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Abstract

A graph G is a common multiple of two graphs H1 and H2 if
there exists a decomposition of G into edge-disjoint copies of H1 and
also a decomposition of G into edge-disjoint copies of H2. If G is
a common multiple of H1 and H2, and G has q edges, then we call
G a (q,H1,H2) graph. Our paper deals with the following question:
Given two graphs H1 and H2, for which values of q does there exist
a (q,H1,H2) graph? when H1 is either a path or a star with 3 or 4
edges and H2 is a crown.
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1. Introduction

All graphs considered here are simple, finite, and undirected unless other-
wise noted. Let |V (G)| and e(G) denote, respectively, the order of a graph
G and the size of G, that is, the number of edges in G. The degree of a
vertex u of G, denoted by deg(u) is the number of edges incident to u in
G.

We use the usual notation Kn to refer to the complete graph on n
vertices and Km,n, the complete bipartite graph with vertex partitions of
cardinality m and n. A k-path, denoted by Pk, is a path with k vertices (is
a path of length k − 1); a k-star, denoted by Sk, is the complete bipartite
graph K1,k; a k-cycle, denoted by Ck, is a cycle of length k.

For an integer n ≥ 3, the crown S0n, is the graph with vertex set
{a1, a2, ..., an, b1, b2, ..., bn} and edge set {aibj : 1 ≤ i, j ≤ n, i 6= j} (see
Figure 1 for S04). Equivalently, the crown S0n is the graph Kn,n − I, where
Kn,n − I denotes Kn,n with 1-factor removed (or, obtained by deleting a
perfect matching from the complete bipartite graph Kn,n).

Let G and H be two graphs. A decomposition of G is a set of edge-
disjoint subgraphs of G whose union is G. An H-decomposition of G is a
decomposition of G into copies of H. If G has an H-decomposition, we say
that G is H-decomposable or H divides G and write H|G.

Given two graphs H1 and H2, one may ask for a graph G that is a
common multiple of H1 and H2 in the sense that both H1 and H2 divide
G. Several authors have investigated the problem of finding least common
multiples of graphs; that is, graphs of minimum size which are both H1 and
H2-decomposable. The problem was introduced by Chartrand et al. in [3]
and they showed that every two nonempty graphs have a least common
multiple. The least common multiple of two graphs may not be unique.
The size of a least common multiple of two graphs H1 and H2 is denoted
by lcm(H1,H2). Also if q1 and q2 are two natural numbers, their number
theoretic lcm is denoted by lcm(q1, q2) as usual. Clearly, for two graphs
H1 and H2, lcm(H1,H2) ≥ lcm(e(H1), e(H2)). The problem of finding the
size of least common multiples of graphs has been studied for several pairs
of graphs: cycles and stars [3, 16], paths and complete graphs [11], pairs
of cycles [8], and pairs of cubes [1]. Pairs of graphs having a unique least
common multiple were investigated in [4] and least common multiples of
digraphs were considered in [5].

If G is a common multiple ofH1 andH2, and G has q edges, then we call
G a (q,H1,H2) graph. An obvious necessary condition for the existence of
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a (q,H1,H2) graph is that e(H1)|q and e(H2)|q. Obviously this necessary
condition is not sufficient. For example, there is no (15,K3,K6) graph as
there is no K3-decomposition of K6. Hence a natural question is: given
two graphs H1 and H2, for which values of q, does a (q,H1,H2) graph
exist? Adams, Bryant, and Maenhaut [2] gave a complete solution to this
problem in the case where H1 is the 4-cycle and H2 is a complete graph;
Bryant and Maenhaut [7] gave a complete solution to this problem in the
case where H1 is the complete graph K3 and H2 is a complete graph. A
complete solution to this problem in the case where H1 is a path and H2 is
a star, is investigated in [6]. In [13, 14], the authors dealt with the common
multiples of paths, stars, and cycles with complete graphs and complete
bipartite graphs respectively.

In this paper, we establish the necessary and sufficient condition for
the existence of a (q, P4, S

0
n) graph, a (q, P5, S

0
n) graph, a (q, S3, S

0
n) graph,

and a (q, S4, S
0
n) graph. The graph theoretic concepts described here are

suggested by their number theoretic counterparts.

2. Preliminaries

In this section, we collect some needed terminologies and notations and
present some results which are useful for our discussions. The complete
graph with vertex set {v1, v2, . . . , vm} will be denoted by [v1, v2, . . . , vm],
m-cycle Cm with vertex set {v1, v2, . . . , vm} and edges {v1, v2}, {v2, v3},
. . . , {vm, v1} will be denoted by (v1, v2, . . . , vm), m-path Pm with vertex
set {v1, v2, . . . , vm} and edges {v1, v2}, {v2, v3},. . . , {vm−1, vm} will be de-
noted by hv1, v2, . . . , vmi and m-star Sm with centre v0 and end vertices
{v1, v2, . . . , vm} will be denoted by [v0; v1, v2, . . . , vm]. The crown S0n defined
in the first section will be denoted by ({a1, a2, . . . , an}, {b1, b2, . . . , bn}).
Also note that the crown S0n is defined only for n ≥ 3.

Figure 1: S04
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If G and H are graphs, and H is a subgraph of G, then the graph
obtained by removing the edges of H from G will be denoted by G−H. If
G1 and G2 are graphs, then the union of G1 and G2, denoted by G1 ∪G2,
is the graph with vertex set V (G1 ∪ G2) = V (G1) ∪ V (G2) and edge set
E(G1 ∪G2) = E(G1) ∪E(G2). (We shall only be considering the union of
edge-disjoint graphs, but V (G1) ∩ V (G2) 6= φ.)

Theorem 1. [15] For n ≥ 3, k ≥ 1, S0n is Pk+1-decomposable if and only if
n(n− 1) ≡ 0 (mod k) and

k ≤
(
2n− 3 if n is odd
n− 1 if n is even.

Theorem 2. [10] For k ≥ 1, n ≥ 3, there exists a Sk-decomposition of S0n
if and only if k ≤ n− 1 and n(n− 1) ≡ 0 (mod k).

Theorem 3. [12] Let k,m, and n be positive integers. There exists a Pk+1-
decomposition of Km,n if and only if mn ≡ 0 (mod k) and one of cases in
Table 2.1 occurs:

Table 2.1: Necessary and Sufficient Conditions for Pk+1-Decomposition of
Km,n

Case k m n Characterization

1 even even even k ≤ 2m, k ≤ 2n, not both equalities
2 even even odd k ≤ 2m− 2, k ≤ 2n
3 even odd even k ≤ 2m, k ≤ 2n− 2
4 odd even even k ≤ 2m− 1, k ≤ 2n− 1
5 odd even odd k ≤ 2m− 1, k ≤ n
6 odd odd even k ≤ m, k ≤ 2n− 1
7 odd odd odd k ≤ m, k ≤ n

We will use the following theorem on the least common multiple of two
bipartite graphs, by O. Favaron and C. M. Mynhardt.

Theorem 4. [8] If F and G are bipartite, then lcm(F,G) ≤ e(F )e(G),
where equality holds if gcd(e(F ), e(G)) = 1.
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Before entering the path decomposition, star decomposition, and crown
decomposition, we consider the decomposition of bipartite graphs in [9].
Suppose that G is a bipartite graph with bipartition (X,Y ), where X =
{x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}. Let M(G) be the m× n matrix
(ei,j) where

ei,j =

(
1 if xi is adjacent to yj
0 otherwise.

Furthermore, if H is a subgraph of G, we useM(H) to denote them×n
matrix (ei,j) where

ei,j =

(
1 if xi is adjacent to yj in H
0 otherwise.

With these notations, it is easy to see that

M(S0n) =

⎡⎢⎢⎢⎢⎢⎣
0 1 · · · 1

1
. . .

. . .
...

...
. . .

. . . 1
1 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦
and if the edges of G can be decomposed into subgraphs H1,H2, . . . ,Ht,
then

M(G) =M(H1) +M(H2) + . . .+M(Ht).

3. Common Multiples of P4 and S0n

In this section, we determine, for all positive integers n ≥ 3, the set of
integers q for which there exists a common multiple of P4(4-path) and S0n
having precisely q edges.

Theorem 5. There exists a graph with q edges that is both P4-decomposable
and S0n-decomposable if and only if q ≡ 0 (mod n(n − 1)) and q ≡ 0
(mod 3).

Proof. If there exists a (q, P4, S
0
n) graph, then we require that 3 divides

q and that n(n− 1) divides q. So necessary condition is obvious.
To show that the stated necessary condition is sufficient we consider two

cases and construct the (q, S3, S
0
n) graphs required to prove this theorem.



336 Saritha Chandran C. and Reji T.

Case 1. n ≡ 0, 1 (mod 3).
In this case 3|n(n − 1). So P4|S0n, by Theorem 1 and hence there exists a
(q, P4, S

0
n) graph G for all q ≡ 0 (mod n(n − 1)). Take G to be q

n(n−1)
vertex-disjoint copies of S0n, where each copy of S

0
n in G is P4-decomposable.

Case 2. n ≡ 2 (mod 3).
Since P4 and S0n are bipartite and gcd(3, n(n − 1)) = 1, lcm(P4, S

0
n) =

3n(n− 1), by Theorem 4.
In this case, we can take a (q, P4, S

0
n) graph G as the union of the following

three edge-disjoint copies of S0n:

({a1, a2, a3, ..., an}, {b1, b2, b3, ..., bn})
({b1, b2, b3, ..., bn}, {c1, c2, c3, ..., cn})
({a1, a2, a3, ..., an}, {d1, d2, d3, ..., dn}).

G can be decomposed into n(n− 1) copies of P4, {hdi, aj , bi, cji, i 6= j, 1 ≤
i, j ≤ n}.
As an illustration of this case, we can see three copies of S05 in G =
(60, P4, S

0
5)(see Figure 2) and G can be decomposed into 20 copies of P4:

{hdi, aj , bi, cji, i, j = 1, 2, 3, 4, 5, i 6= j}.

Figure 2: G = (60, P4, S
0
5)

Marisol Martínez
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Therefore there exists a (kn(n−1), P4, S0n) graph for all k ≡ 0 (mod 3).
2

4. Common Multiples of P5 and S0n

In this section, we determine, for all positive integers n ≥ 3, the set of
integers q for which there exists a common multiple of P5(5-path) and S0n
having precisely q edges.

Theorem 6. There exists a graph with q edges that is both P5-decomposable
and S0n-decomposable if and only if q ≡ 0 (mod n(n − 1)) and q ≡ 0
(mod 4).

Proof. If there exists a (q, P5, S
0
n) graph, then we require that 4 divides

q and that n(n− 1) divides q. So the necessary condition is obvious.
(Sufficiency) Case 1. n ≡ 0, 1 (mod 4).
In this case 4|n(n− 1). So P5|S0n, for all n ≥ 4, by Theorem 1, and hence
there exists a (q, P5, S

0
n) graph G for all q ≡ 0 (mod n(n− 1)). Take G to

be q
n(n−1) vertex-disjoint copies of S

0
n.

Case 2. n = 3.
To construct a (12, P5, S

0
3) graph G, we let G be the union of the following

two edge-disjoint copies of S03 :

({a1, a2, a3}, {b1, b2, b3})

({c1, c2, a3}, {d1, b2, b3}).

Then G = ha2, b3, a1, b2, c2i ∪ ha2, b1, a3, b2, c1i ∪ hc2, d1, a3, b3, c1i, the
union of three edge-disjoint copies of P5.
All other required graphs of sizes q = 12k, k ≥ 2 can be constructed by the
vertex-disjoint union of an appropriate number of copies of (12, P5, S

0
3).

Case 3. n ≡ 2, 3 (mod 4), n 6= 3.
To construct a (2n(n − 1), P5, S0n) graph G, we let G be the union of the
following two edge-disjoint copies of S0n:

({a1, a2, a3, . . . , an}, {b1, b2, b3, . . . , bn})

({c1, c2, c3, . . . , cn−1, an}, {d1, d2, d3, . . . , dn−2, bn, an−1}).
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Then M(G) = 2M(S0n−2) + 2M(K2,n−2) + 2M(Kn−2,2) +M(P5).
So

G = 2S0n−2 ∪ 2K2,n−2 ∪ 2Kn−2,2 ∪ hbn−1, an, bn, an−1, cn−1i.

Since 4|(n−2)(n−3), P5|S0n−2 ( by Theorem 1). By Theorem 3, P5 divides
both K2,n−2 and Kn−2,2 and hence P5 divides G. Therefore there exists a
(2kn(n− 1), P5, S0n) graph for all k ≥ 1. 2

5. Common Multiples of S3 and S0n

In this section, we determine, for all positive integers n ≥ 3, the set of
integers q for which there exists a common multiple of S3(3-star) and S0n
having precisely q edges.

Theorem 7. There exists a graph with q edges that is both S3-decomposable
and S0n-decomposable if and only if

1. q ≡ 0 (mod n(n− 1)) and q ≡ 0 (mod 3)

2. q 6= 6 when n = 3.

Proof. The given conditions are necessary for the following reasons. If
there exists a (q, S3, S

0
n) graph, then we require that 3 divides q and that

n(n−1) divides q. Condition (1) follows immediately from this and will be
referred to as the obvious necessary condition.

If n = 3, then S03 is isomorphic to C6 and S3 6 |C6. So q 6= 6.
To show that the stated necessary conditions are sufficient we consider

each in turn and construct the required (q, S3, S
0
n) graphs.

Case 1. n = 3.
For a (12, S3, S

0
3) graph G, consider G = K2,2,2, the octahedral graph (see

Figure 3) and it is S3-decomposable and S03-decomposable.
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Figure 3: The octahedral graph K2,2,2

To construct an (18, S3, S
0
3) graph G, we let G be the union of the

following three edge-disjoint copies of S03 :

({a1, a2, a3}, {b1, b2, b3})

({a1, a2, a3}, {c1, c2, c3})

({a1, a2, a3}, {d1, d2, d3}).

An S3-decomposition of G is given by the following six edge-disjoint
copies of S3:

{[ai; bj , cj , dj ] : i, j = 1, 2, 3, i 6= j}.

and all other required graphs of sizes q = 6k, k ≥ 4 can be constructed by
the vertex disjoint union of an appropriate number of copies of (12, S3, S

0
3)

and (18, S3, S
0
3).

Case 2. n ≡ 0, 1 (mod 3), n ≥ 4.
In this case 3|n(n − 1). So S3|S0n, by Theorem 2, and hence there exists
a (q, S3, S

0
n) graph G for all q ≡ 0 (mod n(n − 1)). Take G to be q

n(n−1)
vertex-disjoint copies of S0n.

Case 3. n ≡ 2 (mod 3).
Since S3 and S0n are bipartite and gcd(3, n(n − 1)) = 1, lcm(S3, S

0
n) =

3n(n − 1), by Theorem 4. In this case, we can take a (q, S3, S
0
n) graph G

as the union of the following three edge-disjoint copies of S0n:

({a1, a2, a3, . . . , an}, {b1, b2, b3, . . . , bn})

Marisol Martínez
fi-3
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({a1, a2, a3, . . . , an}, {c1, c2, c3, . . . , cn})

({a1, a2, a3, . . . , an}, {d1, d2, d3, . . . , dn}).

G can be decomposed into n(n − 1) copies of S3 as (n − 1) copies of S3
centered at each vertex ai, 1 ≤ i ≤ n.

Therefore there exists a (kn(n−1), S3, S0n) graph for all k ≡ 0 (mod 3).
Thus sufficient conditions (1) and (2) were obtained. 2

6. Common Multiples of S4 and S0n

In this section, we determine, for all positive integers n ≥ 3, the set of
integers q for which there exists a common multiple of S4(4-star) and S0n
having precisely q edges.

Theorem 8. There exists a graph with q edges that is both S4-decomposable
and S0n-decomposable if and only if

1. q ≡ 0 (mod n(n− 1)) and q ≡ 0 (mod 4)

2. q 6= 12 when n = 4.

Proof. If there exists a (q, S4, S
0
n) graph, then we require that 4 divides

q and that n(n− 1) divides q. Condition (1) follows immediately from this
and will be referred to as the obvious necessary condition.

If n = 4, then S4 6 |S04 , by Theorem 2. So q 6= 12.
To show that the stated necessary conditions are sufficient we consider four
cases and construct the required (q, S4, S

0
n) graphs.

Case 1. n ≡ 0, 1 (mod 4), n ≥ 5.
In this case 4|n(n − 1). So S4|S0n, for all n ≥ 5, by Theorem 2, and hence
there exists a (q, S4, S

0
n) graph G for all q ≡ 0 (mod n(n− 1)). Take G to

be q
n(n−1) vertex-disjoint copies of S

0
n.

Case 2. n = 4.
We have e(S4) = 4 and e(S04) = 12.
For a (24, S4, S

0
4) graph G,

consider G = [1, 2, 3, 4, 5, 6, 7, 8] − {(1, 3), (5, 7), (2, 4), (6, 8)}, the graph
K8 − I.
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An S04 -decomposition of G is given by the following two edge-disjoint copies
of S04 :

({1, 3, 5, 7}, {2, 4, 6, 8})
({1, 3, 6, 8}, {4, 2, 7, 5}).

An S4-decomposition of G is given by the following six edge-disjoint copies
of S4:

[1; 2, 5, 6, 8] [2; 5, 6, 7, 8] [3; 2, 4, 6, 8]

[4; 1, 6, 7, 8] [5; 3, 4, 6, 8] [7; 1, 3, 6, 8].

To construct a (36, S4, S
0
4) graph G, we let G be the union of the following

three edge-disjoint copies of S04 :

({a1, a2, a3, a4}, {b1, b2, b3, b4})
({a3, a4, c1, c2}, {b4, d1, d2, d3})
({d1, b1, d2, d3}, {a1, a2, c3, c4}).

An S4-decomposition of G is given by the following nine edge-disjoint copies
of S4:

[a1; b1, b2, b3, b4] [a2; b1, b3, b4, d1] [a3; b2, d1, d2, d3]

[a4; b2, b3, d2, d3] [b1; a3, a4, c3, c4] [b4; a3, a4, c1, c2]

[d1; c1, c2, c3, c4] [d2; a1, a2, c2, c4] [d3; a1, a2, c1, c3].

Case 3. n ≡ 2 (mod 4).
In this case, n = 4p+2, p is a positive integer and n(n− 1) ≡ 2 (mod 4).
To construct a (2n(n − 1), S4, S0n) graph G, we let G be the union of the
following two edge-disjoint copies of S0n:

({a1, a2, a3, . . . , an}, {b1, b2, b3, . . . , bn})
({a1, a2, a3, . . . , an}, {c1, c2, c3, . . . , cn}).

In G, deg(ai) = 2n− 2 = 8p+ 2,
deg(bi) = n− 1 = 4p+ 1,
deg(ci) = n− 1 = 4p+ 1, 1 ≤ i ≤ n and hence

M(G) = npM(S4) + npM(S4) + 2pM(S4) +M(S4).
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Then G can be decomposed into n(n−1)
2 copies of S4 as follows:

p copies of S4 centered at each bi, 1 ≤ i ≤ n,
p copies of S4 centered at each ci, 1 ≤ i ≤ n,
2p copies of S4 centered at a1,
and one S4 = [an; b1, b2, c1, c2], centered at an.
Therefore there exists a (2kn(n− 1), S4, S0n) graph for all k ≥ 1.

Case 4. n ≡ 3 (mod 4).
Then n(n− 1) ≡ 2 (mod 4).
To construct a (2n(n − 1), S4, S0n) graph G, we let G as the union of the
following two edge-disjoint copies of S0n:

({a1, a2, a3, . . . , an}, {b1, b2, b3, . . . , bn})
({a1, a2, a3, . . . , an}, {c1, c2, c3, . . . , cn}).

Every edge of G is adjacent to one of the vertices ai, 1 ≤ i ≤ n. Also
deg(ai) = 2(n− 1) and 4|2(n− 1).
So G can be decomposed into n(n−1)

2 copies of

S4
³
(n−1)
2 copies of S4 centered at each vertex ai, 1 ≤ i ≤ n

´
.

Therefore there exists a (2kn(n− 1), S4, S0n) graph for all k ≥ 1. 2

7. Conclusion

In this paper, we focus on the decomposition of graphs into paths, stars,
and crowns with special emphasis on common multiples of graphs. It would
be of interest to find the graphs of size q, which is a common multiple of the
crown S0n and the paths P4, P5 or the stars S3, S4. This study is interesting
from the number theoretical point of view.
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