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Abstract

Let G = (V,E) be a simple graph with vertex set V and edges set E.
A 1−1 function f : V → N is said to induce a k-Zumkeller graph G if
the induced edge function f∗ : E → N defined by f∗(xy) = f(x)f(y)
satisfies the following conditions:

1. f∗(xy) is a Zumkeller number for every xy ∈ E.

2. The total distinct Zumkeller numbers on the edges of G is k.

In this article, we compute k-Zumkeller graphs through the graph
splitting operation on path, cycle and star graphs.
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1. Introduction

Let G = (V,E) be a finite, simple, connected graph where V is the vertex
set and E is the edge set of G. A labeled graph G is a graph obtained
by assigning labels, traditionally by integers, to the vertices of V and/or
edges of E. Alexander Rosa [11] first discussed the labeled graphs in the
year 1967. Thousands of research articles have been published in the last
60 years using various labeling techniques. The terminologies and recent
progress of labeled graphs are refered from Gallian [8].

Graph labeling is one of the most fascinating and vibrant area of graph
theory. Labeled graphs are becoming an increasingly useful family of math-
ematical models for broad and wide range of applications. The applications
of labeled graphs are found in [5]. The cryptography concepts depend on
graph labeling techniques. One can find in [6, 10] the application of labeled
graphs in cryptography. Graph labeling research is becoming popular and
interesting nowadays. It has grown into an important branch of inter-
disciplinary mathematics-science study. Investigating the existence of one
particular type of graph labeling to complex graph families is a potential
area of research.

Reinhard Zumkeller introduced the Zumkeller numbers in 2003 by gen-
eralising the concept of practical numbers [13]. These numbers can be
seen in the A083207 edition of the encyclopedia of integer sequences. The
Zumkeller numbers and their partitions can be seen in [7]. The Zumkeller
numbers play a vital role in theory of numbers. The properties of the
Zumkeller numbers are referred to [15].

In the year 2015, Balamurugan et al.,[1] investigated a new variant
of Zumkeller labeling known as k-Zumkeller labeling by minimizing the
number of distinct Zumkeller numbers. It is the process of using appropriate
functions to assign k different Zumkeller numbers to the graphs edges. In
2018, Balamurugan et al.,[2] extended the existence of k-Zumkeller graph to
few more graphs such as path, cycle, comb graphs, ladder graphs and square
grid. Recently in the year 2021, Basher in [3, 4] showed the existence of
k-Zumkeller graph of super subdivision of some graphs, cartesian products
of cycles and paths. They have also proved that the tensor products of
cycles and paths admit k-Zumkeller labeling with k = 2, 4, 5, 6, 7, 8, 9.

Splitting graph of a graph was introduced by Sampathkumar and Wa-
likar in 1980s [12]. If G is a graph with p vertices and q edges, then the
splitting graph of G has 2p vertices and 3q edges. If a given graph G is
tree or it contains an even cycle then its splitting graph is a planar graph.
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If G contains an odd cycle of length n, n ≥ 5 or non-outer planar or cycle
with a chord then its splitting graph is a non-planar graph. This impor-
tant property of a splitting graph provides a variety of interesting planar
graphs. Because of this novelty property we have been motivated to find
their k-Zumkeller labeling. In addition to that the splitting graphs have
interesting applications. For example, here we consider the transmission of
signals through a cell phone tower. Apparently all cell phone towers of a
particular company would be interlinked to each other in a serial way and
all towers in a row are connected. Additionally there could be link towers
which would act as normal stand-alone towers as well as a back-up link
for a main tower. When there is a maintenance activity going on or when
there is an outage in one of the main towers, the link/back-up one of the
failed tower will connect to its adjacent main towers so that it by-passes
the failed main tower in between. This set up resembles the splitting graph
and avoids break in linkage even any one of the main tower fails.

Harary [9] and West [14] have been cited for the graph concepts and
terminologies of this paper. The splitting graphs of path, cycle and star
and their k-Zumkeller graphs have been computed in this research article
with appropriate illustrations.

2. Preliminaries

The basic concepts pertaining to this paper are presented in this section.
The concept of Zumkeller numbers and splitting graphs are dicussed with
appropriate example. The definition of k-Zumkeller labeling with suitable
example is also provided in this section.

Definition 1. Let n be a positive integer. Let A1 and A2 be two sets of
disjoint positive factors of n. If the sum of the numbers of A1 is equal to
the sum of the numbers of A2 then n is said to be a Zumkeller number.
For example, the positive factors of 56 can be partitioned as
A1 = {1, 2, 7, 8, 14, 28} and A2 = {4, 56} such that sum of each set is 60.
Hence 56 is a Zumkeller number.

Definition 2. Let G be a graph with vertex set V and edge set E. The
splitting graph of G is obtained as follows: For each vertex v ∈ V , define a
new vertex v

0
such that v

0
is joined to all vertices of G adjacent to v. The

graph S(G) thus obtained is called the splitting graph of G. If G has n
vertices and m edges, then S(G) has 2n vertices and 3m edges.
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Example 1. The graph G and splitting graph of G are shown in Figure 1.

Figure 1: (a) Graph G (b) Splitting graph of G

Definition 3. Let G = (V,E) be a simple graph with vertex set V and
edges set E. A 1− 1 function f : V → N is said to induce a k-Zumkeller
graph G if the induced edge function f∗ : E → N defined by f∗(xy) =
f(x)f(y) satisfies the following conditions:

1. f∗(xy) is a Zumkeller number for every xy ∈ E.

2. The total distinct Zumkeller numbers on the edges of G is k.

Definition 4. Let G(V,E) be a simple graph. If G admits a k-Zumkeller
labeling then it is said to be a k-Zumkeller graph.

Example 2. A 3-Zumkeller graph is given in Figure 2.
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Figure 2: A 4-Zumkeller graph

3. Splitting operation on graphs and their k-Zumkeller graphs

The splitting of paths, cycles, star graphs and their k-Zumkeller labeling
are investigated in this section. Futher, results pertaining to the degree
and its connection with k-Zumkeller labeling have been discussed.

Theorem 1. The splitting graph of the path Pn, n > 2, n ≡ 0(mod 2) is
a 4-Zumkeller graph.

Proof. Let V = U ∪ V where U = {ui : 1 ≤ i ≤ n} and V = {vi : 1 ≤
i ≤ n} be the vertex set and E = {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {uivi+1 : 1 ≤
i ≤ n− 1} ∪ {viui+1 : 1 ≤ i ≤ n− 1} be the edge set of the splitting graph
of path Pn.

Define a 1− 1 function f : V → N such that

f(vi) = 2
i+1
2 , i = 1, 3, 5, ..., n− 1

f(vi+1) = p2
n−i+1

2 , i = 1, 3, 5, ..., n− 1

f(ui) = 2
n+i+1

2 , i = 1, 3, 5, ..., n− 1

f(ui+1) = p2
2n−i+1

2 , i = 1, 3, 5, ..., n− 1

pc
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where p is a prime number such that 2 < p < 10.

The induced function f∗ : E → N provides the following Zumkeller
numbers on the edges of splitting graph of Pn:

f∗(vivi+1) = f(vi)f(vi+1) = 2
i+1
2 p2

n−i+1
2 = p2

i+1+n−i+1
2 = p2

n+2
2(3.1)

f∗(vi+1vi+2) = f(vi+1)f(vi+2) = p2
n−i+1

2 2
i+3
2 = p2

n−i+1+i+3
2 = p2

n+4
2

(3.2)

f∗(uivi+1) = f(ui)f(vi+1) = 2
n+i+1

2 p2
n−i+1

2 = p2
n+i+1+n−i+1

2 = p2n+1

(3.3)

f∗(ui+1vi+2) = f(ui+1)f(vi+2) = p2
2n−i+1

2 2
i+3
2 = p2

2n−i+1+i+3
2 = p2n+2

(3.4)

f∗(viui+1) = f(vi)f(ui+1) = 2
i+1
2 p2

2n−i+1
2 = p2

i+1+2n−i+1
2 = p2n+1

(3.5)

f∗(vi+1ui+2) = f(vi+1)f(ui+2) = p2
n−i+1

2 2
n+i+3

2 = p2
2n−i+1+i+3

2 = p2n+2

(3.6)

where i = 1, 3, 5, ..., n− 1

It is observed from the equations (3.1) to (3.6) that the edges of the
splitting graph of Pn receive only the four distinct Zumkeller numbers viz.,

p2
n+2
2 , p2

n+4
2 , p2n+1, p2n+2. Hence the graph is a 4-Zumkeller graph. 2
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Example 3. A 4-Zumkeller labeling of the splitting graph of path P6 is
shown in Figure 3.

Figure 3: 4-Zumkeller graph of S(P6)

Corollary 1. The splitting graph of the path P2 is a 3-Zumkeller graph.

Theorem 2. The splitting graph of the path Pn, n ≥ 3, n ≡ 1(mod 2) is
a 5-Zumkeller graph.

Proof. Let V = U ∪ V where U = {ui : 1 ≤ i ≤ n} and V = {vi : 1 ≤
i ≤ n} be the vertex set. Let E = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {uivi+1 : 1 ≤
i ≤ n− 1} ∪ {viui+1 : 1 ≤ i ≤ n− 1} be the edge set of the splitting graph
of path Pn.

Define a 1− 1 function f : V → N such that

f(vi) = 2
i+1
2 , i = 1, 3, 5, ..., n

f(vi+1) = p2
n−i
2 , i = 1, 3, 5, ..., n− 2

f(ui) = 2
n+i+2

2 , i = 1, 3, 5, ..., n

f(ui+1) = p2
2n−i−1

2 , i = 1, 3, 5, ..., n− 2

where p is a prime number such that 2 < p < 10.

The induced function f∗ : E → N provides the following Zumkeller
numbers on the edges of S(Pn):

f∗(vivi+1) = f(vi)f(vi+1) = 2
i+1
2 p2

n−i
2 = p2

i+1+n−i
2 = p2

n+1
2(3.7)
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f∗(vi+1vi+2) = f(vi+1)f(vi+2) = p2
n−i
2 2

i+3
2 = p2

n−i+i+3
2 = p2

n+3
2(3.8)

f∗(uivi+1) = f(ui)f(vi+1) = 2
n+i+2

2 p2
n−i
2 = p2

n+i+2+n−i
2 = p2n+1(3.9)

f∗(ui+1vi+2) = f(ui+1)f(vi+2) = p2
2n−i−1

2 2
i+3
2 = p2

2n−i−1+i+3
2 = p2n+1

(3.10)

f∗(viui+1) = f(vi)f(ui+1) = 2
i+1
2 p2

2n−i−1
2 = p2

i+1+2n−i−1
2 = p2n(3.11)

f∗(vi+1ui+2) = f(vi+1)f(ui+2) = p2
n−i
2 2

n+i+4
2 = p2

n−i+n+i+4
2 = p2n+2

(3.12)
where i = 1, 3, 5, ..., n− 2

It is noted from the equations (3.7) to (3.12) that the edges of the
splitting graph of Pn receive only the five distinct Zumkeller numbers viz.,

p2
n+1
2 , p2

n+3
2 , p2n+1, p2n+2, p2n. Hence the graph is a 5-Zumkeller graph.

2

Example 4. A 5-Zumkeller labeling for the splitting graph of path P5 is
shown in Figure 4.

Figure 4: 5-Zumkeller graph of S(P5)
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Corollary 2. The total number of distinct Zumkeller numbers in the k-
Zumkeller labeling of the splitting graph of Pn is

1. ∆ when n ≡ 0(mod 2)

2. ∆ + 1 when n ≡ 1(mod 2)

where ∆ is the maximum degree of the splitting graph of Pn.

Theorem 3. The splitting graph of the cycle Cn ,n ≥ 4, n ≡ 0(mod 2) is
a 5-Zumkeller graph.

Proof. Let V = U∪V where U = {ui : 1 ≤ i ≤ n} and V = {vi : 1 ≤ i ≤
n} be the vertex set. Let E = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {v1vn} ∪ {uivi+1 :
1 ≤ i ≤ n− 1}∪ {unv1}∪ {viui+1 : 1 ≤ i ≤ n− 1}∪ {u1vn} be the edge set
of the splitting graph of cycle Cn.

Define a 1− 1 function f : V → N such that

f(vi) = 2
i+1
2 , i = 1, 3, 5, ..., n− 1

f(vi+1) = p2
n−i+1

2 , i = 1, 3, 5, ..., n− 1
f(ui) = 2

n+i+1
2 , i = 1, 3, 5, ..., n− 1

f(ui+1) = p2
2n−i+1

2 , i = 1, 3, 5, ..., n− 1

where p is a prime number such that 2 < p < 10.

The induced function f∗ : E → N provides the following Zumkeller
numbers on the edges of S(Cn):

f∗(vivi+1) = f(vi)f(vi+1) = 2
i+1
2 p2

n−i+1
2 = p2

i+1+n−i+1
2 = p2

n+2
2(3.13)

f∗(vi+1vi+2) = f(vi+1)f(vi+2) = p2
n−i+1

2 2
i+3
2 = p2

n−i+1+i+3
2 = p2

n+4
2

(3.14)

f∗(v1vn) = f(v1)f(vn) = 2
1p21 = p22(3.15)
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f∗(uivi+1) = f(ui)f(vi+1) = 2
n+i+1

2 p2
n−i+1

2 = p2
n+i+1+n−i+1

2 = p2n+1

(3.16)

f∗(ui+1vi+2) = f(ui+1)f(vi+2) = p2
2n−i+1

2 2
i+3
2 = p2

2n−i+1+i+3
2 = p2n+2

(3.17)

f∗(viui+1) = f(vi)f(ui+1) = 2
i+1
2 p2

2n−i+1
2 = p2

i+1+2n−i+1
2 = p2n+1

(3.18)

f∗(vi+1ui+2) = f(vi+1)f(ui+2) = p2
n−i+1

2 2
n+i+3

2 = p2
2n−i+1+i+3

2 = p2n+2

(3.19)

f∗(unv1) = f(un)f(v1) = p2
2n−n+1+1

2 21 = p2
2n−n+1+1+2

2 = p2
n+4
2(3.20)

f∗(u1vn) = f(u1)f(vn) = 2
n+2
2 p21 = p2

n+2+2
2 = p2

n+4
2(3.21)

where i = 1, 3, 5, ..., n− 1

It is noted from the equations (3.13) to (3.21) that the edges of the
splitting graph of Cn receive only the five distinct Zumkeller numbers viz.,

p2
n+2
2 , p2

n+4
2 , p2n+1, p2n+2, p22. Hence the graph is a 5-Zumkeller graph.

2

Example 5. A 5-Zumkeller graph of the splitting graph of cycle C8 is
shown in Figure 5.
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Figure 5: 5-Zumkeller graph of S(C8)

Proposition 4. The splitting graph of the cycle C3 is a 6-Zumkeller graph.

Proof. Let V = U ∪ V where U = {u1, u2, u3} and V = {v1, v2, v3} be
the vertex set. Let E = {v1v2, v2v3, v1v3, u1v2, u1v3, u2v1, u2v3, u3v1, u3v2}
be the edge set of the splitting graph of cycle C3.

Define a 1− 1 function f : V → N such that

f(v1) = 2,
f(v2) = 2p1,

f(v3) = 2p2,

f(u1) = 2
2,

f(u2) = 2
2p1,

f(u3) = 2
2p2.

where p1, p2 is a prime number such that 2 < p1, p2 < 10.

The induced function f∗ : E → N provides the following Zumkeller
numbers on the edges of S(C3):

f∗(v1v2) = f(v1)f(v2) = 2p12 = p12
2(3.22)

pc
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f∗(v2v3) = f(v2)f(v3) = p12p22 = p2p12
2(3.23)

f∗(v1v3) = f(v1)f(v3) = 2p22 = p22
2(3.24)

f∗(u1v2) = f(u1)f(v2) = 2
2p12 = p12

3(3.25)

f∗(u1v3) = f(u1)f(v3) = 2
2p22 = p22

3(3.26)

f∗(u2v1) = f(u2)f(v1) = p12
22 = p12

3(3.27)

f∗(u2v3) = f(u2)f(v3) = p12
2p22 = p2p12

3(3.28)

f∗(u3v1) = f(u3)f(v1) = p22
22 = p22

3(3.29)

f∗(u3v2) = f(u3)f(v2) = p2p12
22 = p2p12

3(3.30)

From the equations (3.22) to (3.30) it is observed that the edges of
the splitting graph of C3 receive only the six distinct Zumkeller numbers
viz., p12

2, p22
2, p2p12

2, p12
3, p22

3, p2p12
3. Hence the graph is a 6-Zumkeller

graph. 2

Example 6. A 6-Zumkeller graph of the splitting graph of cycle C3 is
shown in Figure 6.

Figure 6: 6-Zumkeller graph of S(C3)
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Theorem 5. The splitting graph of the cycle Cn, n ≥ 5, n ≡ 1(mod 2) is
a 10-Zumkeller graph.

Proof. Let V = U∪V where U = {ui : 1 ≤ i ≤ n} and V = {vi : 1 ≤ i ≤
n} be the vertex set. Let E = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {v1vn} ∪ {uivi+1 :
1 ≤ i ≤ n− 1}∪ {unv1}∪ {viui+1 : 1 ≤ i ≤ n− 1}∪ {u1vn} be the edge set
of the splitting graph of cycle Cn.

Define a 1− 1 function f : V → N such that

f(vi) = 2
i+1
2 , i = 1, 3, 5, ..., n− 2

f(vi+1) = p12
n−i
2 , i = 1, 3, 5, ..., n− 2

f(vn) = p22

f(ui) = 2
n+i
2 , i = 1, 3, 5, ..., n− 2

f(ui+1) = p12
2n−i−1

2 , i = 1, 3, 5, ..., n− 2
f(un) = p22

2

where p1 and p2 are prime numbers such that 2 < p1, p2 < 10.

The induced function f∗ : E → N provides the following Zumkeller
numbers on the edges of S(Cn):

f∗(vivi+1) = f(vi)f(vi+1) = 2
i+1
2 p12

n−i
2 = p12

i+1+n−i
2 = p12

n+1
2(3.31)

f∗(vi+1vi+2) = f(vi+1)f(vi+2) = p12
n−i
2 2

i+3
2 = p12

n−i+i+3
2 = p12

n+3
2

(3.32)

f∗(vn−1vn) = f(vn−1)f(vn) = p12p22 = p2p12
2(3.33)

f∗(v1vn) = f(v1)f(vn) = 2
1p22

1 = p22
2(3.34)

f∗(uivi+1) = f(ui)f(vi+1) = 2
n+i
2 p12

n−i
2 = p12

n+i+n−i
2 = p12

n(3.35)
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f∗(ui+1vi+2) = f(ui+1)f(vi+2) = p12
2n−i−1

2 2
i+3
2 = p12

2n−i−1+i+3
2 = p12

n+1

(3.36)

f∗(un−1vn) = f(un−1)f(vn) = p12
2n−(n−2)−1

2 p22 = p2p12
n+3
2(3.37)

f∗(unv1) = f(un)f(v1) = p22
221 = p22

3(3.38)

f∗(viui+1) = f(vi)f(ui+1) = 2
i+1
2 p12

2n−i−1
2 = p12

i+1+2n−i−1
2 = p12

n

(3.39)

f∗(vi+1ui+2) = f(vi+1)f(ui+2) = p12
n−i
2 2

n+i+2
2 = p12

2n−i+i+2
2 = p12

n+1

(3.40)

f∗(vn−1un) = f(vn−1)f(un) = p12p22
2 = p2p12

3(3.41)

f∗(vnu1) = f(vn)f(u1) = p222
n+1
2 = p22

n+3
2(3.42)

where i = 1, 3, 5, ..., n− 2

It is noted from the equations (3.31) to (3.42) that the edges of the split-

ting graph of Cn receives the ten distinct Zumkeller numbers viz., p12
n+1
2 ,

p12
n+3
2 , p2p12

2, p22
2, p12

n+1, p12
n, p2p12

n+3
2 , p22

3, p22
n+3
2 , p2p12

3. Hence
the graph is a 10-Zumkeller graph.
2

Example 7. A 10-Zumkeller graph of the splitting graph of cycle C5 is
shown in Figure 7.
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Figure 7: 10-Zumkeller graph of S(C5)

Corollary 3. The total number of distinct Zumkeller numbers on k-Zumkeller
splitting graph of Cn is

1. ∆+ 1 when n ≡ 0(mod 2)

2. ∆+ 2 when n = 3

3. ∆+ 6 when n ≡ 1(mod 2)

where ∆ is the maximum degree of the splitting graph of Cn.

Theorem 6. The splitting graph of the star K1,n, n ≥ 2 is a 2n-Zumkeller
graph.

Proof. Let V = U ∪ V where U = {u} ∪ {ui : 1 ≤ i ≤ n} and
V = {v} ∪ {vi : 1 ≤ i ≤ n} be the vertex set. Let E = {vvi : 1 ≤ i ≤
n} ∪ {uvi : 1 ≤ i ≤ n} ∪ {vui : 1 ≤ i ≤ n} be the edge set of the splitting
graph of star K1,n.

Define a 1− 1 function f : V → N such that
f(v)=2 p
f(u)=p 22

f(vi) = 2
2i−1, i = 1, 2, 3, ..., n

f(ui) = 2
2i, i = 1, 2, 3, ..., n

where p is a prime number such that 2 < p < 10.
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The induced function f∗ : E → N provides the following Zumkeller
numbers on the edges of S(K1,n):

f∗(vvi) = f(v)f(vi) = p222i−1 = p22i(3.43)

f∗(uvi) = f(u)f(vi) = p2222i−1 = p22i+1(3.44)

f∗(vui) = f(v)f(ui) = p222i = p22i+1(3.45)

where i = 1, 2, 3, ..., n

It is clear from the equations (3.43) to (3.45) that the edges of the
splitting graph of K1,n receive only 2n distinct Zumkeller numbers viz.,
p2i+1 , p22i for i = 1, 2, 3, ..., n. Hence the graph is a 2n-Zumkeller graph.
2

Example 8. A 10-Zumkeller graph of the splitting graph of star K1,5 is
shown in Figure 8.

Figure 8: 10-Zumkeller graph of S(K1,5)

Corollary 4. The total number of distinct Zumkeller numbers in k-Zumkeller
labeling of the splitting graph of star K1,n, is the maximum degree of the
splitting graph of star K1,n.

The following table gives a comparison study of the k-Zumkeller labeling
of graphs and k-Zumkeller labeling of their splitting graphs. The k-values
of these graphs and maximum degree (∆) are tabulated.
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Table 1: Comparison of k-Zumkeller labeling of graphs and k-Zumkeller
labeling of their splitting graphs.

4. Conclusion

In this article, the splitting graphs of path, cycle and star and their k-
Zumkeller graphs have been computed with appropriate examples. The
value of k in k- Zumkeller graphs have been compared with the maximum
degree of the graph and tabulated the results accordingly. The optimal
way of finding the values of k in k- Zumkeller labeling of graphs has many
applications in science and technology. Investigating the existence of k-
Zumkeller graphs with minimum value of k is a potential and challenging
area of research and interesting too. Extending this k- Zumkeller labeling
to other classes of graphs is a future scope of research.
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