abstract

For a graph $G=(V, E)$, an edge irregular total k-labeling is a labeling of the vertices and edges of G with labels from the set $\{1,2, \ldots, k\}$ such that any two different edges have distinct weights. The sum of the label of edge $u v$ and the labels of vertices u and v determine the weight of the edge uv. The smallest possible k for which the graph G has an edge irregular total k-labeling is called the total edge irregularity strength of G. We determine the exact value of the total edge irregularity strength for some cycle related graphs.

Keywords: edge irregularity strength; total edge irregularity strength; corona product of graphs; biwheel; triangular snake graph; graphs obtained by duplication of edges and vertices of cycles.

Subject Classification Code: 05C78

1. Introduction

Consider a simple undirected graph $G=(V, E)$. An edge irregular total labeling $f: V \cup E \rightarrow\{1,2, \ldots, k\}$ of G was defined by Bača et al.[2] as the labeling of vertices and edges of G in such a way that for any different edges e and f, weights of e and f are distinct. The weight of an edge $e=x y$ is $w t(x y)=f(x)+f(x y)+f(y)$. The minimum k for which the graph G has an edge irregular total k labeling is called the total edge irregularity strength of the graph $G, \operatorname{tes}(G)$.
The lower bound and upper bound of the total edge irregularity strength of any graph is given by Bača et al. in [2] as:
Theorem 1.1. [2] Let $G=(V, E)$ be a graph with vertex set V and a non-empty edge set E. Then $\left\lceil\frac{|E|+2}{3}\right\rceil \leq t e s(G) \leq|E|$.
Theorem 1.2. [2] For any graph G with maximum degree $\Delta=\Delta(G)$, $\operatorname{tes}(G) \geq \max \left\{\left\lceil\frac{|E|+2}{3}\right\rceil,\left\lceil\frac{\Delta(G)+1}{2}\right\rceil\right\}$.

The total edge irregularity strength of path P_{n}, cycle C_{n}, star S_{n}, wheel W_{n} and friendship graph F_{n} were determined in [2] as: $\operatorname{tes}\left(P_{n}\right)=\operatorname{tes}\left(C_{n}\right)=$ $\left\lceil\frac{n+2}{3}\right\rceil ; \operatorname{tes}\left(S_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil ;$ tes $\left(W_{n}\right)=\left\lceil\frac{2 n+2}{3}\right\rceil ;$ and tes $\left(F_{n}\right)=\left\lceil\frac{3 n+2}{3}\right\rceil$.
The following conjecture that gives the exact value of total edge irregularity strength of an arbitrary graph G was posed by Ivancǒ and Jendrol in [4]. They also proved the conjecture to be true for all trees.

Conjecture 1.3. [4] Let G be an arbitrary graph different from K_{5}. Then $\operatorname{tes}(G)=\max \left\{\left\lceil\frac{\lceil E \mid+2}{3}\right\rceil,\left\lceil\frac{\Delta+1}{2}\right\rceil\right\}$.

Jendroĺ, Miškuf, and Soták in [5] found the exact value of total edge irregularity strength of complete graphs and complete bipartite graphs as: $\operatorname{tes}\left(K_{5}\right)=5$; for $n \geq 6$, tes $\left(K_{n}\right)=\left\lceil\frac{n^{2}-n-4}{6}\right\rceil$; and tes $\left(K_{m, n}\right)=\left\lceil\frac{m n+2}{3}\right\rceil$, for $n, m \geq 2$. Many other results on total edge irregularity strength can be found in [1], [6], [7], [8]. In this paper, we determine the total edge irregularity strength of the corona graph $C_{n} \odot m K_{1}$, double triangular snake graph $D\left(T_{n}\right)$, biwheel $B_{2 n}$ and the graphs obtained by duplicating edges and vertices of a cycle.
For the basic definitions of graph theory, we refer [3],[9].
Definition 1.4. The corona product of two graphs G and H, denoted by, $G \odot H$, is a graph obtained by taking one copy of G (which has n vertices) and n copies $H_{1}, H_{2}, \ldots, H_{n}$ of H and then joining the $i^{\text {th }}$ vertex of G to every vertex in H_{i}.

Definition 1.5. A triangular snake T_{n} is obtained from a path $w_{1} w_{2} \ldots w_{n+1}$ by joining w_{i} and w_{i+1} to a new vertex v_{i} for $1 \leq i \leq n$. A double triangular snake $D\left(T_{n}\right)$ is obained from T_{n} by adding a new vertex u_{i} for $1 \leq i \leq n$ and edges $u_{i} w_{i}$ and $u_{i} w_{i+1}$ for $1 \leq i \leq n$.

Definition 1.6. Biwheel is a graph obtained from an even cycle of length $2 n$ such that odd numbered vertices are joined to a new vertex and even numbered vertices are joined to another new vertex. It is denoted by $B_{2 n}$.

Definition 1.7. Duplication of an edge $e=u v$ by a new vertex w in a graph G produces a new graph G^{\prime} such that $N(w)=\{u, v\}$.

Definition 1.8. Duplication of a vertex v_{k} by a new edge $e=v_{k}{ }^{\prime} v_{k}{ }^{\prime \prime}$ " in a graph G produces a new graph G^{*} such that $N\left(v_{k}{ }^{\prime}\right) \cap N\left(v_{k}{ }^{\prime \prime}\right)=v_{k}$.

2. Total Edge Irregularity Strength of some Cycle Related Graphs.

Corona product $C_{n} \odot m K_{1}$ is the graph obtained by taking one copy of C_{n} and n copies of $m K_{1}$ and then joining each vertex of C_{n} to the vertices of $m K_{1}$. In the following theorem we determine the exact value of the total edge irregularity strength of corona product $C_{n} \odot m K_{1}, m \geq 1$.

Theorem 2.1. Let $C_{n} \odot m K_{1}$ be a corona graph with $n \geq 3$ and $m \geq 1$. Then tes $\left(C_{n} \odot m K_{1}\right)=\left\lceil\frac{(m+1) n+2}{3}\right\rceil$.

Proof. The corona product $C_{n} \odot m K_{1}$ is a graph with the vertex set $V\left(C_{n} \odot m K_{1}\right)=\left\{u_{i}, v_{i}^{j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and edge set $E\left(C_{n} \odot m K_{1}\right)=\left\{u_{i} u_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}^{j} ; 1 \leq i \leq n, 1 \leq j \leq\right.$ $m\} \cup\left\{u_{n} u_{1}\right\}$. The graph $C_{n} \odot m K_{1}$ has $(m+1) n$ vertices and $(m+1) n$ edges. The maximum degree of $C_{n} \odot m K_{1}, \Delta\left(C_{n} \odot m K_{1}\right)$ is $m+2$. Then, by Theorem 1.2, tes $\left(C_{n} \odot m K_{1}\right) \geq \max \left\{\left\lceil\frac{(m+1) n+2}{3}\right\rceil,\left\lceil\frac{m+3}{2}\right\rceil\right\}$. Therefore, $\operatorname{tes}\left(C_{n} \odot m K_{1}\right) \geq\left\lceil\frac{(m+1) n+2}{3}\right\rceil$. To prove the equality, it is sufficient to prove the existence of a total edge irregular $\left\lceil\frac{(m+1) n+2}{3}\right\rceil$-labeling. Let $k=\left\lceil\frac{(m+1) n+2}{3}\right\rceil$.
Define total labeling $f: V\left(C_{n} \odot m K_{1}\right) \cup E\left(C_{n} \odot m K_{1}\right) \rightarrow\{1,2, \ldots, k\}$ as follows:

$$
f\left(u_{i}\right)= \begin{cases}1+(i-1)\left\lceil\frac{m}{2}\right\rceil ; & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\ k-(n-i)\left\lceil\frac{m}{2}\right\rceil ; & \left\lceil\frac{n}{2}\right\rceil<i \leq n .\end{cases}
$$

For $1 \leq j \leq m$;

$$
f\left(v_{i}^{j}\right)= \begin{cases}1+(i-1)\left\lceil\frac{m}{2}\right\rceil ; & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\ k-(n-i)\left\lceil\frac{m}{2}\right\rceil ; & \left\lceil\frac{n}{2}\right\rceil<i \leq n .\end{cases}
$$

Case 1: When m is even.

$$
\begin{gathered}
f\left(u_{i} u_{i+1}\right)= \begin{cases}\frac{m}{2}+i ; & 1 \leq i<\left\lceil\frac{n}{2}\right\rceil \\
k-\left(\frac{m}{2}+n-i\right) ; & \left\lceil\frac{n}{2}\right\rceil<i<n,|E| \equiv 0(\bmod 3) \\
k-\left(\frac{m}{2}+n-i-1\right) ; & \left\lceil\frac{n}{2}\right\rceil<i<n,|E| \equiv 1(\bmod 3) \\
k-\left(\frac{m}{2}+n-i+1\right) ; & \left\lceil\frac{n}{2}\right\rceil<i<n,|E| \equiv 2(\bmod 3) .\end{cases} \\
f\left(u_{\left\lceil\frac{n}{2}\right\rceil} u_{\left\lceil\frac{n}{2}\right\rceil+1}\right)= \begin{cases}\left\lfloor\frac{k}{2}\right\rfloor ; & |E| \equiv 0(\bmod 3) \\
\left\lceil\frac{k}{2}\right\rceil ; & |E| \equiv 1(\bmod 3) \\
\left\lceil\frac{k}{2}\right\rceil-1 ; & |E| \equiv 2(\bmod 3) .\end{cases}
\end{gathered}
$$

When n is even,

$$
f\left(u_{n} u_{1}\right)= \begin{cases}\left\lfloor\frac{k}{2}\right\rfloor+1 ; & |E| \equiv 0(\bmod 3),|E| \equiv 1(\bmod 3) \\ \frac{k}{2} ; & |E| \equiv 2(\bmod 3) .\end{cases}
$$

When n is odd,

$$
f\left(u_{n} u_{1}\right)= \begin{cases}\left\lceil\frac{k}{2}\right\rceil+\frac{m}{2}+1 ; & |E| \equiv 0(\bmod 3),|E| \equiv 1(\bmod 3) \\ \left\lceil\frac{k}{2}\right\rceil+\frac{m}{2} ; & |E| \equiv 2(\bmod 3) .\end{cases}
$$

For $1 \leq j \leq m$;
$f\left(u_{i} v_{i}{ }^{j}\right)= \begin{cases}i+j-1 ; & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\ k-(m-j)-(n-i)-1 ; & \left\lceil\frac{n}{2}\right\rceil<i \leq n,|E| \equiv 0(\bmod 3) \\ k-(m-j)-(n-i) ; & \left\lceil\frac{n}{2}\right\rceil<i \leq n,|E| \equiv 1(\bmod 3) \\ k-(m-j)-(n-i)-2 ; & \left\lceil\frac{n}{2}\right\rceil<i \leq n,|E| \equiv 2(\bmod 3) .\end{cases}$
Case 2: When m is odd.

$$
f\left(u_{i} u_{i+1}\right)= \begin{cases}\left\lceil\frac{m}{2}\right\rceil ; & 1 \leq i<\left\lceil\frac{n}{2}\right\rceil \\ k-\left\lceil\frac{m}{2}\right\rceil ; & \left\lceil\frac{n}{2}\right\rceil<i<n,|E| \equiv 0(\bmod 3) \\ k-\left\lfloor\frac{m}{2}\right\rfloor ; & \left\lceil\frac{n}{2}\right\rceil<i<n,|E| \equiv 1(\bmod 3) \\ k-\left\lceil\frac{m}{2}\right\rceil-1 ; & \left\lceil\frac{n}{2}\right\rceil<i<n,|E| \equiv 2(\bmod 3)\end{cases}
$$

$$
f\left(u_{\left\lceil\frac{n}{2}\right\rceil} u_{\left\lceil\frac{n}{2}\right\rceil+1}\right)= \begin{cases}\left\lfloor\frac{k}{2}\right\rfloor ; & |E| \equiv 0(\bmod 3) \\ \frac{k}{2} ; & |E| \equiv 1(\bmod 3) \\ \frac{k}{2}-1 ; & |E| \equiv 2(\bmod 3)\end{cases}
$$

When n is even,

$$
f\left(u_{n} u_{1}\right)= \begin{cases}\left\lfloor\frac{k}{2}\right\rfloor+1 ; & |E| \equiv 0(\bmod 3), \quad|E| \equiv 1(\bmod 3) \\ \frac{k}{2} ; & |E| \equiv 2(\bmod 3)\end{cases}
$$

When n is odd,

$$
f\left(u_{n} u_{1}\right)= \begin{cases}\left\lfloor\frac{k}{2}\right\rfloor+\left\lceil\frac{m}{2}\right\rceil+1 ; & |E| \equiv 0(\bmod 3), \quad|E| \equiv 1(\bmod 3) \\ \frac{k}{2}+\left\lceil\frac{m}{2}\right\rceil ; & |E| \equiv 2(\bmod 3) .\end{cases}
$$

For $1 \leq j \leq m ;$

$$
f\left(u_{i} v_{i}^{j}\right)= \begin{cases}j ; & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\ k-m+j-1 ; & \left\lceil\frac{n}{2}\right\rceil<i \leq n,|E| \equiv 0(\bmod 3) \\ k-m+j ; & \left\lceil\frac{n}{2}\right\rceil<i \leq n,|E| \equiv 1(\bmod 3) \\ k-m+j-2 ; & \left\lceil\frac{n}{2}\right\rceil<i \leq n,|E| \equiv 2(\bmod 3)\end{cases}
$$

Then the edge weight function $w t_{f}: E\left(C_{n} \odot m K_{1}\right) \rightarrow\{3,4, \ldots,|E|+2\}$ is as follows:

$$
\begin{gathered}
w t_{f}\left(u_{i} v_{i}^{j}\right)= \begin{cases}(i-1)(m+1)+j+2 ; & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, 1 \leq j \leq m \\
i(m+1)-(m-j)+2 ; & \left\lceil\frac{n}{2}\right\rceil<i \leq n, 1 \leq j \leq m\end{cases} \\
w t_{f}\left(u_{i} u_{i+1}\right)= \begin{cases}(m+1) i+2 ; & 1 \leq i<\left\lceil\frac{n}{2}\right\rceil \\
(m+1) i+3 ; & \left\lceil\frac{n}{2}\right\rceil<i<n\end{cases} \\
w t_{f}\left(u_{\left\lceil\frac{n}{2}\right\rceil} u_{\left\lceil\frac{n}{2}+1\right\rceil}\right)=\left\lceil\frac{n}{2}\right\rceil(m+1)+2 . \\
w t_{f}\left(u_{n} u_{1}\right)=\left\lceil\frac{n}{2}\right\rceil(m+1)+3 .
\end{gathered}
$$

The edge weight function $w t_{f}$ is bijective and hence f is an edge irregular total k - labeling. Therefore, tes $\left(C_{n} \odot m K_{1}\right) \leq k$.

Theorem 2.2. Let $D\left(T_{n}\right)$ be a double triangular snake graph. Then for $n \geq 1$, tes $\left(D\left(T_{n}\right)\right)=\left\lceil\frac{5 n+2}{3}\right\rceil$.

Proof. Double triangular snake graph $D\left(T_{n}\right)$ is a graph with vertex set $V\left(D\left(T_{n}\right)\right)=\left\{w_{i} ; 1 \leq i \leq n+1\right\} \cup\left\{u_{i} ; 1 \leq i \leq n\right\} \cup\left\{v_{i} ; 1 \leq i \leq n\right\}$ and edge set $E\left(D\left(T_{n}\right)\right)=\left\{w_{i} w_{i+1} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} w_{i} ; 1 \leq i \leq n\right\} \cup$ $\left\{v_{i} w_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} w_{i+1} ; 1 \leq i \leq n\right\} \cup\left\{v_{i} w_{i+1} ; 1 \leq i \leq n\right\}$. The graph $D\left(T_{n}\right)$ has $3 n+1$ vertices and $5 n$ edges. Then by Theorem (1.2), $\operatorname{tes}\left(D\left(T_{n}\right)\right) \geq\left\lceil\frac{5 n+2}{3}\right\rceil$. To prove the equality, we find the existence of a total edge irregular $\left\lceil\frac{5 n+2}{3}\right\rceil$ - labeling. Let $k=\left\lceil\frac{5 n+2}{3}\right\rceil$.
Define total labeling $f: V\left(D\left(T_{n}\right)\right) \cup E\left(D\left(T_{n}\right)\right) \rightarrow\{1,2, \ldots, k\}$ as follows:

Case 1: When $n=1,2$.

$$
\begin{gathered}
f\left(w_{i}\right)= \begin{cases}i ; & 1 \leq i \leq n \\
i+1 ; & i=n+1 .\end{cases} \\
f\left(u_{i}\right)=2 i-1 ; \quad 1 \leq i \leq n . \\
f\left(v_{i}\right)=2 i ; \quad 1 \leq i \leq n . \\
f\left(v_{i} w_{i}\right)=f\left(u_{i} w_{i}\right)=2 i-1 ; \quad 1 \leq i \leq n .
\end{gathered}
$$

For $1 \leq i \leq n$;

$$
\begin{gathered}
f\left(w_{i} w_{i+1}\right)= \begin{cases}i ; & \text { if } n=1 \\
2 i ; & \text { if } n=2 .\end{cases} \\
f\left(u_{i} w_{i+1}\right)=f\left(v_{i} w_{i+1}\right)= \begin{cases}i+1 ; & \text { if } n=1 \\
i+2 ; & \text { if } n=2 .\end{cases}
\end{gathered}
$$

Case 2: When $n \geq 3$.

$$
\begin{gathered}
f\left(w_{i}\right)= \begin{cases}i ; & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \\
k-n+i-1 ; & \left\lfloor\frac{n}{2}\right\rfloor+1<i \leq n+1 .\end{cases} \\
f\left(u_{i}\right)= \begin{cases}2 i-1 ; & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
k-2(n-i)-1 ; & \left\lfloor\frac{n}{2}\right\rfloor<i \leq n .\end{cases} \\
f\left(v_{i}\right)= \begin{cases}2 i ; & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
k-2(n-i) ; & \left\lfloor\frac{n}{2}\right\rfloor<i \leq n .\end{cases} \\
f\left(w_{i} w_{i+1}\right)= \begin{cases}3 i-1 ; & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
3 i+2(n-k)+1 ; & \left\lfloor\frac{n}{2}\right\rfloor+1<i \leq n .\end{cases}
\end{gathered}
$$

$$
\begin{aligned}
f\left(v_{i} w_{i}\right)=f\left(u_{i} w_{i}\right) & = \begin{cases}2 i-1 ; & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
3 n-2 k+2 i ; & \left\lfloor\frac{n}{2}\right\rfloor+1<i \leq n .\end{cases} \\
f\left(u_{i} w_{i+1}\right)=f\left(v_{i} w_{i+1}\right) & = \begin{cases}2 i+1 ; & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
3 n-2 k+2 i+2 ; & \left\lfloor\frac{n}{2}\right\rfloor+1 \leq i \leq n .\end{cases}
\end{aligned}
$$

For $i=\left\lfloor\frac{n}{2}\right\rfloor+1$ and n is even;

$$
f\left(w_{i} w_{i+1}\right)= \begin{cases}\left\lceil\frac{k}{2}\right\rceil+1 ; & n \equiv 0(\bmod 3), n \equiv 1(\bmod 3) \\ \frac{k}{2}+2 ; & n \equiv 2(\bmod 3) .\end{cases}
$$

For $i=\left\lfloor\frac{n}{2}\right\rfloor+1$ and n is odd;

$$
f\left(w_{i} w_{i+1}\right)= \begin{cases}\left\lfloor\frac{k}{2}\right\rfloor ; & n \equiv 0(\bmod 3), n \equiv 1(\bmod 3) \\ \left\lceil\frac{k}{2}\right\rceil ; & n \equiv 2(\bmod 3) .\end{cases}
$$

For $i=\left\lfloor\frac{n}{2}\right\rfloor+1$ and n is even;

$$
f\left(v_{i} w_{i}\right)=f\left(u_{i} w_{i}\right)= \begin{cases}\left\lceil\frac{k}{2}\right\rceil+\frac{n}{2}-1 ; & n \equiv 0(\bmod 3), n \equiv 1(\bmod 3) \\ \frac{k}{2}+\frac{n}{2} ; & n \equiv 2(\bmod 3) .\end{cases}
$$

For $i=\left\lfloor\frac{n}{2}\right\rfloor+1$ and n is odd;
$f\left(v_{i} w_{i}\right)=f\left(u_{i} w_{i}\right)= \begin{cases}\left\lfloor\frac{k}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor-1 ; & n \equiv 0(\bmod 3), n \equiv 1(\bmod 3) \\ \left\lfloor\frac{k}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor ; & n \equiv 2(\bmod 3) .\end{cases}$
Then the edge weight function $w t_{f}: E\left(D\left(T_{n}\right)\right) \rightarrow\{3,4, \ldots .,|E|+2\}$ is as follows:

$$
\begin{array}{cc}
w t_{f}\left(u_{i} w_{i}\right)=5 i-2 ; & 1 \leq i \leq n \\
w t_{f}\left(v_{i} w_{i}\right)=5 i-1 ; & 1 \leq i \leq n \\
w t_{f}\left(w_{i} w_{i+1}\right)=5 i ; & 1 \leq i \leq n \\
w t_{f}\left(u_{i} w_{i+1}\right)=5 i+1 ; & 1 \leq i \leq n \\
w t_{f}\left(v_{i} w_{i+1}\right)=5 i+2 ; & 1 \leq i \leq n
\end{array}
$$

The edge weight function $w t_{f}$ is bijective and hence f is a edge irregular total k - labeling. Therefore, $\operatorname{tes}\left(D\left(T_{n}\right)\right) \leq k$.

Theorem 2.3. Let $B_{2 n}$ be a biwheel. Then for $n \geq 2$, $\operatorname{tes}\left(B_{2 n}\right)=\left\lceil\frac{4 n+2}{3}\right\rceil$.

Proof. Biwheel $B_{2 n}$ is a graph with vertex set $V\left(B_{2 n}\right)=\left\{u_{i} ; 1 \leq i \leq\right.$ $2 n\} \cup\left\{v_{1}, v_{2}\right\}$ and edge set $E\left(B_{2 n}\right)=\left\{u_{i} u_{i+1} ; 1 \leq i \leq 2 n\right\} \cup\left\{u_{2 n} u_{1}\right\} \cup$ $\left\{v_{1} u_{i} ; i\right.$ is odd $\} \cup\left\{v_{2} u_{i} ; i\right.$ is even $\}$. The graph $B_{2 n}$ has $2 n+2$ vertices and $4 n$ edges. Then by Theorem (1.2), tes $\left(B_{2 n}\right) \geq\left\lceil\frac{4 n+2}{3}\right\rceil$. Let $k=\left\lceil\frac{4 n+2}{3}\right\rceil$. Then $\operatorname{tes}\left(B_{2 n}\right) \geq k$. To prove the equality, we find the existence of a total edge irregular k-labeling.
Define total labeling $f: V\left(B_{2 n}\right) \cup E\left(B_{2 n}\right) \rightarrow\{1,2, \ldots, k\}$ as follows:

$$
\left.\begin{array}{c}
f\left(u_{i}\right)= \begin{cases}\left\lfloor\frac{i}{2}\right\rfloor+1 ; & 1 \leq i \leq n \\
k-n+\left\lfloor\frac{i}{2}\right\rfloor ; & n<i \leq 2 n .\end{cases} \\
f\left(v_{1}\right)=1, f\left(v_{2}\right)=k .
\end{array}\right\} \begin{array}{ll}
\left\lceil\left(u_{i} u_{i+1}\right)= \begin{cases}\left\lceil\frac{n}{2}\right\rceil ; & 1 \leq i<n \\
k-\left\lceil\frac{n}{2}\right\rceil ; & n<i<2 n \text { and } n \equiv 0(\bmod 3) \\
k-\left\lceil\frac{n}{2}\right\rceil+1 ; & n<i<2 n \text { and } n \equiv 1(\bmod 3) \\
k-\left\lceil\frac{n}{2}\right\rceil-1 ; & n<i<2 n \text { and } n \equiv 2(\bmod 3) .\end{cases} \right. \\
f\left(u_{n} u_{n+1}\right)= \begin{cases}\left\lfloor\frac{k}{2}\right\rfloor ; & n \equiv 0(\bmod 3) \text { and } n \equiv 1(\bmod 3) \\
\frac{k}{2}-1 ; & n \equiv 2(\bmod 3) .\end{cases} \\
f\left(u_{2 n} u_{1}\right)= \begin{cases}\left\lfloor\frac{k}{2}\right\rfloor+1 ; & n \equiv 0(\bmod 3) \text { and } n \equiv 1(\bmod 3) \\
\frac{k}{2} ; & n \equiv 2(\bmod 3) .\end{cases}
\end{array}
$$

For $1 \leq i \leq n$ and i is odd, $f\left(v_{1} u_{i}\right)=1$.
For $n<i \leq 2 n$ and i is odd,

$$
f\left(v_{1} u_{i}\right)= \begin{cases}\left\lfloor\frac{k}{2}\right\rfloor ; & n \equiv 0(\bmod 3) \text { and } n \equiv 1(\bmod 3) \\ \frac{k}{2}-1 ; & n \equiv 2(\bmod 3) .\end{cases}
$$

For $1 \leq i \leq n$ and i is even,

$$
f\left(v_{2} u_{i}\right)= \begin{cases}\left\lfloor\frac{k}{2}\right\rfloor+1 ; & n \equiv 0(\bmod 3) \text { and } n \equiv 1(\bmod 3) \\ \frac{k}{2} ; & n \equiv 2(\bmod 3) .\end{cases}
$$

For $n<i \leq 2 n$ and i is even,

$$
f\left(v_{2} u_{i}\right)= \begin{cases}k-1 ; & n \equiv 0(\bmod 3) \\ k ; & n \equiv 1(\bmod 3) \\ k-2 ; & n \equiv 2(\bmod 3) .\end{cases}
$$

Then the edge weight function $w t_{f}: E\left(B_{2 n}\right) \rightarrow\{3,4, \ldots,|E|+2\}$ is as follows:

For $1 \leq i \leq n$ and i is odd; $w t_{f}\left(v_{1} u_{i}\right)=\left\lfloor\frac{i}{2}\right\rfloor+3$.
For $1 \leq i<n$; $w t_{f}\left(u_{i} u_{i+1}\right)=i+\left\lceil\frac{n}{2}\right\rceil+2$.
For $n<i \leq 2 n$ and i is odd; $w t_{f}\left(v_{1} u_{i}\right)=\left\lfloor\frac{i}{2}\right\rfloor+n+2$.
$w t_{f}\left(u_{n} u_{n+1}\right)=2 n+2$.
$w t_{f}\left(u_{2 n} u_{1}\right)=2 n+3$.
For $1 \leq i \leq n$ and i is even; $w t_{f}\left(v_{2} u_{i}\right)=\left\lfloor\frac{i}{2}\right\rfloor+2 n+3$.
For $n<i<2 n$; $w t_{f}\left(u_{i} u_{i+1}\right)=i+\left\lfloor\frac{3 n}{2}\right\rfloor+3$.
For $n<i \leq 2 n$ and i is even; $w t_{f}\left(v_{1} u_{i}\right)=\left\lfloor\frac{i}{2}\right\rfloor+3 n+2$.

The edge weight function $w t_{f}$ is bijective and hence f is a edge irregular total k - labeling. Therefore, tes $\left(B_{2 n}\right) \leq k$.

Theorem 2.4. Let $C_{n}{ }^{\prime}$ be the graph obtained by duplicating each edge by a vertex in a cycle C_{n}. Then $\operatorname{tes}\left(C_{n}{ }^{\prime}\right)=n+1$.

Proof. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertices of the cycle C_{n} and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the added vertices to obtain $C_{n}{ }^{\prime}$. Then $E\left(C_{n}{ }^{\prime}\right)=\left\{u_{i} u_{i}+1 ; 1 \leq i<\right.$ $n\} \cup\left\{u_{n} u_{1}\right\} \cup\left\{u_{i} v_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{i+1} v_{i} ; 1 \leq i<n\right\} \cup\left\{u_{1} v_{n}\right\}$.
The graph $C_{n}{ }^{\prime}$ has $3 n$ edges and $2 n$ vertices. By Theorem 1.2, tes $\left(C_{n}{ }^{\prime}\right) \geq$ $\left\lceil\frac{3 n+2}{3}\right\rceil=n+1$. To prove the equality, we define a total edge irregular $n+1-$ labeling. Define total labeling $f: V\left(C_{n}{ }^{\prime}\right) \cup E\left(C_{n}{ }^{\prime}\right) \rightarrow\{1,2, \ldots, n+1\}$ as follows:

$$
\begin{gathered}
f\left(u_{i}\right)=i ; \quad 1 \leq i \leq n . \\
f\left(v_{i}\right)= \begin{cases}1 ; & i=1 \\
i+1 ; & 1<i \leq n .\end{cases} \\
f\left(u_{i} u_{i+1}\right)= \begin{cases}i ; & 1 \leq i<\left\lceil\frac{n}{2}\right\rceil \\
i+2 ; & \left\lceil\frac{n}{2}\right\rceil \leq i<n .\end{cases} \\
f\left(u_{n} u_{1}\right)=f\left(u_{1} v_{n}\right)= \begin{cases}\frac{n}{2}-1 ; & n \text { is even } \\
\left\lceil\frac{n}{2}\right\rceil ; & n \text { is odd. }\end{cases} \\
f\left(u_{i} v_{i}\right)= \begin{cases}1 ; & i=1 \\
i-1 ; & 1<i<\left\lceil\frac{n}{2}\right\rceil \\
i+1 ; & \left\lceil\frac{n}{2}\right\rceil \leq i \leq n .\end{cases}
\end{gathered}
$$

$$
f\left(u_{i+1} v_{i}\right)= \begin{cases}2 ; & i=1 \\ i ; & 1<i<\left\lceil\frac{n}{2}\right\rceil \\ i+2 ; & \left\lceil\frac{n}{2}\right\rceil \leq i \leq n\end{cases}
$$

Then the edge weight function $w t_{f}: E\left(C_{n}{ }^{\prime}\right) \rightarrow\{3,4, \ldots,|E|+2\}$ is as follows:
$w t\left(u_{1} v_{1}\right)=3$.
For $1<i<\left\lceil\frac{n}{2}\right\rceil ; w t_{f}\left(u_{i} v_{i}\right)=3 i$.
For $\left\lceil\frac{n}{2}\right\rceil \leq i \leq n ; w t_{f}\left(u_{i} v_{i}\right)=3 i+2$.
For $1 \leq i<\left\lceil\frac{n}{2}\right\rceil ; w t_{f}\left(u_{i} u_{i+1}\right)=3 i+1$.
For $\left\lceil\frac{n}{2}\right\rceil \leq i<n ; w t_{f}\left(u_{i} u_{i+1}\right)=3 i+3$.
$w t_{f}\left(u_{2} v_{1}\right)=5$.
$w t_{f}\left(u_{n} u_{1}\right)=3\left\lceil\frac{n}{2}\right\rceil$.
$w t_{f}\left(u_{1} v_{n}\right)=3\left\lceil\frac{n}{2}\right\rceil+1$.
For $1<i<\left\lceil\frac{n}{2}\right\rceil ; w t_{f}\left(u_{i+1} v_{i}\right)=3 i+2$.
For $\left\lceil\frac{n}{2}\right\rceil \leq i<n ; w t_{f}\left(u_{i+1} v_{i}\right)=3 i+4$.

The edge weight function $w t_{f}$ is bijective and hence f is a edge irregular total k - labeling. Therefore, tes $\left(C_{n}{ }^{\prime}\right) \leq k$.

Theorem 2.5. Let $C_{n}{ }^{*}$ be the graph obtained by duplicating each vertex by an edge in a cycle C_{n}. Then tes $\left(C_{n}{ }^{*}\right)=\left\lceil\frac{4 n+2}{3}\right\rceil$.

Proof. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertices of the cycle C_{n} and $\left\{v_{1}, v_{2}, \ldots, v_{2 n}\right\}$ be the added vertices to obtain $C_{n}{ }^{*}$. Then $E\left(C_{n}{ }^{*}\right)=\left\{u_{i} u_{i+1} ; 1 \leq i<\right.$ $n\} \cup\left\{u_{n} u_{1}\right\} \cup\left\{u_{i} v_{2 i-1} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} v_{2 i} ; 1 \leq i \leq n\right\} \cup\left\{v_{2 i-1} v_{2 i} ; 1 \leq i \leq n\right\}$. The graph $C_{n}{ }^{*}$ has $4 n$ edges and $3 n$ vertices. By Theorem 1.2, tes $\left(C_{n}{ }^{*}\right) \geq$ $\left\lceil\frac{4 n+2}{3}\right\rceil$. Let $k=\left\lceil\frac{4 n+2}{3}\right\rceil$. To prove the equality, we prove the existence of a total edge irregular k - labeling. Define total labeling $f: V\left(C_{n}{ }^{*}\right) \cup$ $E\left(C_{n}{ }^{*}\right) \rightarrow\{1,2, \ldots, k\}$ as follows:

Case 1: When n is even.

$$
f\left(u_{i}\right)= \begin{cases}i ; & 1 \leq i \leq \frac{n}{2} \\ k-n+i, & \frac{n}{2}<i \leq n\end{cases}
$$

For $1 \leq i \leq n ; \quad f\left(v_{2 i-1}\right)=i$ and $f\left(v_{2 i}\right)=k-n+i$.
(i) $n \equiv 0(\bmod 3)$ and $n \equiv 1(\bmod 3)$.

$$
\left.\begin{array}{c}
f\left(u_{i} u_{i+1}\right)= \begin{cases}1 ; & 1 \leq i<\frac{n}{2} \\
\left\lfloor\frac{k}{2}\right\rfloor+1 ; & i=\frac{n}{2} \\
k-1 ; & \frac{n}{2}<i<n \text { and } n \equiv 0(\bmod 3) \\
k ; & \frac{n}{2}<i<n \text { and } n \equiv 1(\bmod 3)\end{cases} \\
f\left(u_{n} u_{1}\right)=\left\lfloor\frac{k}{2}\right\rfloor
\end{array}\right\} \begin{array}{ll}
f\left(u_{i} v_{2 i-1}\right)= \begin{cases}1 ; & 1 \leq i \leq \frac{n}{2} \\
\left\lfloor\frac{k}{2}\right\rfloor+1 ; & \frac{n}{2}<i \leq n .\end{cases} \\
f\left(u_{i} v_{2 i}\right)= \begin{cases}\left\lfloor\frac{k}{2}\right\rfloor-1 ; & 1 \leq i \leq \frac{n}{2} \\
k-1 ; & \frac{n}{2}<i \leq n \text { and } n \equiv 0(\bmod 3) \\
k ; & \frac{n}{2}<i \leq n \text { and } n \equiv 1(\bmod 3) .\end{cases} \\
f\left(v_{2 i-1} v_{2 i}\right)= \begin{cases}\left\lfloor\frac{k}{2}\right\rfloor ; & 1 \leq i \leq \frac{n}{2} \\
\left\lfloor\frac{k}{2}\right\rfloor+2 ; & \frac{n}{2}<i \leq n\end{cases}
\end{array}
$$

(ii) $n \equiv 2(\bmod 3)$.

$$
\begin{aligned}
& f\left(u_{i} u_{i+1}\right)= \begin{cases}1 ; & 1 \leq i<\frac{n}{2} \\
\frac{k}{2} ; & i=\frac{n}{2} \\
k-2 ; & \frac{n}{2}<i<n\end{cases} \\
& f\left(u_{n} u_{1}\right)=\frac{k}{2}-1 \\
& f\left(u_{i} v_{2 i-1}\right)= \begin{cases}1 ; & 1 \leq i \leq \frac{n}{2} \\
\frac{k}{2} ; & \frac{n}{2}<i \leq n .\end{cases} \\
& f\left(u_{i} v_{2 i}\right)= \begin{cases}\frac{k}{2}-2 ; & 1 \leq i \leq \frac{n}{2} \\
k-2 ; & \frac{n}{2}<i \leq n .\end{cases} \\
& f\left(v_{2 i-1} v_{2 i}\right)= \begin{cases}\frac{k}{2}-1 ; & 1 \leq i \leq \frac{n}{2} \\
\frac{k}{2}+1 ; & \frac{n}{2}<i \leq n .\end{cases}
\end{aligned}
$$

Then the edge weight function $w t_{f}: E\left(C_{n}{ }^{*}\right) \rightarrow\{3,4, \ldots,|E|+2\}$ is as follows:
For $1 \leq i \leq \frac{n}{2} ; w t_{f}\left(u_{i} v_{2 i-1}\right)=2 i+1$.
For $1 \leq i<\frac{n}{2} ; w t_{f}\left(u_{i} u_{i+1}\right)=2 i+2$.

For $1 \leq i \leq \frac{n}{2} ; w t_{f}\left(u_{i} v_{2 i}\right)=2 i+n$.
For $1 \leq i \leq \frac{n}{2}$; $w t_{f}\left(v_{2 i-1} v_{2 i}\right)=2 i+n+1$.
$w t_{f}\left(u_{n} u_{1}\right)=2 n+2$.
$w t_{f}\left(u_{\frac{n}{2}} u_{\frac{n}{2}+1}\right)=2 n+3$.
For $\frac{n}{2}<i \leq n ; w t_{f}\left(u_{i} v_{2 i-1}\right)=2 i+n+2$.
For $\frac{n}{2}<i \leq n ; w t_{f}\left(v_{2 i-1} v_{2 i}\right)=2 i+n+3$.
For $\frac{n}{2}<i \leq n$; $w t_{f}\left(u_{i} v_{2 i}\right)=2 i+2 n+2$.
For $\frac{n}{2}<i<n ; w t_{f}\left(u_{i} u_{i+1}\right)=2 i+2 n+3$.

Case 2: When n is odd.

$$
f\left(u_{i}\right)= \begin{cases}i ; & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\ k-n+i, & \left\lceil\frac{n}{2}\right\rceil<i \leq n\end{cases}
$$

For $1 \leq i \leq n ; \quad f\left(v_{2 i-1}\right)=i$ and $f\left(v_{2 i}\right)=k-n+i$.
(i) When $n \equiv 0(\bmod 3)$ and $n \equiv 1(\bmod 3)$.

$$
\left.\left.\begin{array}{c}
f\left(u_{i} u_{i+1}\right)= \begin{cases}1 ; & 1 \leq i<\left\lceil\frac{n}{2}\right\rceil \\
\left\lfloor\frac{k}{2}\right\rfloor+2 ; & i=\left\lceil\frac{n}{2}\right\rceil \\
k-1 ; & \left\lceil\frac{n}{2}\right\rceil<i<n \text { and } n \equiv 0(\bmod 3) \\
k ; & \left\lceil\frac{n}{2}\right\rceil<i<n \text { and } n \equiv 1(\bmod 3) .\end{cases} \\
f\left(u_{n} u_{1}\right)=\left\lfloor\frac{k}{2}\right\rfloor+2 .
\end{array}\right\} \begin{array}{ll}
1 ; & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
\left\lfloor\frac{k}{2}\right\rfloor+2 ; & \left\lceil\frac{n}{2}\right\rceil<i \leq n .
\end{array}\right\}
$$

(ii) When $n \equiv 2(\bmod 3)$.

$$
f\left(u_{i} u_{i+1}\right)= \begin{cases}1 ; & 1 \leq i<\left\lceil\frac{n}{2}\right\rceil \\ \frac{k}{2}+1 ; & i=\left\lceil\frac{n}{2}\right\rceil \\ k-2 ; & \left\lceil\frac{n}{2}\right\rceil<i<n\end{cases}
$$

$$
\begin{gathered}
f\left(u_{n} u_{1}\right)=\frac{k}{2}+1 . \\
f\left(u_{i} v_{2 i-1}\right)= \begin{cases}1 ; & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
\frac{k}{2}+1 ; & \left\lceil\frac{n}{2}\right\rceil<i \leq n\end{cases} \\
f\left(u_{i} v_{2 i}\right)= \begin{cases}\frac{k}{2}-1 ; & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
k-2 ; & \left\lceil\frac{n}{2}\right\rceil<i \leq n\end{cases} \\
f\left(v_{2 i-1} v_{2 i}\right)= \begin{cases}\frac{k}{2} ; & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
\frac{k}{2}+2 ; & \left\lceil\frac{n}{2}\right\rceil<i \leq n\end{cases}
\end{gathered}
$$

Then the edge weight function $w t_{f}: E\left(C_{n}{ }^{*}\right) \rightarrow\{3,4, \ldots,|E|+2\}$ is as follows:
For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil ; w t_{f}\left(u_{i} v_{2 i-1}\right)=2 i+1$.
For $1 \leq i<\left\lceil\frac{n}{2}\right\rceil ; w t_{f}\left(u_{i} u_{i+1}\right)=2 i+2$.
For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil ; w t_{f}\left(u_{i} v_{2 i}\right)=2 i+n+1$.
For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil ; w t_{f}\left(v_{2 i-1} v_{2 i}\right)=2 i+n+2$.
$w t_{f}\left(u_{n} u_{1}\right)=2 n+4$.
$w t_{f}\left(u_{\left\lceil\frac{n}{2}\right\rceil} u_{\left\lceil\frac{n}{2}\right\rceil+1}\right)=2 n+5$.
For $\left\lceil\frac{n}{2}\right\rceil<i \leq n ; w t_{f}\left(u_{i} v_{2 i-1}\right)=2 i+n+3$.
For $\left\lceil\frac{n}{2}\right\rceil<i \leq n ; w t_{f}\left(v_{2 i-1} v_{2 i}\right)=2 i+n+4$.
For $\left\lceil\frac{n}{2}\right\rceil<i \leq n ; w t_{f}\left(u_{i} v_{2 i}\right)=2 i+2 n+2$.
For $\left\lceil\frac{n}{2}\right\rceil<i<n ; w t_{f}\left(u_{i} u_{i+1}\right)=2 i+2 n+3$.
In both the cases, the edge weight function $w t_{f}: E\left(C_{n}{ }^{*}\right) \rightarrow\{3,4, \ldots,|E|+$ $2\}$ is bijective and hence f is a edge irregular total k - labeling. Therefore, $\operatorname{tes}\left(C_{n}{ }^{*}\right) \leq k$.

Acknowledgement

The first author thank the University Grants Commission of India for providing financial support for carrying out research through the Junior Research Fellowship (JRF) scheme.

References

[1] Ahmad A, Baca. M. and Siddiqui M. K., Irregular total labeling of disjoint union of prisms and cycles, Australasian J.Combin., Vol. 6, No. 59 (1), pp. 98-106, 2009.
[2] Bača. M, Jendrol S., Mirka Miller, Ryan J., On Irregular Total Labeling, Discrete Math., Vol. 307, pp. 1378-1388, 2007.
[3] Chartrand. G, Ping Zhang, Introduction to Graph Theory, Tata McGrawHill, 2010.
[4] Ivančo J., Jendrol' S., The total edge irregularity strength of trees, Discuss. Math. Graph Theory, Vol. 26, pp. 449-456, 2006.
[5] Jendrol' S., Miskǔf J. and Soták R., Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Mathematics, Vol. 310 (3), pp. 400-407, 2010.
[6] Jeyanthi P. and Sudha A., Total edge irregularity strength of disjoint union of double wheel graphs, Proyecciones J. Math., Vol. 35, pp. 251262, 2016.
[7] Nurdin, A. N. M. Salman and E. T. Baskoro, The total edge-irregular strengths of the corona product of paths with some graphs, J. Combin. Math. Combin. Comput., Vol. 65 (2008), 163-175, 2008.
[8] Siddiqui. M. K., On total edge irregularity strength of categorical product of cycle and path, AKCE J. Graphs. Combin., Vol. 9, No.1, pp. 43-52, 2012.
[9] Douglas B. West, Introduction to Graph Theory, Pearson, $2^{\text {nd }}$ Edition, 2015.

Saranya A. S.

Department of Mathematics, University College (Affiliated to University of Kerala), Thiruvananthapuarm, Kerala, India
e-mail: saranya3290@gmail.com
Corresponding author
and
Santhosh Kumar K. R.
Department of Mathematics, University College, Thiruvananthapuram, Kerala, India
e-mail: santhoshkumargwc@gmail.com

