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Abstract

Given a topological space, the graphical realizations of it with as
many edges as possible, called maximal graphical realizations, are stud-
ied here. Every finite topological space admits a maximal graphical re-
alization. However, there are graphs which are not maximal graphical
realizations of any topology. A tree of odd order is never a maximal
graphical realization of a topological space. Maximal graphical realiza-
tion of a topology is a cycle if and only if it is C3. It is shown that
chain topologies admit unique maximal graphical realizations. A lower
bound for the size of a maximal graphical realization is also obtained.
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1. Introduction

Acharya [1] initiated the study of set-valuations by introducing the notions
of set-indexer and topological set-indexer for a given graph. Subsequently,
several authors [4], [5], [7], [8], [11], [15] studied set-valuations of graphs and
obtained many significant results. In [12, 16], the authors investigated topo-
logical set-indexers and derived the topological number of certain graphs.
The additional study [13] established topological set-gracefulness of certain
stars, paths and related graphs. Further, the topological set-gracefulness
of subgraphs, especially spanning subgraphs, of a topologically set-graceful
graph has been examined in [6]. Later in [14], the authors concentrated on
topologies formed by the vertex labels of a topological set-indexer of a given
graph. The graph then is called a graphical realization of the topology and
the topological space is said to be a graphically realizable space.

This paper sheds more light on graphical realizations by exploring graph-
ical realizations with maximum size for a given topological space. Such
a graphical realization is called maximal graphical realization and every
topology with finitely many open sets has a maximal graphical realization.
It is proved that star graph is a maximal graphical realization of a finite
topological space if and only if the space is quasi-discrete. Further, no cycle
of order greater than three is a maximal graphical realization of a topol-
ogy. It is shown that chain topologies admit unique maximal graphical
realizations and conjectured that the converse is also true. Investigations
are also carried out on the lower bound for the size of a maximal graphical
realization.

2. Preliminaries

In this section we include certain definitions and known results needed for
the subsequent development of the study. For a nonempty set X, the set of
all subsets of X is denoted by 2X . By Ac, we mean, the complement of a set
A. We always denote a graph under consideration by G and its vertex and
edge sets by V and E respectively. By G0 ⊆ G we mean G0 is a subgraph
of G while G0 ⊂ G means G0 is a proper subgraph of G. The empty graph
of order n is denoted by Nn. By G[v1, . . . , vn] we mean the subgraph of
G induced by the vertices v1, . . . , vn. The order and size of a graph G is
denoted by o(G) and s(G) respectively. When it is said that two graphs
are different we mean they are non-isomorphic. All graphs considered in
this paper are simple.
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Definition 2.1. [2] Let G = (V,E) be a given graph and X be a nonempty
set. Then a mapping f : V → 2X , or f : E → 2X , or f : V ∪E → 2X is
called a set-assignment or set-valuation of the vertices or edges or both.

Definition 2.2. [2] Let G be a given graph and X be a nonempty set.
Then a set-valuation f : V ∪E → 2X is a set-indexer of G if

1. f(u, v) = f(u) ⊕ f(v),∀(u, v) ∈ E, where ‘⊕’ denotes the binary
operation of taking the symmetric difference of the sets in 2X

2. the restriction maps f |V and f |E are both injective.

In this case, X is called an indexing set of G. Clearly a graph can have
many indexing sets and the minimum of the cardinalities of the indexing
sets is said to be the set-indexing number of G, denoted by γ(G). The
set-indexing number of K1 is defined to be zero.

Theorem 2.3. [2] Every graph has a set-indexer.

Theorem 2.4. [2] Let X be an indexing set of G = (V,E). Then

1. |E| ≤ 2|X| − 1 and

2. dlog2(|E|+ 1)e ≤ γ(G) ≤ |V |− 1, where d e is the ceiling function.

Theorem 2.5. [2] If G0 is a subgraph of G, then γ(G0) ≤ γ(G).

Definition 2.6. [2] A graph G is set-graceful if γ(G) = log2(|E|+ 1) and
the corresponding set-indexer is called a set-graceful labeling of G.

Definition 2.7. [2] A set-indexer f of a graph G with indexing set X is
said to be a topological set-indexer (t-set-indexer) if f(V ) is a topology on
X and X is called the topological indexing set(t-indexing set) of G. The
minimum number among the cardinalities of such topological indexing sets
is said to be the topological number (t-number) of G, denoted by τ(G)
and the corresponding t-set indexer is called the optimal t-set-indexer of
G. A graph G is said to be topologically set-graceful or t-set-graceful if
γ(G) = τ(G).

Theorem 2.8. [2] Every graph with at least two vertices has a t-set-
indexer.
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Theorem 2.9. [2] Let G be any graph with at least two vertices. Then
γ(G) ≤ τ(G).

Theorem 2.10. [12] IfG0 is a spanning sub graph ofG, then τ(G0) ≤ τ(G).

Definition 2.11. [10] A topological space (X, τ) is said to be finite if the
set X is finite.

Definition 2.12. [14] Let X be a nonempty set. A topology τ on X is
said to be graphically realizable if there exists a graph G = (V,E) and a
set-indexer f : V ∪ E → 2X such that f(V ) = τ . In this case G is said to
be a graphical realization of τ . Also the topological space (X, τ) is called
a graphically realizable space.
By Gτ , we denote the collection of all graphs which realizes (X, τ). That
is, Gτ is the set of all graphical realizations of the topological space (X, τ).

Remark 2.13. In [14], it has been shown that any finite topological space
(X, τ); |τ | = n is graphically realizable by K1,n−1. It can be achieved by
labeling the central vertex of K1,n−1 with ∅ and the remaining vertices with
the n− 1 nonempty elements of τ in any order. Here onwards we refer to
it, the star realization of (X, τ).

Theorem 2.14. [14] Every topology with finitely many open sets is graph-
ically realizable.

Theorem 2.15. [14] A graph G of order n (> 2) realizes only chain topolo-
gies if and only if Kn \E(Cn) ⊆ G ⊆ Kn.

Theorem 2.16. [14] Every graph of order n realizes every chain topology
with n open sets.

Definition 2.17. [14] A topological space (X, τ) realized by a graph G is
called an optimal space of G if τ(G) = |X|. In this case G is said to be an
optimal graphical realization of τ . The collection of all optimal graphical
realizations of a topological space (X, τ) is denoted by Oτ . Evidently,
Oτ ⊆ Gτ .

Theorem 2.18. [6] τ(Kn \E(K1,3)) = τ(Kn)− 1; n ≥ 4.

Theorem 2.19. [14] Every optimal topological space is T0.

Theorem 2.20. [13] τ(K1,2n−1) = n.

Definition 2.21. [3] A topological space is called quasi-discrete if every
open set is closed and vice versa.
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3. Maximal Graphical Realization of a Topology

Definition 3.1. A graph G is said to be a maximal graphical realization
of a topological space (X, τ) if

1. G is a graphical realization of (X, τ) and

2. s(G) ≥ s(H) whenever H is a graphical realization of (X, τ)

Evidently, a topological space may possess many maximal graphical
realizations. Obviously, spaces realized by the complete graphs have unique
maximal graphical realization.

The collection of all maximal graphical realizations of a given topolog-
ical space (X, τ) is denoted byMτ . Clearly,Mτ ⊆ Gτ .

Remark 3.2. In contrast with the optimal graphical realization, every fi-
nite topological space has a maximal graphical realization. HenceMτ 6= ∅,
even if Oτ = ∅. On the other hand, every element of Oτ need not be in
Mτ . For example, consider the topological space (X, τ); X = {a, b, c},
τ = {X, ∅, {a}, {b}, {a, b}, {a, c}}. Two different elements in Oτ are given
below:

Figure 1: Optimal graphical realization

Marisol Martínez
f-1
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Figure 2: Optimal graphical realization

By theorem 2.4, theorem 2.9 and theorem 2.10 we have 3 ≤ γ(K1,5) ≤
τ(K1,5) ≤ τ(G) ≤ |X| = 3. Consequently K1,5, G ∈ Oτ . Since all
nonempty subsets of X are present in G as edge labels, G ∈ Mτ . Since
s(K1,5) < s(G) we have K1,5 /∈Mτ .

Theorem 3.3. Let G = (V,E) be a graphical realization of a topological
space (X, τ) with t-set-indexer f . If no more edges can be drawn in G
keeping f fixed, then G ∈Mτ .

Proof 1. Let H = (U,F ) be a maximal graphical realization of (X, τ) with
t-set-indexer g. Then g(U) = τ = f(V ). Let A be any edge label of H.
Then there are vertices a and b in H such that A = g(a) ⊕ g(b). Since
g(a), g(b) ∈ f(V ), there are vertices c, d in G such that f(c) = g(a) and
f(d) = g(b).

If (c, d) ∈ E, then we have A = f(c) ⊕ f(d) = f(c, d) so that A is an
edge label of G also.
If (c, d) /∈ E, then since no more edges can be drawn in G keeping f fixed,
there must be an edge (p, q) in G such that f(p, q) = f(c)⊕f(d) = A. Thus
every edge label of H is also an edge label of G so that s(H) ≤ s(G). Since
G ∈ Gτ and H ∈Mτ then it follows that G ∈Mτ . 2

Definition 3.4. Let G be a graph. Any graph H obtained from G by
joining atleast one pair of nonadjacent vertices is called an extension of G
and we say G is extendable to H.

Marisol Martínez
f-2
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Following is a useful consequence of theorem 3.3.

Corollary 3.5. Let (X, τ) be a finite topological space. Any graphical
realization of (X, τ) is extendable to a maximal graphical realization of
(X, τ) with the same vertex labels.

Theorem 3.6. Let (X, τ) be a topological space and G ∈ Mτ . Then
s(G) ≥ |τ |− 1.

Proof 2. By the star realization of (X, τ) we have K1,|τ |−1 ∈ Gτ . Since
G ∈Mτ we have s(G) ≥ s(K1,|τ |−1). 2

Remark 3.7. The converse of the above theorem is not true, in general.
For example consider the topological space (X, τ); X = {a, b, c, d} and
τ={∅, {a}, {b}, {a, b}, {a, b, c}, X}. From the diagram below it follows
that both C6, G ∈ Gτ where G = K6 \ E(K1,3).

Figure 3: Graphical realization of τ by G = K6 \E(K1,3).

By theorem 2.15, any proper spanning supergraph of G does not realize
τ and hence s(H) ≤ 12 for every H ∈ Gτ . Consequently, G ∈Mτ so that
C6 /∈Mτ .

Theorem 3.8. Let (X, τ) be a given topological space with |τ | = n and
Oτ 6= ∅. Then Kn ∈ Gτ ⇒ Kn ∈ Oτ .

Proof 3. Since Oτ 6= ∅, there exists a graph G ∈ Oτ with o(G) = n and
τ(G) = |X|. Now Kn ∈ Gτ ⇒ τ(Kn) ≤ |X|. But G ⊆ Kn so that by
theorem 2.10, τ(G) ≤ τ(Kn). Thus, we have |X| = τ(G) ≤ τ(Kn) ≤ |X|
so that τ(Kn) = |X|. Consequently, Kn ∈ Oτ . 2

Marisol Martínez
f-3
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Remark 3.9. There are topological spaces (X, τ) with |τ | = n andOτ 6= ∅,
but Kn /∈ Oτ . For example, K7 /∈ Gτ ; τ is the topology {∅, X, {a}, {b},
{a, b}, {a, b, c}, {a, b, c, d}} on X = {a, b, c, d, e}. Note that τ is not a chain
topology. But it can be easily shown thatK7\E(K1,3) ∈ Gτ and by theorem
2.18 we have τ(K7 \E(K1,3)) = 5. Thus, K7 \E(K1,3) ∈ Oτ .

By theorem 2.8 and from the definition of τ(G) we have the following:

Theorem 3.10. Every graph G of order at least 2 is an optimal graphical
realization of some topology.

Remark 3.11. There are graphs which are not maximal graphical realiza-
tions of any topology (X, τ). For example, Kn \ E(K2) and Kn \ E(K1,2)
are not maximal graphical realizations of any topology with n open sets
(by theorem 2.15).

Theorem 3.12. Let G be a maximal graphical realization of a discrete
space (X, τ). Then G is set-graceful as well as t-set-graceful.

Proof 4. For any graphical realization H of the discrete space (X, τ) we
must have n = o(H) = 2|X| and s(H) ≤ n − 1. By the star realization of
(X, τ) we have K1,n−1 ∈ Gτ . Since s(K1,n−1) = n− 1 we get K1,n−1 ∈Mτ .
Consequently, o(G) = n and s(G) = n − 1, since G ∈ Mτ . Thus, there
exists a t-set-indexer f of G with f(V ) = 2X and f(E) = 2X \ ∅. Hence, G
is set-graceful and t-set-graceful. 2

Remark 3.13. Since there are many graphs of odd order which are both
set-graceful and t-set-graceful, the converse of the above theorem is not
true. For, such a graph cannot even be a graphical realization of a discrete
space. K3 is one such graph.

The following is a simple result.

Theorem 3.14. Let G be a set-graceful graph with indexing set X and f
be a t-set-indexer of G with the same indexing set X. Then G is a maximal
graphical realization of (X, f(V )).

Lemma 3.15. Let (X, τ) be an optimal space of a graph G. If (X, τ) is
not discrete, then H ∈Mτ ⇒ s(H) ≥ |τ |.
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Proof 5. Let A be the collection of all symmetric differences of the open
sets A1, . . . , An of τ ; |τ | = n. Without loss of generality we may assume
that An−1 = X and An = ∅. Since ∅ ⊕ Ai = Ai ∈ A for 1 ≤ i ≤ n − 1 we
have τ ⊆ A and |A| ≥ n. Let |A| = n so that τ = A. Since X ∈ τ , then
X⊕Ai = X\Ai ∈ A = τ for 1 ≤ i ≤ n−2 and hence for any A ∈ τ , we have
Ac ∈ τ . Clearly, n is even and every open set is closed also. Let x, y ∈ X
with x 6= y. By theorem 2.19, every optimal space is T0 and hence there
exists an open set U containing x but not y. Then the disjoint open sets
U and X \ U are such that x ∈ U , y /∈ U , x /∈ X \ U and y ∈ X \ U . This
implies that (X, τ) is a finite T1 space and hence discrete. Then |τ | = 2|X|,
a contradiction. Therefore, |A| ≥ n+ 1. But all the elements of A except
∅ are edge labels of H. Consequently, s(H) ≥ n. 2

Theorem 3.16. Let (X, τ) be a topological space. Then the star realiza-
tion of (X, τ) is maximal and optimal if and only if (X, τ) is discrete

Proof 6. Let K1,n−1 ∈Mτ ∩Oτ ; n = |τ |.
If n = 2, then K1,1 ∈Mτ ∩Oτ ⇒ τ(K1,1) = |X|⇒ 1 = |X| and hence

(X, τ) is discrete.
If n = 3, then the star realization K1,2 of (X, τ) is not maximal.
If n = 4, then K1,3 ∈Mτ ∩Oτ ⇒ τ(K1,3) = 2 = |X| by theorem 2.20

and hence (X, τ) is discrete.
Now suppose n ≥ 5 so that |X| ≥ 3. To prove that (X, τ) is discrete we

need only to show that n = 2|X|.
Suppose n 6= 2|X|. Then by lemma 3.15, we have s(K1,n−1) ≥ |τ | ⇒

n− 1 ≥ n, a contradiction. Consequently, (X, τ) is discrete.
Conversely let (X, τ) be a discrete space so that |τ | = 2|X|. Then the

star realization K1,|τ |−1 has 2
|X|−1 edges so that it is a maximal graphical

realization of (X, τ). Now the optimality of K1,|τ |−1 follows from theorem
2.20. 2

Theorem 3.17. Let f be a t-set-indexer of the graph G = Kn \ E(K1,3)
with indexing set X. Then the removal of atmost one set from f(V ) results
in a chain topology on X.

Proof 7. Let V = {v1, . . . , vn}; d(v1) = n − 4, d(v2) = d(v3) = d(v4) =
n − 2. If f(V ) is a chain topology, then there is nothing to be proved.
If f(V ) is not a chain topology, then there exists A, B ∈ f(V ) such that
A∪B 6= A and A∪B 6= B. Since f(V ) is a topology on X, there exists four
distinct vertices say vi, vj , vk and vl in G such that f(vi) = A, f(vj) = B,
f(vk) = A ∪B and f(vl) = A ∩B. Since
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f(vi)⊕ f(vj) = A⊕B = f(vk)⊕ f(vl),
f(vi)⊕ f(vk) = B \A = f(vj)⊕ f(vl) and
f(vi)⊕ f(vl) = A \B = f(vj)⊕ f(vk),

at least three possible edges are absent in G[vi, vj , vk, vl]. Consequently, we
must have vi, vj , vk, vl ∈ {v1, v2, v3, v4}. Otherwise,

G[vi, vj , vk, vl] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

K4, if v1 /∈ {vi, vj , vk, vl}
K4, if v1 ∈ {vi, vj , vk, vl} and v2, v3, v4 /∈ {vi, vj , vk, vl}
K4 \ E(K2), if exactly one of {v1, v2} or {v1, v3} or {v1, v4}

⊆ {vi, vj , vk, vl}
K4 \ E(K1,2), if exactly one of {v1, v2, v3} or {v1, v2, v4} or {v1, v3, v4}

⊆ {vi, vj , vk, vl}.

- a contradiction.
Let C and D be any two sets in f(V )\A. It is claimed that C ∪D = C

or C ∪D = D.
Suppose, on the contrary C∪D /∈ {C,D}. Let u, v, w and x be the vertices
of G with f(u) = C, f(v) = D, f(w) = C ∪D and f(x) = C ∩D. But

C ⊕D = (C ∪D)⊕ (C ∩D),
C ⊕ (C ∪D) = D \ C = D ⊕ (C ∩D) and
C ⊕ (C ∩D) = C \D = D ⊕ (C ∪D)

so that atleast three edges are absent in G[u, v, w, x]. Consequently,
we must have G[u, v, w, x] ⊆ K1,3 or G[u, v, w, x] ⊆ K3 ∪ K1. Now we
claim that {u, v,w, x} 6= {v1, v2, v3, v4}. Otherwise, s(G[u, v, w, x]) ≥ 4, a
contradiction. Thus, we have {C,D,C ∪D,C∩D} = {A,B,A∪B,A∩B}.
Since A /∈ {C,D} we must have A ∈ {C ∪D,C ∩D}. If A = C ∪D, then
B ∈ {C,D,C ∩ D} so that B ⊆ A, which is not possible. Therefore, we
must have A = C ∩D. Then B ∈ {C,D,C ∪D} so that A ⊆ B, which is
also not true. Hence we must have C ∪D = C or C ∪D = D as claimed
and f(V ) \A is a chain topology. 2

Theorem 3.18. Let f be a t-set-indexer of the graph G = Kn \ E(K3);
n ≥ 4 with indexing set X. Then the removal of atmost one set from f(V )
results in a chain topology.

Proof 8. Let V = {v1, . . . , vn}; d(v1) = d(v2) = d(v3) = n − 3. If f(V )
is a chain topology, then there is nothing to be proved. If f(V ) is not a
chain topology, then there exists A, B ∈ f(V ) such that A ∪ B 6= A and
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A∪B 6= B. Since f(V ) is a topology onX, there exists four distinct vertices
say vi, vj , vk and vl in G such that f(vi) = A, f(vj) = B, f(vk) = A ∪ B
and f(vl) = A ∩B. Since

f(vi)⊕ f(vj) = A⊕B = f(vk)⊕ f(vl),
f(vi)⊕ f(vk) = B \A = f(vj)⊕ f(vl) and
f(vi)⊕ f(vl) = A \B = f(vj)⊕ f(vk),

at least three possible edges are absent in G[vi, vj , vk, vl]. Consequently, we
must have v1, v2, v3 ∈ {vi, vj , vk, vl}. Otherwise,

G[vi, vj , vk, vl] =

⎧⎪⎨⎪⎩
K4, if exactly one of v1, v2, v3 belongs to {vi, vj , vk, vl}
K4 \ E(K2), if exactly one of {v1, v2} or {v1, v3} or {v2, v3}

⊆ {vi, vj , vk, vl}

— a contradiction.
Let C and D be any two sets in f(V )\A. It is claimed that C ∪D = C

or C ∪D = D.
Suppose on the contrary, C∪D /∈ {C,D}. Let u, v, w and x be the vertices
of G with f(u) = C, f(v) = D, f(w) = C ∪D and f(x) = C ∩D. But

C ⊕D = (C ∪D)⊕ (C ∩D),
C ⊕ (C ∪D) = D \ C = D ⊕ (C ∩D) and
C ⊕ (C ∩D) = C \D = D ⊕ (C ∪D)

so that atleast three edges are absent in G[u, v, w, x]. Consequently, we
must have G[u, v, w, x] ⊆ K1,3 or G[u, v, w, x] ⊆ K3 ∪ K1. Now we claim
that {u, v, w, x} 6= {v1, v2, v3, v4}. Otherwise, s(G[u, v, w, x]) ≥ 4, a con-
tradiction. Thus, we have {C,D,C ∪D,C ∩D} = {A,B,A ∪ B,A ∩ B}.
Since A /∈ {C,D} we must have A ∈ {C ∪D,C ∩D}. If A = C ∪D, then
B ∈ {C,D,C ∩ D} so that B ⊆ A, which is not possible. Therefore, we
must have A = C ∩ D. Then B ∈ {C,D,C ∪ D} so that A ⊆ B, which
is also not true. Hence, we must have C ∪ D = C or D, as claimed and
f(V ) \A is a chain topology. 2

Theorem 3.19. LetG = (V,E) be the graphKn\E(K1,3) andH = (U,F )
be the graph Kn \E(K3). Then for every t-set indexer f of G, there exists
a t-set indexer g of H satisfying f(V ) = g(U) and conversely.

Proof 9. Let V = {v1, . . . , vn} with d(v1) = n−4, d(v2) = d(v3) = d(v4) =
n− 2 and U = {u1, . . . , un} with d(u1) = d(u2) = d(u3) = n− 3. Since f is
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a t-set-indexer of G, by theorem 3.17, the removal of atmost one set from
f(V ) results in a chain topology. If f(V ) itself is a chain topology, then
we can define a set-indexer say g1 of H by g1(ui) = f(vi) for i = 1, . . . , n.
Clearly, g1(U) = f(V ) and then g1 is a t-set-indexer of H.
Otherwise, there exists A ∈ f(V ) such that f(V ) \ A is a chain topology.
Clearly there exists B(6= A) in f(V ) such that A∪B 6= A, B. Now consider
a set-valuation, say g2 of H defined by g2(ui) = f(vi) for i = 1, . . . , n.
Clearly, g2(U) = f(V ). Obviously, A,B,A ∪B,A ∩B ∈ g2(U). But

A⊕B = (A ∪B)⊕ (A ∩B)
A⊕ (A ∪B) = B \A = B ⊕ (A ∩B)
A⊕ (A ∩B) = A \B = B ⊕ (A ∪B).

Hence atleast 3 edges should be absent in the subgraph of H induced
by the vertices with labels A, B, A ∪B and A ∩B. Note that (v2, v3) ∈ E
but (u2, u3) /∈ F . Also (v1, v4) /∈ E but (u1, u4) ∈ F . Consequently, we
must have A, B, A ∪ B, A ∩ B ∈ {g2(u1), g2(u2), g2(u3), g2(u4)}. Also
g2(u1, u4) = f(v1) ⊕ f(v4) = f(v2, v3) and g2(ui, uj) = f(vi, vj), for all
(ui, uj) ∈ F \ {(u1, u4)}. Therefore, the edge labels of H under g2 are
distinct so that g2 is a t-set-indexer of H.

Conversely, let g be a t-set-indexer of H. Then by theorem 3.18, the
removal of atmost one set from g(U) results in a chain topology. If g(U)
itself is a chain topology, then we can define a set-indexer say f1 of G by
f1(vi) = g(ui) for i = 1, . . . , n. Clearly f1(V ) = g(U) so that f1 is a t-set-
indexer of G.
Otherwise, there exists C ∈ g(U) such that g(U) \ C is a chain topology.
Evidently, there exists D(6= C) in g(U) such that C ∪ D 6= C, D. Now
consider a set-valuation say f2 of G defined by f2(vi) = g(ui) for i =
1, . . . , n. Clearly, f2(V ) = g(U). Obviously, C,D,C ∪D,C ∩D ∈ f2(V ).
But

C ⊕D = (C ∪D)⊕ (C ∩D)
C ⊕ (C ∪D) = D \ C = D ⊕ (C ∩D)
C ⊕ (C ∩D) = C \D = D ⊕ (C ∪D).

Hence atleast 3 edges should be absent in the subgraph of G induced
by the vertices with labels C, D, C ∪D and C ∩D. Note that (u1, u4) ∈ F
but (v1, v4) /∈ E. Also (u2, u3) /∈ F but (v2, v3) ∈ E. Consequently we
must have C, D, C ∪ D, C ∩ D ∈ {f2(v1), f2(v2), f2(v3), f2(v4)}. Also
f2(v2, v3) = g(u2) ⊕ g(u3) = g(u1, u4) and f2(vi, vj) = g(ui, uj), for all
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(vi, vj) ∈ E \ {(v2, v3)}. Therefore, the edge labels of G under f2 are
distinct so that f2 is a t-set-indexer of G. 2

Remark 3.20. From the above theorem it follows that there is a one-to-
one correspondence between the t-set indexers of Kn \ E(K1,3) and Kn \
E(K3), in such a way that the corresponding t-set indexers induce the same
topology on the common indexing set.

An immediate consequence of the above theorem is:

Corollary 3.21. Let (X, τ) be a topological space. Then Kn \ E(K1,3) ∈
Gτ (or Mτ ) if and only if Kn \E(K3) ∈ Gτ (or Mτ ).

Theorem 3.22. Let (X, τ); |τ | = n(≥ 4) be a given topological space
such that the removal of exactly one set from τ results in a chain topology.
Then a graph G of order n is a graphical realization of (X, τ) if and only if
G /∈ A = {H : Kn \E(Cn) ⊆ H ⊆ Kn}.

Proof 10. We have to prove that if G ∈ Gτ , then G /∈ A. Suppose G ∈ A.
Then by theorem 2.15 we have G /∈ Gτ .

Conversely, let G /∈ A. Then G ⊆ Kn \E(K1,3) or G ⊆ Kn \E(K3). By
theorem 3.17 and theorem 3.18 we have Kn\E(K1,3) and Kn\E(K3) ∈ Gτ .
Since every spanning subgraph of any graph in Gτ is also in Gτ we have
G ∈ Gτ . 2

The following is a consequence of theorem 2.15 and theorem 2.16.

Theorem 3.23. No graph G ∈ A = {H : Kn \ E(Cn) ⊆ H ⊂ Kn} is a
maximal graphical realization of any topological space (X, τ); |τ | = n > 2.

Theorem 3.24. Let (X, τ) be a topological space. ThenMτ = {K|τ |} if
and only if τ is a chain topology on X.

Proof 11. Follows from theorem 2.15 and theorem 2.16. 2

Conjecture 3.25. If the topological space (X, τ) has a unique maximal
graphical realization, then τ is a chain topology.

Theorem 3.26. Let (X, τ) be a finite topological space. If Mτ contains
a tree, then τ is quasi-discrete.
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Proof 12. Let T be a tree and T ∈Mτ . Then there exists a t-set-indexer
say, f of T with f(V ) = τ and let |τ | = n. By the star realization of
(X, τ) we have K1,n−1 ∈ Gτ . Since s(T ) = n − 1 = s(K1,n−1) we have
K1,n−1 ∈Mτ . Let V (K1,n−1) = {v0, v1, . . . , vn−1}; d(v0) = n− 2. Now by
assigning ∅ to v0 and the remaining distinct nonempty elements of f(V (T ))
to the pendant vertices of K1,n−1 in any order we get a t-set-indexer say
g of K1,n−1 with t-indexing set X. Without loss of generality assume that
g(v1) = X. Then we have g(v1)⊕g(vj) = X \g(vj) for all j ∈ {2, . . . , n−1}
so that X \ g(vj) is an edge label of K1,n−1 for all j ∈ {2, . . . , n − 1},
since K1,n−1 ∈Mτ . But the central vertex v0 is of label ∅. Consequently,
X\g(vj) is also a vertex label of K1,n−1 under g for every j ∈ {2, . . . , n−1}.
Thus, X \ g(vj) ∈ τ whenever g(vj) ∈ τ . Hence, τ is quasi-discrete. 2

It is already shown that every topology admits a star realization. Then
the natural question, what about the maximality of these star realizations,
arises.The following theorem answers this.

Theorem 3.27. Let (X, τ) be a finite topological space. Then K1,|τ |−1 ∈
Mτ if and only if (X, τ) is quasi-discrete.

Proof 13. The necessary part follows from theorem 3.26. On the other
hand, let (X, τ) be a finite quasi-discrete space. Then |τ | is an even number .
If |τ | = 2, thenMτ contains only one graph namely the tree K2. If |τ | = 4,
then τ = {X, ∅, A,X \ A}; A ⊂ X. Let G be a graphical realization of
(X, τ). By theorem 2.14 such a graph exists. Since

∅ ⊕A = A = X ⊕ (X \A),
∅ ⊕ (X \A) = (X \A) = X ⊕A and

∅ ⊕X = X = A⊕ (X \A)

we have either G ⊆ K1,3 or G ⊆ K3 ∪ K1. Consequently s(G) ≤ 3 and
therefore the star realization K1,3 of (X, τ) belongs toMτ .

Suppose |τ | ≥ 6 and A, B ∈ τ . Since (X, τ) is a quasi-discrete, τ
is closed under symmetric difference. By the star realization of (X, τ)
we have K1,|τ |−1 ∈ Gτ and let g be the corresponding t-set-indexer with
g(V ) = τ and g(v0) = ∅ where v0 is the central vertex of K1,|τ |−1. Let
vi and vj be any two distinct pendant vertices of K1,|τ |−1. Then we have
g(vi) ⊕ g(vj) ∈ τ . Since g(vi) ⊕ g(vj) is different from both g(vi) and
g(vj), there exists another pendant vertex vk in K1,|τ |−1 such that g(vk) =
g(vi)⊕ g(vj) and k ∈ {1, . . . , |τ |− 1} \ {i, j}. Then we have g(v0)⊕ g(vk) =
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g(vk) = g(vi)⊕g(vj). Consequently, no more edges can be drawn inK1,|τ |−1
such that the resulting graph realizes (X, τ) keeping g fixed. Then by
theorem 3.3 we have K1,|τ |−1 ∈Mτ . 2

A consequence of the above theorem is,

Corollary 3.28. No tree of odd order is a maximal graphical realization
of a topological space.

Theorem 3.29. Maximal graphical realization of a topology is a cycle if
and only if it is C3.

Proof 14. Let (X, τ); |τ | = n be a given topological space and suppose
Cn ∈Mτ where n ≥ 3. By the star realization of (X, τ) we have K1,n−1 ∈
Gτ and let g be the corresponding t-set-indexer. Let V = {v0, v1, . . . , vn−1}
with d(v0) = n − 1 be the vertex set of K1,n−1. Then we have g(v0) = ∅
and g(vk) = X for some vk 6= v0. Since Cn ∈Mτ , by corollary 3.5, we can
extend K1,n−1 to a maximal graphical realization G = (V,E) of (X, τ) just
by joining two distinct pendant vertices vi and vj , keeping all the vertex
labels fixed. Let f be the corresponding t-set-indexer which is an extension
of g.
It is claimed that either vi = vk or vj = vk.

Suppose vk /∈ {vi, vj} and let f(vi) = A and f(vj) = B. Obviously
A and B are nonempty and B 6= X \ A. Since (vk, vi), (vk, vj) /∈ E and
G ∈ Mτ , both X \ A and X \ B are edge labels of G under f . But
f |K1,n−1 = g and g corresponds to the star realization of K1,n−1. Conse-
quently, there are vertices va, vb ∈ V \{vi, vj , vk, v0} such that f(va) = X\A
and f(vb) = X \B.
Now A, B, X \A, X \B ∈ f(V ) = τ
⇒ A ∩ (X \B), B ∩ (X \A) ∈ τ
⇒ (A ∩ (X \B)) ∪ (B ∩ (X \A)) = (A \B) ∪ (B \A) = A⊕B ∈ τ .
⇒ there exists vl ∈ V such that f(vl) = A⊕B.
Because of obvious reasons, vl /∈ {v0, vi, vj , vk, va, vb}.
But then f(v0, vl) = A⊕ B = f(vi, vj) — a contradiction. Hence, we must
have vk = vi or vk = vj as claimed.
Without loss of generality assume that vk = vi so that f(vi) = A = X.
Then f(vi, vj) = X \ B and X \ B /∈ f(V ). Suppose G contains a
fourth vertex vx other than v0, vi and vj . Let f(vx) = D. Clearly,
D /∈ {X,B, ∅,X \ B}. Since (vi, vx) /∈ E and G ∈ Mτ , there exists a
vertex vy ∈ V \ {v0, vi, vj , vx} such that f(vy) = X \D.
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But B,D,X \D ∈ f(V ) and G ∈Mτ

⇒ (B ⊕D), (B ⊕ (X \D)) ∈ f(V )
⇒ (B ⊕D) ∪ (B ⊕ (X \D)) ∈ τ = f(V )
⇒ B ⊕ (D ∪ (X \D)) = B ⊕X = X \B ∈ τ = f(V ).
⇒ there exists vz ∈ V \ {v0, vi, vj , vx, vy} such that f(vz) = X \B.
⇒ f(v0, vz) = X \ B = f(vi, vj) — a contradiction. Consequently, V =
{v0, vi, vj} and G = C3.

Converse part follows from theorem 3.24. 2

Theorem 3.30. Let (X, τ) be a topological space with |τ | ≥ 4 and G ∈
Mτ . Then s(G) = |τ |− 1 if τ is quasi-discrete and s(G) > |τ | otherwise.

Proof 15. If τ is quasi-discrete, by theorem 3.27, K1,|τ |−1 ∈Mτ so that
s(G) = s(K1,|τ |−1) = |τ |− 1.

If τ is not quasi-discrete, then again by theorem 3.27, K1,|τ |−1 /∈Mτ .
But by the star realization, K1,|τ |−1 ∈ Gτ so that s(G) ≥ |τ |. Suppose
s(G) = |τ | and let H = (V,E) be a graph obtained from K1,|τ |−1 by join-
ing two nonadjacent vertices of K1,|τ |−1 by an edge such that H ∈ Mτ

and f be the corresponding t-set-indexer of H with f(V ) = τ . Let V =
{v0, v1, . . . , vn}; n = |τ | − 1, d(v0) = n and d(v1) = 2 = d(v2). Clearly,
f(v0) = ∅. Suppose f(v1) = A and f(v2) = B; A,B ⊂ X. Obviously,
A⊕B /∈ f(V ).
Suppose X /∈ {A,B}. Since f(V ) = τ and n ≥ 3, there exists a vertex
v3 ∈ V \ {v0, v1, v2} such that f(v3) = X. Also B 6= X \ A. Otherwise,
f(v1, v2) = X = f(v0, v3) — a contradiction. Obviously, A∪B,A∩B ∈ f(V ).
Since G ∈Mτ , f(v0) = ∅ and f(v3) = X, we must have X \A,X \B,X \
(A∩B),X\(A∪B) ∈ f(V ). NowA⊕B = (A∩(X\B))∪(B∩(X\A)) ∈ f(V )
— a contradiction. Consequently, X ∈ {A,B}.

Without loss of generality, assume that B = X. Then f(v1, v2) = X \A
and since G ∈ Mτ and f(v0) = ∅ it follows that X \ A /∈ f(V ). Since
n ≥ 3, there exists a vertex v3 in V \ {v0, v1, v2} and let f(v3) = C. Note
that C 6= X \ A, otherwise f(v1, v2) = X \ A = f(v0, v3) — a contraction.
Obviously, A ∪ C, A ∩ C ∈ f(V ). Since G ∈Mτ and f(v0) = ∅ we must
have X \ C, X \ (A ∪ C), X \ (A ∩ C), A ⊕ C, X \ (A ⊕ C) ∈ f(V ). But

X \A =
(
(X \ C) ∪ (X \ (A⊕ C)); C ⊂ A
(X \ (A ∪ C)) ∪ (C ∩ (X \ (A ∩ C)); C 6⊂ A

.

This shows that X \A ∈ f(V ) — a contradiction. Consequently, s(G) >
|τ |, if τ is not quasi-discrete. 2
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Obviously, Oτ is non empty wheneverMτ ⊆ Oτ . There is every reason
to believe that the converse is also true and the study puts forward the
following:

Conjecture 3.31. Let (X, τ) be a topological space. Then Mτ ⊆ Oτ

whenever Oτ is non empty.
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