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Abstract

Given a topological space, the graphical realizations of it with as
many edges as possible, called maximal graphical realizations, are stud-
ied here. Every finite topological space admits a mazimal graphical re-
alization. However, there are graphs which are not maximal graphical
realizations of any topology. A tree of odd order is never a maximal
graphical realization of a topological space. Maximal graphical realiza-
tion of a topology is a cycle if and only if it is C3. It is shown that
chain topologies admit unique mazimal graphical realizations. A lower
bound for the size of a mazimal graphical realization is also obtained.
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1. Introduction

Acharya [1] initiated the study of set-valuations by introducing the notions
of set-indexer and topological set-indexer for a given graph. Subsequently,
several authors [4], [5], [7], [8], [11], [15] studied set-valuations of graphs and
obtained many significant results. In [12, 16], the authors investigated topo-
logical set-indexers and derived the topological number of certain graphs.
The additional study [13] established topological set-gracefulness of certain
stars, paths and related graphs. Further, the topological set-gracefulness
of subgraphs, especially spanning subgraphs, of a topologically set-graceful
graph has been examined in [6]. Later in [14], the authors concentrated on
topologies formed by the vertex labels of a topological set-indexer of a given
graph. The graph then is called a graphical realization of the topology and
the topological space is said to be a graphically realizable space.

This paper sheds more light on graphical realizations by exploring graph-
ical realizations with maximum size for a given topological space. Such
a graphical realization is called maximal graphical realization and every
topology with finitely many open sets has a maximal graphical realization.
It is proved that star graph is a maximal graphical realization of a finite
topological space if and only if the space is quasi-discrete. Further, no cycle
of order greater than three is a maximal graphical realization of a topol-
ogy. It is shown that chain topologies admit unique maximal graphical
realizations and conjectured that the converse is also true. Investigations
are also carried out on the lower bound for the size of a maximal graphical
realization.

2. Preliminaries

In this section we include certain definitions and known results needed for
the subsequent development of the study. For a nonempty set X, the set of
all subsets of X is denoted by 2%. By A€, we mean, the complement of a set
A. We always denote a graph under consideration by G and its vertex and
edge sets by V and E respectively. By G’ C G we mean G’ is a subgraph
of G while G’ C G means G’ is a proper subgraph of G. The empty graph
of order n is denoted by N,. By G[vi,...,v,] we mean the subgraph of
G induced by the vertices vi,...,v,. The order and size of a graph G is
denoted by o(G) and s(G) respectively. When it is said that two graphs
are different we mean they are non-isomorphic. All graphs considered in
this paper are simple.
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Definition 2.1. [2] Let G = (V, E) be a given graph and X be a nonempty
set. Then a mapping f:V — 2% or f: E — 2% or f: VUE — 2% is
called a set-assignment or set-valuation of the vertices or edges or both.

Definition 2.2. [2] Let G be a given graph and X be a nonempty set.
Then a set-valuation f : VU E — 2X is a set-indexer of G if

1. f(u,v) = f(u) @ f(v),¥(u,v) € E, where ‘@’ denotes the binary
operation of taking the symmetric difference of the sets in 2%

2. the restriction maps f|y and f|g are both injective.

In this case, X is called an indexing set of G. Clearly a graph can have
many indexing sets and the minimum of the cardinalities of the indexing
sets is said to be the set-indexing number of G, denoted by v(G). The
set-indexing number of K1 is defined to be zero.

Theorem 2.3. [2] Every graph has a set-indexer.
Theorem 2.4. [2] Let X be an indexing set of G = (V, E). Then

1. |E| <2Xl -1 and

2. [loga(|E|+1)] <~(G) < |V| —1, where [ ] is the ceiling function.
Theorem 2.5. [2] If G’ is a subgraph of G, then v(G’') < v(G).

Definition 2.6. [2] A graph G is set-graceful if v(G) = logy(|E| + 1) and
the corresponding set-indexer is called a set-graceful labeling of G.

Definition 2.7. [2] A set-indexer f of a graph G with indexing set X is
said to be a topological set-indexer (t-set-indexer) if f(V') is a topology on
X and X is called the topological indexing set(t-indexing set) of G. The
minimum number among the cardinalities of such topological indexing sets
is said to be the topological number (t-number) of G, denoted by 7(G)
and the corresponding t-set indexer is called the optimal t-set-indexer of
G. A graph G is said to be topologically set-graceful or t-set-graceful if

1(G) = 7(G).

Theorem 2.8. [2] Every graph with at least two vertices has a t-set-
indexer.
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Theorem 2.9. [2] Let G be any graph with at least two vertices. Then
1(G) < 7(G).

Theorem 2.10. [12] If G’ is a spanning sub graph of G, then 7(G’) < 7(G).

Definition 2.11. [10] A topological space (X, T) is said to be finite if the
set X is finite.

Definition 2.12. [14] Let X be a nonempty set. A topology 7 on X is
said to be graphically realizable if there exists a graph G = (V, F) and a
set-indexer f : VU E — 2% such that f(V) = 7. In this case G is said to
be a graphical realization of 7. Also the topological space (X, 7) is called
a graphically realizable space.

By G-, we denote the collection of all graphs which realizes (X, 7). That
is, G, is the set of all graphical realizations of the topological space (X, 7).

Remark 2.13. In [14], it has been shown that any finite topological space
(X,7); |7| = n is graphically realizable by K1 ,—1. It can be achieved by
labeling the central vertex of Ky ,,—1 with () and the remaining vertices with
the n — 1 nonempty elements of T in any order. Here onwards we refer to
it, the star realization of (X, 7).

Theorem 2.14. [14] Every topology with finitely many open sets is graph-
ically realizable.

Theorem 2.15. [14] A graph G of order n (> 2) realizes only chain topolo-
gies if and only if K, \ E(Cy,) C G C K,,.

Theorem 2.16. [14] Every graph of order n realizes every chain topology
with n open sets.

Definition 2.17. [14] A topological space (X, 7) realized by a graph G is
called an optimal space of G if 7(G) = |X|. In this case G is said to be an
optimal graphical realization of 7. The collection of all optimal graphical
realizations of a topological space (X, 7) is denoted by O,. Evidently,
Or C G;.

Theorem 2.18. [6] 7(K,, \ E(K13)) =7(K,) —1; n > 4.
Theorem 2.19. [14] Every optimal topological space is Tp.
Theorem 2.20. [13] 7(Kj2n_1) =n.

Definition 2.21. [3] A topological space is called quasi-discrete if every
open set is closed and vice versa.
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3. Maximal Graphical Realization of a Topology

Definition 3.1. A graph G is said to be a maximal graphical realization
of a topological space (X, ) if

1. G is a graphical realization of (X, T) and
2. s(G) > s(H) whenever H is a graphical realization of (X, T)

Evidently, a topological space may possess many maximal graphical
realizations. Obviously, spaces realized by the complete graphs have unique
maximal graphical realization.

The collection of all maximal graphical realizations of a given topolog-
ical space (X, 1) is denoted by M. Clearly, M, C G,.

Remark 3.2. In contrast with the optimal graphical realization, every fi-
nite topological space has a maximal graphical realization. Hence M, # 0,
even if O = (0. On the other hand, every element of O, need not be in
M. For example, consider the topological space (X,7); X = {a,b,c},
T ={X,0,{a},{b},{a,b},{a,c}}. Two different elements in O, are given
below:

f‘i.r]_ 5

Figure 1: Optimal graphical realization


Marisol Martínez
f-1


370 Ullas Thomas and Sunil C. Mathew

{ﬂr‘:'}

{6}

{a, b}

Figure 2: Optimal graphical realization

By theorem 2.4, theorem 2.9 and theorem 2.10 we have 3 < (K1 5) <
T(Ki15) < 7(G) < |X| = 3. Consequently K15, G € O;. Since all
nonempty subsets of X are present in G as edge labels, G € M. Since
s(K15) < s(G) we have K15 ¢ M.

Theorem 3.3. Let G = (V, E) be a graphical realization of a topological
space (X, T) with t-set-indexer f. If no more edges can be drawn in G
keeping f fixed, then G € M.

Proof 1. Let H = (U, F') be a maximal graphical realization of (X, T) with
t-set-indexer g. Then g(U) = 7 = f(V). Let A be any edge label of H.
Then there are vertices a and b in H such that A = g(a) ® g(b). Since
g(a), g(b) € f(V), there are vertices ¢, d in G such that f(c) = g(a) and

f(d) = g(b).

If (¢,d) € E, then we have A = f(c) ® f(d) = f(c,d) so that A is an
edge label of G also.
If (¢,d) ¢ E, then since no more edges can be drawn in G keeping f fixed,
there must be an edge (p, q) in G such that f(p,q) = f(c)® f(d) = A. Thus
every edge label of H is also an edge label of G so that s(H) < s(G). Since
G € G, and H € M, then it follows that G € M. O

Definition 3.4. Let G be a graph. Any graph H obtained from G by
joining atleast one pair of nonadjacent vertices is called an extension of G
and we say G is extendable to H.
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Following is a useful consequence of theorem 3.3.

Corollary 3.5. Let (X,7) be a finite topological space. Any graphical
realization of (X, ) is extendable to a maximal graphical realization of
(X, 7) with the same vertex labels.

Theorem 3.6. Let (X,7) be a topological space and G € M,. Then
s(G) > || —1.

Proof 2. By the star realization of (X,7) we have K, ;_1 € G. Since
G € M; we have s(G) > s(Ky |r|-1)- O

Remark 3.7. The converse of the above theorem is not true, in general.
For example consider the topological space (X,7); X = {a,b,c,d} and
7={0, {a}, {b}, {a,b}, {a,b,c}, X}. From the diagram below it follows
that both Cs, G € G; where G = K¢ \ E(K13).

@
X {a,b,c}
x ) (b6}
{b,c,d} {c
G c,d
by {a\c,d} {a/eb | {b,¢}
{v}
{a, b} {a}
{a} {a,b}
{6}

Figure 3: Graphical realization of T by G = K¢ \ E(K13).

By theorem 2.15, any proper spanning supergraph of G does not realize
7 and hence s(H) < 12 for every H € G,. Consequently, G € M, so that
Ce ¢ M.

Theorem 3.8. Let (X, 7) be a given topological space with |t| = n and
Or #0. Then K, € G, = K, € O,.

Proof 3. Since O, # (), there exists a graph G € O, with o(G) = n and
7(G) = |X|. Now K,, € G, = 7(K,) < |X|. But G C K, so that by
theorem 2.10, 7(G) < 7(K,). Thus, we have |X| = 7(G) < 7(K,) < |X]
so that 7(K,) = | X|. Consequently, K,, € O;. O
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Remark 3.9. There are topological spaces (X, T) with |7| = n and O, # 0,
but K,, ¢ O.. For example, K7 ¢ G,; T is the topology {0, X, {a}, {b},
{a,b}, {a,b,c}, {a,b,c,d}} on X ={a,b,c,d,e}. Note that T is not a chain
topology. But it can be easily shown that K7\ E(K; 3) € G and by theorem
2.18 we have 7(K7 \ E(K13)) =5. Thus, K7\ E(K13) € O;.

By theorem 2.8 and from the definition of 7(G) we have the following:

Theorem 3.10. Every graph G of order at least 2 is an optimal graphical
realization of some topology.

Remark 3.11. There are graphs which are not maximal graphical realiza-
tions of any topology (X, 7). For example, K, \ E(K2) and K, \ E(K;2)
are not maximal graphical realizations of any topology with n open sets
(by theorem 2.15).

Theorem 3.12. Let G be a maximal graphical realization of a discrete
space (X, 7). Then G is set-graceful as well as t-set-graceful.

Proof 4. For any graphical realization H of the discrete space (X, T) we
must have n = o(H) = 2X| and s(H) < n — 1. By the star realization of
(X, 7) we have K1 1 € G;. Since s(Ki,—1) =n—1 we get K1 -1 € M.
Consequently, o(G) = n and s(G) = n — 1, since G € M. Thus, there
exists a t-set-indexer f of G with f(V) = 2% and f(E) = 2X \ (. Hence, G
is set-graceful and t-set-graceful. O

Remark 3.13. Since there are many graphs of odd order which are both
set-graceful and t-set-graceful, the converse of the above theorem is not
true. For, such a graph cannot even be a graphical realization of a discrete
space. K3 is one such graph.

The following is a simple result.
Theorem 3.14. Let G be a set-graceful graph with indexing set X and f
be a t-set-indexer of G with the same indexing set X. Then G is a maximal

graphical realization of (X, f(V)).

Lemma 3.15. Let (X, 7) be an optimal space of a graph G. If (X, 1) is
not discrete, then H € M, = s(H) > |7|.
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Proof 5. Let A be the collection of all symmetric differences of the open
sets Aq,..., Ay of T; |T| = n. Without loss of generality we may assume
that A,—1 = X and A, = 0. Since 0 A; = A; € Afor1 <i<n-—1 we
have 7 C A and |A| > n. Let |A| = n so that 7 = A. Since X € 7, then
XPA, =X\A; € A=r7forl <i<n-—2 and hence for any A € T, we have
A€ € 7. Clearly, n is even and every open set is closed also. Let x,y € X
with x # y. By theorem 2.19, every optimal space is Ty and hence there
exists an open set U containing x but not y. Then the disjoint open sets
U and X \U are such thatx € U,y ¢ U, x ¢ X \U andy € X \ U. This
implies that (X, 7) is a finite T} space and hence discrete. Then |7| = 21|,
a contradiction. Therefore, |A| > n + 1. But all the elements of A except
() are edge labels of H. Consequently, s(H) > n. O

Theorem 3.16. Let (X, 7) be a topological space. Then the star realiza-
tion of (X, T) is maximal and optimal if and only if (X, 7) is discrete

Proof 6. Let K11 € M. NO7; n=]|7|.

If n =2, then K17 € M, NO; = 7(K11) = |X|=1=|X| and hence
(X, 1) is discrete.

If n = 3, then the star realization K o of (X, T) is not maximal.

If n =4, then K13 € M;NO; = 7(K13) =2 = |X| by theorem 2.20
and hence (X, 1) is discrete.

Now suppose n > 5 so that | X| > 3. To prove that (X, 7) is discrete we
need only to show that n = 2/XI.

Suppose n # 21X, Then by lemma 3.15, we have s(Ky,_1) > |7| =
n — 1 > n, a contradiction. Consequently, (X, T) is discrete.

Conversely let (X, 7) be a discrete space so that |r| = 21XI. Then the
star realization Ky |71 has 21X —1 edges so that it is a maximal graphical
realization of (X, 7). Now the optimality of K, |;|_; follows from theorem
2.20. O

Theorem 3.17. Let f be a t-set-indexer of the graph G = K, \ E(K13)
with indexing set X. Then the removal of atmost one set from f(V') results
in a chain topology on X.

Proof 7. Let V = {vy,...,vn}; d(vi) = n — 4, d(v2) = d(v3) = d(v4) =
n — 2. If f(V) is a chain topology, then there is nothing to be proved.
If f(V) is not a chain topology, then there exists A, B € f(V') such that
AUB # A and AUB # B. Since f(V) is a topology on X, there exists four
distinct vertices say v;, vj, vy and v; in G such that f(v;) = A, f(vj) = B,
f(vg) = AUB and f(v;) = AN B. Since
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f(ui) ® f(vj) = A® B = f(vg) ® f(w),
f(vi) @ f(vg) =B\ A= f(v;) & f(v) and
fvi) @ f(u) = A\ B = f(v;) @ f(ur),

at least three possible edges are absent in Glv;, v;, v, v;]. Consequently, we
must have v;, v;, vk, v; € {v1,v2,v3,v4}. Otherwise,

K4, if’Ul ¢ {vi,fuj,vk,vl}

K47 jfvl S {viv Uj; Uk, Ul} and V2, V3, V4 ¢ {v’ia vjv Uk, 'Ul}

K4\ E(K3), if exactly one of {v1,va} or {vy1,v3} or {vy,v4}
g {viv Uj; Uk Ul}

K4\ E(K132), if exactly one of {vi,va,v3} or {vi,v,v4} or {v1,v3,v4}
C {UZ'7 Vj, Uk, Ul}'

G[Ui> Vj, Uk, Ul] =

- a contradiction.

Let C and D be any two sets in f(V)\ A. It is claimed that CUD = C
orCUD =D.
Suppose, on the contrary CUD ¢ {C, D}. Let u, v, w and « be the vertices
of G with f(u) =C, f(v) =D, f(w)=CUD and f(x) =CnND. But

CoD=(CUD)® (CnD),
Ce®(CUuD)=D\C=Da& (CND) and
Ce(CnNnD)=C\D=D&(CUD)

so that atleast three edges are absent in G[u,v,w,z]. Consequently,
we must have Glu,v,w,z] C K3 or Glu,v,w,z] C Kz U K;. Now we
claim that {u,v,w,x} # {v1,ve,vs3,v4}. Otherwise, s(Gu,v,w,z]) > 4, a
contradiction. Thus, we have {C,D,CUD,CND} ={A,B,AUB, ANB}.
Since A ¢ {C, D} we must have A € {CUD,CND}. If A=CUD, then
B € {C,D,C n D} so that B C A, which is not possible. Therefore, we
must have A = CND. Then B € {C,D,C U D} so that A C B, which is
also not true. Hence we must have CUD = C or CUD = D as claimed
and f(V) \ A is a chain topology. O

Theorem 3.18. Let f be a t-set-indexer of the graph G = K, \ E(K3);
n > 4 with indexing set X. Then the removal of atmost one set from f(V)
results in a chain topology.

Proof 8. Let V = {v1,...,v,}; d(v1) = d(v2) = d(v3) = n—3. If f(V)
is a chain topology, then there is nothing to be proved. If f(V') is not a
chain topology, then there exists A, B € f(V) such that AU B # A and
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AUB # B. Since f(V) is a topology on X, there exists four distinct vertices
say v;, vj, vy and v in G such that f(v;) = A, f(vj) = B, f(vy) = AUB
and f(v;) = AN B. Since

f(vi) & f(vj)) =A@ B = f(ug) & f(ur),
f(vi) ® f(vr) = B\ A= f(v;) ® f(v;) and
f(vi) @ f(u) = A\ B = f(vj) ® f(vk),

at least three possible edges are absent in Glv;, v;, v, v;]. Consequently, we
must have v1,v2,v3 € {v;,vj, v, v }. Otherwise,

Ky, if exactly one of vy, va,v3 belongs to {v;,v;, vk, v}
G, vj, v, vl =< Ka\ E(K3), if exactly one of {vi,va} or {vi,v3} or {va,v3}
C {wi,vj, v, v}

— a contradiction.

Let C and D be any two sets in f(V)\ A. It is claimed that CUD = C
orCUD = D.
Suppose on the contrary, CUD ¢ {C, D}. Let u, v, w and x be the vertices
of G with f(u) =C, f(v) =D, f(w)=CUD and f(x) =CnND. But

CoD=(CUD)® (CnD),
Ce®(CuUuD)=D\C=Da& (CND) and
Ce(CnNnD)=C\D=D&(CUD)

so that atleast three edges are absent in Glu,v,w,z]. Consequently, we
must have Glu,v,w,z] C K3 or Glu,v,w,z] C K3U K. Now we claim
that {u,v,w,x} # {v1,v2,v3,v4}. Otherwise, s(Glu,v,w,z]) > 4, a con-
tradiction. Thus, we have {C,D,CUD,CND} ={A, B,AUB,AnN B}.
Since A ¢ {C, D} we must have A € {CUD,CND}. If A=CUD, then
B € {C,D,C n D} so that B C A, which is not possible. Therefore, we
must have A = C N D. Then B € {C,D,C U D} so that A C B, which
is also not true. Hence, we must have C' U D = C or D, as claimed and
f(V)\ A is a chain topology. O

Theorem 3.19. Let G = (V, E) be the graph K, \E(K13) and H = (U, F)
be the graph K, \ E(K3). Then for every t-set indexer f of G, there exists
a t-set indexer g of H satisfying f(V') = g(U) and conversely.

Proof 9. Let V ={vy,...,v,} withd(vi) =n—4, d(ve) = d(vs) = d(vq) =
n—2and U = {uy,...,u,} with d(u1) = d(uz) = d(u3) = n— 3. Since f is
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a t-set-indexer of G, by theorem 3.17, the removal of atmost one set from
f(V) results in a chain topology. If f(V') itself is a chain topology, then
we can define a set-indexer say g1 of H by g1(u;) = f(v;) fori =1,...,n.
Clearly, g1(U) = f(V') and then gy is a t-set-indexer of H.

Otherwise, there exists A € f(V) such that f(V)\ A is a chain topology.
Clearly there exists B(# A) in f(V') such that AUB # A, B. Now consider
a set-valuation, say g2 of H defined by ga(u;) = f(v;) for i = 1,...,n.
Clearly, g2(U) = f(V). Obviously, A,B,AUB,ANB € g5(U). But

A®B=(AUB)® (AN B)
A®(AuB)=B\A=B®(ANB)
A®(ANB)=A\B=B® (AUB).

Hence atleast 3 edges should be absent in the subgraph of H induced
by the vertices with labels A, B, AU B and AN B. Note that (ve,v3) € E
but (ug,us) ¢ F. Also (v1,v4) ¢ E but (uj,us) € F. Consequently, we
must have A, B, AU B, AN B € {g2(u1), g2(u2), g2(u3), g2(ua)}. Also
92(u1,uq) = f(v1) © f(va) = f(va,v3) and g2(ui,u;) = f(vi,v;), for all
(ui,uj) € F\ {(u1,usa)}. Therefore, the edge labels of H under gy are
distinct so that go is a t-set-indexer of H.

Conversely, let g be a t-set-indexer of H. Then by theorem 3.18, the

removal of atmost one set from g(U) results in a chain topology. If g(U)
itself is a chain topology, then we can define a set-indexer say fi1 of G by
fitvi) = g(u;) fori=1,...,n. Clearly f1(V) = g(U) so that f is a t-set-
indexer of G.
Otherwise, there exists C € g(U) such that g(U) \ C is a chain topology.
Evidently, there exists D(# C) in g(U) such that C U D # C, D. Now
consider a set-valuation say fo of G defined by fa(v;) = g(u;) for i =
1,...,n. Clearly, fo(V) = g(U). Obviously, C,D,CUD,CND e fo(V).
But

CeD=(CUD)® (CnD)
Ce(CuD)=D\C=D&(CND)
Ce(CND)=C\D=D&(CUD,).

Hence atleast 3 edges should be absent in the subgraph of G induced
by the vertices with labels C, D, C'UD and C N D. Note that (uj,us) € F
but (vi,v4) ¢ E. Also (ug,u3) ¢ F but (vy,v3) € E. Consequently we
must have C, D, CU D, CND € {fa(v1), fa(v2), fa(vs), fa(va)}. Also
fa(va,v3) = g(u2) & g(uz) = g(ur,uq) and fa(vi,vj) = g(us,uj), for all
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(vi,v;) € E\ {(v2,v3)}. Therefore, the edge labels of G under fy are
distinct so that fo is a t-set-indexer of G. a

Remark 3.20. From the above theorem it follows that there is a one-to-
one correspondence between the t-set indexers of K, \ E(K;3) and K, \
E(K3), in such a way that the corresponding t-set indexers induce the same
topology on the common indexing set.

An immediate consequence of the above theorem is:

Corollary 3.21. Let (X, 7) be a topological space. Then K, \ E(K;3) €
Gr(or M) if and only if K,, \ E(K3) € Gr(or M;).

Theorem 3.22. Let (X,7); |7| = n(> 4) be a given topological space
such that the removal of exactly one set from T results in a chain topology.
Then a graph G of order n is a graphical realization of (X, 7) if and only if

Proof 10. We have to prove that if G € G, then G ¢ A. Suppose G € A.
Then by theorem 2.15 we have G ¢ G;.

Conversely, let G ¢ A. Then G C K, \ E(K13) or G C K, \ E(K3). By
theorem 3.17 and theorem 3.18 we have K, \ E(K; 3) and K, \ E(K3) € G.
Since every spanning subgraph of any graph in G, is also in G, we have
G eg,. O

The following is a consequence of theorem 2.15 and theorem 2.16.

Theorem 3.23. No graph G € A={H : K, \ E(C,) C H C K,,} is a
maximal graphical realization of any topological space (X, T); |T| =n > 2.

Theorem 3.24. Let (X, 7) be a topological space. Then M, = {K|,|} if
and only if T is a chain topology on X.

Proof 11. Follows from theorem 2.15 and theorem 2.16. O

Conjecture 3.25. If the topological space (X,T) has a unique maximal
graphical realization, then T is a chain topology.

Theorem 3.26. Let (X, 7) be a finite topological space. If M, contains
a tree, then T is quasi-discrete.
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Proof 12. Let T be a tree and T € M. Then there exists a t-set-indexer
say, f of T with f(V) = 7 and let || = n. By the star realization of
(X,7) we have K11 € Gr. Since s(I') = n —1 = s(Kq,—1) we have
Kl’nfl € M. Let V(Kl’nfl) = {’Uo,vl, ce ,Unfl},' d(Uo) =n — 2. Now by
assigning () to vy and the remaining distinct nonempty elements of f(V(T))
to the pendant vertices of K1 ,—1 in any order we get a t-set-indexer say
g of K1 1 with t-indexing set X. Without loss of generality assume that
g(v1) = X. Then we have g(v1)®g(v;) = X \g(v;) forall j € {2,...,n—1}
so that X \ g(vj) is an edge label of K1, for all j € {2,...,n — 1},
since K1,,—1 € M,. But the central vertex vy is of label (. Consequently,
X\ g(vj) is also a vertex label of K1 ,,_1 under g for every j € {2,...,n—1}.
Thus, X \ g(v;) € T whenever g(vj) € 7. Hence, T is quasi-discrete. O

It is already shown that every topology admits a star realization. Then
the natural question, what about the maximality of these star realizations,
arises.The following theorem answers this.

Theorem 3.27. Let (X,7) be a finite topological space. Then K, ;|1 €
M if and only if (X, T) is quasi-discrete.

Proof 13. The necessary part follows from theorem 3.26. On the other
hand, let (X, T) be a finite quasi-discrete space. Then |7| is an even number .
If|7| = 2, then M, contains only one graph namely the tree Ko. If |T| = 4,
then 7 = {X,0,A, X \ A}; A C X. Let G be a graphical realization of
(X, 7). By theorem 2.14 such a graph exists. Since

DpA=A=Xa(X\A),
P (X\A)=(X\A) =XdA and
DX =X=A0(X)\A)

we have either G C K13 or G C K3 U K;. Consequently s(G) < 3 and
therefore the star realization K; 3 of (X, 7) belongs to M.

Suppose || > 6 and A, B € 7. Since (X, 7) is a quasi-discrete, T
is closed under symmetric difference. By the star realization of (X,T)
we have Ky -1 € Gr and let g be the corresponding t-set-indexer with
g(V) = 7 and g(vo) = 0 where vy is the central vertex of Ky ;1. Let
v; and v; be any two distinct pendant vertices of Ky |;|_y. Then we have
g(vi) ® g(vj) € 7. Since g(v;) ® g(v;) is different from both g(v;) and
g(vj), there exists another pendant vertex vy in Ky |71 such that g(vi) =
g(vi)®g(vj) and k € {1,...,|7| —1}\{4,5}. Then we have g(vo) ® g(vy) =
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g(vr) = g(vi)@g(v;). Consequently, no more edges can be drawn in Ky ||
such that the resulting graph realizes (X,T) keeping g fixed. Then by
theorem 3.3 we have Ky |;_1 € M. a

A consequence of the above theorem is,

Corollary 3.28. No tree of odd order is a maximal graphical realization
of a topological space.

Theorem 3.29. Maximal graphical realization of a topology is a cycle if
and only if it is Cj.

Proof 14. Let (X,7); |7| = n be a given topological space and suppose
C,, € M, where n > 3. By the star realization of (X, 7) we have Ky 1 €
G- and let g be the corresponding t-set-indexer. Let V' = {vg,v1,...,vp-1}
with d(vg) = n — 1 be the vertex set of Kj ,_1. Then we have g(vy) = ()
and g(vg) = X for some vy, # vg. Since C,, € M, by corollary 3.5, we can
extend K ,,_1 to a maximal graphical realization G = (V, E) of (X, ) just
by joining two distinct pendant vertices v; and v;, keeping all the vertex
labels fixed. Let f be the corresponding t-set-indexer which is an extension
of g.
It is claimed that either v; = vy or vj = vy.

Suppose v ¢ {v;,v;} and let f(v;) = A and f(vj) = B. Obviously
A and B are nonempty and B # X \ A. Since (vg,v;), (v,v;) ¢ E and
G € M;, both X \ A and X \ B are edge labels of G under f. But
flKi,._. = g and g corresponds to the star realization of K1, 1. Conse-
quently, there are vertices vq, vy € V' \{v;,v;, vk, vo} such that f(v,) = X\ A
and f(vp) = X \ B.
Now A, B, X\ A, X\Be f(V)=r1
= AN(X\B),BN(X\A4)er
= (AN(X\B)UBNX\A)=(A\B)U(B\A)=A®Ber.
= there exists vy € V such that f(v)) = A& B.
Because of obvious reasons, v; ¢ {vo, Vi, Vj, Uk, Va, Up }.
But then f(vo,v;) = A® B = f(v;,vj) — a contradiction. Hence, we must
have vy, = v; or vy, = v; as claimed.
Without loss of generality assume that vy, = v; so that f(v;)) = A = X.
Then f(vi,v;) = X\ B and X \ B ¢ f(V). Suppose G contains a
fourth vertex v, other than vy, v; and vj. Let f(vy,) = D. Clearly,
D ¢ {X,B,0,X \ B}. Since (vj,v,) ¢ E and G € M, there exists a
vertex vy, € V'\ {vo, v;,vj,v,} such that f(v,) = X \ D.
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But B,D,X\ D € f(V) and G € M,
=~ (B&D),(Ba (X \ D)) € f(V)
= (B&D)U(B®(X\D))er=fV)
=B (DUX\D)=BaX=X\Ber=f(V).
= there exists v, € V' \ {vo, v, v;, v, vy} such that f(v,) = X \ B.
= f(vo,v:) = X \ B = f(v;,v;) — a contradiction. Consequently, V =
{vo,vi,v;} and G = Cs.
Converse part follows from theorem 3.24. a

Theorem 3.30. Let (X, 7) be a topological space with |T| > 4 and G €
M. Then s(G) = |7| — 1 if T is quasi-discrete and s(G) > |1| otherwise.

Proof 15. If 7 is quasi-discrete, by theorem 3.27, Ky ;|_1 € M; so that
5(G) = s(Ky jr—1) = |7| = 1.

If 7 is not quasi-discrete, then again by theorem 3.27, K |;|—1 ¢ M.

But by the star realization, Ky ;_1 € G so that s(G) > |r|. Suppose
s(G) = |7| and let H = (V, E) be a graph obtained from K |;|_; by join-
ing two nonadjacent vertices of K |;|_1 by an edge such that H € M;
and f be the corresponding t-set-indexer of H with f(V) = 7. Let V =
{vo,v1,...,vn}; n = |7| — 1, d(vg) = n and d(vi) = 2 = d(ve). Clearly,
f(vo) = 0. Suppose f(v1) = A and f(v2) = B; A,B C X. Obviously,
A® B¢ f(V).
Suppose X ¢ {A,B}. Since f(V) = 7 and n > 3, there exists a vertex
vy € V \ {vg,v1,v2} such that f(vs) = X. Also B # X \ A. Otherwise,
flv1,v2) = X = f(vg, v3) —a contradiction. Obviously, AUB, ANB € f(V).
Since G € M, f(vo) = 0 and f(vs) = X, we must have X \ A, X \ B, X \
(ANB), X\(AUB) € f(V). Now A®&B = (AN(X\B))U(BN(X\A)) € f(V)
— a contradiction. Consequently, X € {A, B}.

Without loss of generality, assume that B = X. Then f(vi,v2) = X\ A
and since G € M; and f(vg) = 0 it follows that X \ A ¢ f(V). Since
n > 3, there exists a vertex vs in V' \ {vg,v1,v2} and let f(vs) = C. Note
that C # X \ A, otherwise f(vi,v2) = X \ A = f(vo,v3) — a contraction.
Obviously, AUC, ANC € f(V). Since G € M; and f(vg) = ) we must
have X \ C, X \ (AUC), X\ (ANC), AaC, X\ (A®(C) € f(V). But
X\A:{(X\C)U(X\(A®C)); CcA
(X\(AUO)U(CN(X\(ANC)); Cg A"

This shows that X \ A € f(V) — a contradiction. Consequently, s(G) >
|7], if T is not quasi-discrete. O



Mazximal graphical realization of a topology 381

Obviously, O; is non empty whenever M, C O.. There is every reason

to believe that the converse is also true and the study puts forward the
following;:

Conjecture 3.31. Let (X,7) be a topological space. Then M, C O;
whenever O, is non empty.
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