

Proyecciones Journal of Mathematics Vol. 43, N^o 2, pp. 365-382, April 2024. Universidad Católica del Norte Antofagasta - Chile

Maximal graphical realization of a topology

Ullas Thomas S. B. College Changanassery, India and Sunil C. Mathew Deva Matha College Kuravilangad, India Received : October 2022. Accepted : June 2023

Abstract

Given a topological space, the graphical realizations of it with as many edges as possible, called maximal graphical realizations, are studied here. Every finite topological space admits a maximal graphical realization. However, there are graphs which are not maximal graphical realizations of any topology. A tree of odd order is never a maximal graphical realization of a topological space. Maximal graphical realization of a topology is a cycle if and only if it is C_3 . It is shown that chain topologies admit unique maximal graphical realizations. A lower bound for the size of a maximal graphical realization is also obtained.

Keywords: Set-indexer; topology; t-set-graceful; optimal space.

2010 Mathematics Subject Classification: 05C78, 05C10.

1. Introduction

Acharya [1] initiated the study of set-valuations by introducing the notions of set-indexer and topological set-indexer for a given graph. Subsequently, several authors [4], [5], [7], [8], [11], [15] studied set-valuations of graphs and obtained many significant results. In [12, 16], the authors investigated topological set-indexers and derived the topological number of certain graphs. The additional study [13] established topological set-gracefulness of certain stars, paths and related graphs. Further, the topological set-gracefulness of subgraphs, especially spanning subgraphs, of a topologically set-graceful graph has been examined in [6]. Later in [14], the authors concentrated on topologies formed by the vertex labels of a topological set-indexer of a given graph. The graph then is called a graphical realization of the topology and the topological space is said to be a graphically realizable space.

This paper sheds more light on graphical realizations by exploring graphical realizations with maximum size for a given topological space. Such a graphical realization is called maximal graphical realization and every topology with finitely many open sets has a maximal graphical realization. It is proved that star graph is a maximal graphical realization of a finite topological space if and only if the space is quasi-discrete. Further, no cycle of order greater than three is a maximal graphical realization of a topology. It is shown that chain topologies admit unique maximal graphical realizations and conjectured that the converse is also true. Investigations are also carried out on the lower bound for the size of a maximal graphical realization.

2. Preliminaries

In this section we include certain definitions and known results needed for the subsequent development of the study. For a nonempty set X, the set of all subsets of X is denoted by 2^X . By A^c , we mean, the complement of a set A. We always denote a graph under consideration by G and its vertex and edge sets by V and E respectively. By $G' \subseteq G$ we mean G' is a subgraph of G while $G' \subset G$ means G' is a proper subgraph of G. The empty graph of order n is denoted by N_n . By $G[v_1, \ldots, v_n]$ we mean the subgraph of G induced by the vertices v_1, \ldots, v_n . The order and size of a graph G is denoted by o(G) and s(G) respectively. When it is said that two graphs are different we mean they are non-isomorphic. All graphs considered in this paper are simple. **Definition 2.1.** [2] Let G = (V, E) be a given graph and X be a nonempty set. Then a mapping $f : V \to 2^X$, or $f : E \to 2^X$, or $f : V \cup E \to 2^X$ is called a set-assignment or set-valuation of the vertices or edges or both.

Definition 2.2. [2] Let G be a given graph and X be a nonempty set. Then a set-valuation $f: V \cup E \to 2^X$ is a set-indexer of G if

- 1. $f(u,v) = f(u) \oplus f(v), \forall (u,v) \in E$, where ' \oplus ' denotes the binary operation of taking the symmetric difference of the sets in 2^X
- 2. the restriction maps $f|_V$ and $f|_E$ are both injective.

In this case, X is called an indexing set of G. Clearly a graph can have many indexing sets and the minimum of the cardinalities of the indexing sets is said to be the set-indexing number of G, denoted by $\gamma(G)$. The set-indexing number of K_1 is defined to be zero.

Theorem 2.3. [2] Every graph has a set-indexer.

Theorem 2.4. [2] Let X be an indexing set of G = (V, E). Then

- 1. $|E| \le 2^{|X|} 1$ and
- 2. $\lceil \log_2(|E|+1) \rceil \le \gamma(G) \le |V|-1$, where $\lceil \rceil$ is the ceiling function.

Theorem 2.5. [2] If G' is a subgraph of G, then $\gamma(G') \leq \gamma(G)$.

Definition 2.6. [2] A graph G is set-graceful if $\gamma(G) = \log_2(|E|+1)$ and the corresponding set-indexer is called a set-graceful labeling of G.

Definition 2.7. [2] A set-indexer f of a graph G with indexing set X is said to be a topological set-indexer (t-set-indexer) if f(V) is a topology on X and X is called the topological indexing set(t-indexing set) of G. The minimum number among the cardinalities of such topological indexing sets is said to be the topological number (t-number) of G, denoted by $\tau(G)$ and the corresponding t-set indexer is called the optimal t-set-indexer of G. A graph G is said to be topologically set-graceful or t-set-graceful if $\gamma(G) = \tau(G)$.

Theorem 2.8. [2] Every graph with at least two vertices has a t-set-indexer.

Theorem 2.9. [2] Let G be any graph with at least two vertices. Then $\gamma(G) \leq \tau(G)$.

Theorem 2.10. [12] If G' is a spanning sub graph of G, then $\tau(G') \leq \tau(G)$.

Definition 2.11. [10] A topological space (X, τ) is said to be finite if the set X is finite.

Definition 2.12. [14] Let X be a nonempty set. A topology τ on X is said to be graphically realizable if there exists a graph G = (V, E) and a set-indexer $f: V \cup E \to 2^X$ such that $f(V) = \tau$. In this case G is said to be a graphical realization of τ . Also the topological space (X, τ) is called a graphically realizable space.

By \mathcal{G}_{τ} , we denote the collection of all graphs which realizes (X, τ) . That is, \mathcal{G}_{τ} is the set of all graphical realizations of the topological space (X, τ) .

Remark 2.13. In [14], it has been shown that any finite topological space (X, τ) ; $|\tau| = n$ is graphically realizable by $K_{1,n-1}$. It can be achieved by labeling the central vertex of $K_{1,n-1}$ with \emptyset and the remaining vertices with the n-1 nonempty elements of τ in any order. Here onwards we refer to it, the star realization of (X, τ) .

Theorem 2.14. [14] Every topology with finitely many open sets is graphically realizable.

Theorem 2.15. [14] A graph G of order n (> 2) realizes only chain topologies if and only if $K_n \setminus E(C_n) \subseteq G \subseteq K_n$.

Theorem 2.16. [14] Every graph of order n realizes every chain topology with n open sets.

Definition 2.17. [14] A topological space (X, τ) realized by a graph G is called an optimal space of G if $\tau(G) = |X|$. In this case G is said to be an optimal graphical realization of τ . The collection of all optimal graphical realizations of a topological space (X, τ) is denoted by \mathcal{O}_{τ} . Evidently, $\mathcal{O}_{\tau} \subseteq \mathcal{G}_{\tau}$.

Theorem 2.18. [6] $\tau(K_n \setminus E(K_{1,3})) = \tau(K_n) - 1; n \ge 4.$

Theorem 2.19. [14] Every optimal topological space is T_0 .

Theorem 2.20. [13] $\tau(K_{1,2^n-1}) = n$.

Definition 2.21. [3] A topological space is called quasi-discrete if every open set is closed and vice versa.

3. Maximal Graphical Realization of a Topology

Definition 3.1. A graph G is said to be a maximal graphical realization of a topological space (X, τ) if

1. G is a graphical realization of (X, τ) and

2. $s(G) \ge s(H)$ whenever H is a graphical realization of (X, τ)

Evidently, a topological space may possess many maximal graphical realizations. Obviously, spaces realized by the complete graphs have unique maximal graphical realization.

The collection of all maximal graphical realizations of a given topological space (X, τ) is denoted by \mathcal{M}_{τ} . Clearly, $\mathcal{M}_{\tau} \subseteq \mathcal{G}_{\tau}$.

Remark 3.2. In contrast with the optimal graphical realization, every finite topological space has a maximal graphical realization. Hence $\mathcal{M}_{\tau} \neq \emptyset$, even if $\mathcal{O}_{\tau} = \emptyset$. On the other hand, every element of \mathcal{O}_{τ} need not be in \mathcal{M}_{τ} . For example, consider the topological space (X, τ) ; $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Two different elements in \mathcal{O}_{τ} are given below:

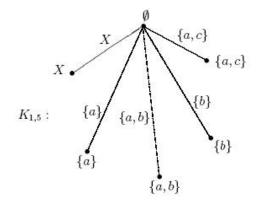


Figure 1: Optimal graphical realization

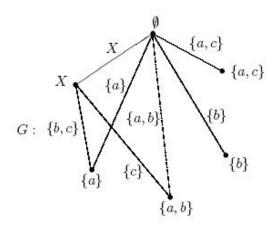


Figure 2: Optimal graphical realization

By theorem 2.4, theorem 2.9 and theorem 2.10 we have $3 \leq \gamma(K_{1,5}) \leq \tau(K_{1,5}) \leq \tau(G) \leq |X| = 3$. Consequently $K_{1,5}$, $G \in \mathcal{O}_{\tau}$. Since all nonempty subsets of X are present in G as edge labels, $G \in \mathcal{M}_{\tau}$. Since $s(K_{1,5}) < s(G)$ we have $K_{1,5} \notin \mathcal{M}_{\tau}$.

Theorem 3.3. Let G = (V, E) be a graphical realization of a topological space (X, τ) with t-set-indexer f. If no more edges can be drawn in G keeping f fixed, then $G \in \mathcal{M}_{\tau}$.

Proof 1. Let H = (U, F) be a maximal graphical realization of (X, τ) with t-set-indexer g. Then $g(U) = \tau = f(V)$. Let A be any edge label of H. Then there are vertices a and b in H such that $A = g(a) \oplus g(b)$. Since $g(a), g(b) \in f(V)$, there are vertices c, d in G such that f(c) = g(a) and f(d) = g(b).

If $(c,d) \in E$, then we have $A = f(c) \oplus f(d) = f(c,d)$ so that A is an edge label of G also.

If $(c, d) \notin E$, then since no more edges can be drawn in G keeping f fixed, there must be an edge (p, q) in G such that $f(p, q) = f(c) \oplus f(d) = A$. Thus every edge label of H is also an edge label of G so that $s(H) \leq s(G)$. Since $G \in \mathcal{G}_{\tau}$ and $H \in \mathcal{M}_{\tau}$ then it follows that $G \in \mathcal{M}_{\tau}$.

Definition 3.4. Let G be a graph. Any graph H obtained from G by joining atleast one pair of nonadjacent vertices is called an extension of G and we say G is extendable to H.

Following is a useful consequence of theorem 3.3.

Corollary 3.5. Let (X, τ) be a finite topological space. Any graphical realization of (X, τ) is extendable to a maximal graphical realization of (X, τ) with the same vertex labels.

Theorem 3.6. Let (X, τ) be a topological space and $G \in \mathcal{M}_{\tau}$. Then $s(G) \geq |\tau| - 1$.

Proof 2. By the star realization of (X, τ) we have $K_{1,|\tau|-1} \in \mathcal{G}_{\tau}$. Since $G \in \mathcal{M}_{\tau}$ we have $s(G) \geq s(K_{1,|\tau|-1})$.

Remark 3.7. The converse of the above theorem is not true, in general. For example consider the topological space (X, τ) ; $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. From the diagram below it follows that both $C_6, G \in \mathcal{G}_{\tau}$ where $G = K_6 \setminus E(K_{1,3})$.

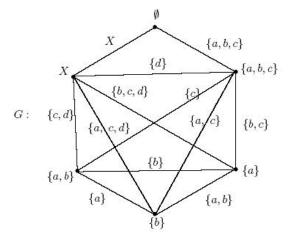


Figure 3: Graphical realization of τ by $G = K_6 \setminus E(K_{1,3})$.

By theorem 2.15, any proper spanning supergraph of G does not realize τ and hence $s(H) \leq 12$ for every $H \in \mathcal{G}_{\tau}$. Consequently, $G \in \mathcal{M}_{\tau}$ so that $C_6 \notin \mathcal{M}_{\tau}$.

Theorem 3.8. Let (X, τ) be a given topological space with $|\tau| = n$ and $\mathcal{O}_{\tau} \neq \emptyset$. Then $K_n \in \mathcal{G}_{\tau} \Rightarrow K_n \in \mathcal{O}_{\tau}$.

Proof 3. Since $\mathcal{O}_{\tau} \neq \emptyset$, there exists a graph $G \in \mathcal{O}_{\tau}$ with o(G) = n and $\tau(G) = |X|$. Now $K_n \in \mathcal{G}_{\tau} \Rightarrow \tau(K_n) \leq |X|$. But $G \subseteq K_n$ so that by theorem 2.10, $\tau(G) \leq \tau(K_n)$. Thus, we have $|X| = \tau(G) \leq \tau(K_n) \leq |X|$ so that $\tau(K_n) = |X|$. Consequently, $K_n \in \mathcal{O}_{\tau}$.

Remark 3.9. There are topological spaces (X, τ) with $|\tau| = n$ and $\mathcal{O}_{\tau} \neq \emptyset$, but $K_n \notin \mathcal{O}_{\tau}$. For example, $K_7 \notin \mathcal{G}_{\tau}$; τ is the topology $\{\emptyset, X, \{a\}, \{b\}, \{a, b, c\}, \{a, b, c, d\}\}$ on $X = \{a, b, c, d, e\}$. Note that τ is not a chain topology. But it can be easily shown that $K_7 \setminus E(K_{1,3}) \in \mathcal{G}_{\tau}$ and by theorem 2.18 we have $\tau(K_7 \setminus E(K_{1,3})) = 5$. Thus, $K_7 \setminus E(K_{1,3}) \in \mathcal{O}_{\tau}$.

By theorem 2.8 and from the definition of $\tau(G)$ we have the following:

Theorem 3.10. Every graph G of order at least 2 is an optimal graphical realization of some topology.

Remark 3.11. There are graphs which are not maximal graphical realizations of any topology (X, τ) . For example, $K_n \setminus E(K_2)$ and $K_n \setminus E(K_{1,2})$ are not maximal graphical realizations of any topology with n open sets (by theorem 2.15).

Theorem 3.12. Let G be a maximal graphical realization of a discrete space (X, τ) . Then G is set-graceful as well as t-set-graceful.

Proof 4. For any graphical realization H of the discrete space (X, τ) we must have $n = o(H) = 2^{|X|}$ and $s(H) \leq n - 1$. By the star realization of (X, τ) we have $K_{1,n-1} \in \mathcal{G}_{\tau}$. Since $s(K_{1,n-1}) = n - 1$ we get $K_{1,n-1} \in \mathcal{M}_{\tau}$. Consequently, o(G) = n and s(G) = n - 1, since $G \in \mathcal{M}_{\tau}$. Thus, there exists a t-set-indexer f of G with $f(V) = 2^X$ and $f(E) = 2^X \setminus \emptyset$. Hence, G is set-graceful and t-set-graceful.

Remark 3.13. Since there are many graphs of odd order which are both set-graceful and t-set-graceful, the converse of the above theorem is not true. For, such a graph cannot even be a graphical realization of a discrete space. K_3 is one such graph.

The following is a simple result.

Theorem 3.14. Let G be a set-graceful graph with indexing set X and f be a t-set-indexer of G with the same indexing set X. Then G is a maximal graphical realization of (X, f(V)).

Lemma 3.15. Let (X, τ) be an optimal space of a graph G. If (X, τ) is not discrete, then $H \in \mathcal{M}_{\tau} \Rightarrow s(H) \ge |\tau|$.

Proof 5. Let A be the collection of all symmetric differences of the open sets A_1, \ldots, A_n of τ ; $|\tau| = n$. Without loss of generality we may assume that $A_{n-1} = X$ and $A_n = \emptyset$. Since $\emptyset \oplus A_i = A_i \in A$ for $1 \le i \le n-1$ we have $\tau \subseteq A$ and $|A| \ge n$. Let |A| = n so that $\tau = A$. Since $X \in \tau$, then $X \oplus A_i = X \setminus A_i \in A = \tau$ for $1 \le i \le n-2$ and hence for any $A \in \tau$, we have $A^c \in \tau$. Clearly, n is even and every open set is closed also. Let $x, y \in X$ with $x \ne y$. By theorem 2.19, every optimal space is T_0 and hence there exists an open set U containing x but not y. Then the disjoint open sets U and $X \setminus U$ are such that $x \in U, y \notin U, x \notin X \setminus U$ and $y \in X \setminus U$. This implies that (X, τ) is a finite T_1 space and hence discrete. Then $|\tau| = 2^{|X|}$, a contradiction. Therefore, $|A| \ge n + 1$. But all the elements of A except \emptyset are edge labels of H. Consequently, $s(H) \ge n$.

Theorem 3.16. Let (X, τ) be a topological space. Then the star realization of (X, τ) is maximal and optimal if and only if (X, τ) is discrete

Proof 6. Let $K_{1,n-1} \in \mathcal{M}_{\tau} \cap \mathcal{O}_{\tau}$; $n = |\tau|$.

If n = 2, then $K_{1,1} \in \mathcal{M}_{\tau} \cap \mathcal{O}_{\tau} \Rightarrow \tau(K_{1,1}) = |X| \Rightarrow 1 = |X|$ and hence (X, τ) is discrete.

If n = 3, then the star realization $K_{1,2}$ of (X, τ) is not maximal.

If n = 4, then $K_{1,3} \in \mathcal{M}_{\tau} \cap \mathcal{O}_{\tau} \Rightarrow \tau(K_{1,3}) = 2 = |X|$ by theorem 2.20 and hence (X, τ) is discrete.

Now suppose $n \ge 5$ so that $|X| \ge 3$. To prove that (X, τ) is discrete we need only to show that $n = 2^{|X|}$.

Suppose $n \neq 2^{|X|}$. Then by lemma 3.15, we have $s(K_{1,n-1}) \geq |\tau| \Rightarrow n-1 \geq n$, a contradiction. Consequently, (X, τ) is discrete.

Conversely let (X, τ) be a discrete space so that $|\tau| = 2^{|X|}$. Then the star realization $K_{1,|\tau|-1}$ has $2^{|X|} - 1$ edges so that it is a maximal graphical realization of (X, τ) . Now the optimality of $K_{1,|\tau|-1}$ follows from theorem 2.20.

Theorem 3.17. Let f be a t-set-indexer of the graph $G = K_n \setminus E(K_{1,3})$ with indexing set X. Then the removal of atmost one set from f(V) results in a chain topology on X.

Proof 7. Let $V = \{v_1, \ldots, v_n\}$; $d(v_1) = n - 4$, $d(v_2) = d(v_3) = d(v_4) = n - 2$. If f(V) is a chain topology, then there is nothing to be proved. If f(V) is not a chain topology, then there exists $A, B \in f(V)$ such that $A \cup B \neq A$ and $A \cup B \neq B$. Since f(V) is a topology on X, there exists four distinct vertices say v_i, v_j, v_k and v_l in G such that $f(v_i) = A, f(v_j) = B$, $f(v_k) = A \cup B$ and $f(v_l) = A \cap B$. Since

$$f(v_i) \oplus f(v_j) = A \oplus B = f(v_k) \oplus f(v_l),$$

 $f(v_i) \oplus f(v_k) = B \setminus A = f(v_j) \oplus f(v_l) \text{ and }$
 $f(v_i) \oplus f(v_l) = A \setminus B = f(v_j) \oplus f(v_k),$

at least three possible edges are absent in $G[v_i, v_j, v_k, v_l]$. Consequently, we must have $v_i, v_j, v_k, v_l \in \{v_1, v_2, v_3, v_4\}$. Otherwise,

$$G[v_i, v_j, v_k, v_l] = \begin{cases} K_4, & \text{if } v_1 \notin \{v_i, v_j, v_k, v_l\} \\ K_4, & \text{if } v_1 \in \{v_i, v_j, v_k, v_l\} \text{ and } v_2, v_3, v_4 \notin \{v_i, v_j, v_k, v_l\} \\ K_4 \setminus E(K_2), & \text{if exactly one of } \{v_1, v_2\} \text{ or } \{v_1, v_3\} \text{ or } \{v_1, v_4\} \\ & \subseteq \{v_i, v_j, v_k, v_l\} \\ K_4 \setminus E(K_{1,2}), & \text{if exactly one of } \{v_1, v_2, v_3\} \text{ or } \{v_1, v_2, v_4\} \text{ or } \{v_1, v_3, v_4\} \\ & \subseteq \{v_i, v_j, v_k, v_l\}. \end{cases}$$

- a contradiction.

Let C and D be any two sets in $f(V) \setminus A$. It is claimed that $C \cup D = C$ or $C \cup D = D$.

Suppose, on the contrary $C \cup D \notin \{C, D\}$. Let u, v, w and x be the vertices of G with f(u) = C, f(v) = D, $f(w) = C \cup D$ and $f(x) = C \cap D$. But

$$C \oplus D = (C \cup D) \oplus (C \cap D),$$

$$C \oplus (C \cup D) = D \setminus C = D \oplus (C \cap D) \text{ and}$$

$$C \oplus (C \cap D) = C \setminus D = D \oplus (C \cup D)$$

so that atleast three edges are absent in G[u, v, w, x]. Consequently, we must have $G[u, v, w, x] \subseteq K_{1,3}$ or $G[u, v, w, x] \subseteq K_3 \cup K_1$. Now we claim that $\{u, v, w, x\} \neq \{v_1, v_2, v_3, v_4\}$. Otherwise, $s(G[u, v, w, x]) \geq 4$, a contradiction. Thus, we have $\{C, D, C \cup D, C \cap D\} = \{A, B, A \cup B, A \cap B\}$. Since $A \notin \{C, D\}$ we must have $A \in \{C \cup D, C \cap D\}$. If $A = C \cup D$, then $B \in \{C, D, C \cap D\}$ so that $B \subseteq A$, which is not possible. Therefore, we must have $A = C \cap D$. Then $B \in \{C, D, C \cup D\}$ so that $A \subseteq B$, which is also not true. Hence we must have $C \cup D = C$ or $C \cup D = D$ as claimed and $f(V) \setminus A$ is a chain topology. \Box

Theorem 3.18. Let f be a t-set-indexer of the graph $G = K_n \setminus E(K_3)$; $n \ge 4$ with indexing set X. Then the removal of atmost one set from f(V) results in a chain topology.

Proof 8. Let $V = \{v_1, \ldots, v_n\}$; $d(v_1) = d(v_2) = d(v_3) = n - 3$. If f(V) is a chain topology, then there is nothing to be proved. If f(V) is not a chain topology, then there exists $A, B \in f(V)$ such that $A \cup B \neq A$ and

 $A \cup B \neq B$. Since f(V) is a topology on X, there exists four distinct vertices say v_i , v_j , v_k and v_l in G such that $f(v_i) = A$, $f(v_j) = B$, $f(v_k) = A \cup B$ and $f(v_l) = A \cap B$. Since

$$f(v_i) \oplus f(v_j) = A \oplus B = f(v_k) \oplus f(v_l),$$

$$f(v_i) \oplus f(v_k) = B \setminus A = f(v_j) \oplus f(v_l) \text{ and }$$

$$f(v_i) \oplus f(v_l) = A \setminus B = f(v_j) \oplus f(v_k),$$

at least three possible edges are absent in $G[v_i, v_j, v_k, v_l]$. Consequently, we must have $v_1, v_2, v_3 \in \{v_i, v_j, v_k, v_l\}$. Otherwise,

$$G[v_i, v_j, v_k, v_l] = \begin{cases} K_4, & \text{if exactly one of } v_1, v_2, v_3 \text{ belongs to } \{v_i, v_j, v_k, v_l\} \\ K_4 \setminus E(K_2), & \text{if exactly one of } \{v_1, v_2\} \text{ or } \{v_1, v_3\} \text{ or } \{v_2, v_3\} \\ & \subseteq \{v_i, v_j, v_k, v_l\} \end{cases}$$

– a contradiction.

Let C and D be any two sets in $f(V) \setminus A$. It is claimed that $C \cup D = C$ or $C \cup D = D$.

Suppose on the contrary, $C \cup D \notin \{C, D\}$. Let u, v, w and x be the vertices of G with f(u) = C, f(v) = D, $f(w) = C \cup D$ and $f(x) = C \cap D$. But

$$C \oplus D = (C \cup D) \oplus (C \cap D),$$

$$C \oplus (C \cup D) = D \setminus C = D \oplus (C \cap D) \text{ and}$$

$$C \oplus (C \cap D) = C \setminus D = D \oplus (C \cup D)$$

so that atleast three edges are absent in G[u, v, w, x]. Consequently, we must have $G[u, v, w, x] \subseteq K_{1,3}$ or $G[u, v, w, x] \subseteq K_3 \cup K_1$. Now we claim that $\{u, v, w, x\} \neq \{v_1, v_2, v_3, v_4\}$. Otherwise, $s(G[u, v, w, x]) \ge 4$, a contradiction. Thus, we have $\{C, D, C \cup D, C \cap D\} = \{A, B, A \cup B, A \cap B\}$. Since $A \notin \{C, D\}$ we must have $A \in \{C \cup D, C \cap D\}$. If $A = C \cup D$, then $B \in \{C, D, C \cap D\}$ so that $B \subseteq A$, which is not possible. Therefore, we must have $A = C \cap D$. Then $B \in \{C, D, C \cup D\}$ so that $A \subseteq B$, which is also not true. Hence, we must have $C \cup D = C$ or D, as claimed and $f(V) \setminus A$ is a chain topology. \Box

Theorem 3.19. Let G = (V, E) be the graph $K_n \setminus E(K_{1,3})$ and H = (U, F) be the graph $K_n \setminus E(K_3)$. Then for every t-set indexer f of G, there exists a t-set indexer g of H satisfying f(V) = g(U) and conversely.

Proof 9. Let $V = \{v_1, \ldots, v_n\}$ with $d(v_1) = n - 4$, $d(v_2) = d(v_3) = d(v_4) = n - 2$ and $U = \{u_1, \ldots, u_n\}$ with $d(u_1) = d(u_2) = d(u_3) = n - 3$. Since f is

a t-set-indexer of G, by theorem 3.17, the removal of atmost one set from f(V) results in a chain topology. If f(V) itself is a chain topology, then we can define a set-indexer say g_1 of H by $g_1(u_i) = f(v_i)$ for $i = 1, \ldots, n$. Clearly, $g_1(U) = f(V)$ and then g_1 is a t-set-indexer of H.

Otherwise, there exists $A \in f(V)$ such that $f(V) \setminus A$ is a chain topology. Clearly there exists $B(\neq A)$ in f(V) such that $A \cup B \neq A$, B. Now consider a set-valuation, say g_2 of H defined by $g_2(u_i) = f(v_i)$ for i = 1, ..., n. Clearly, $g_2(U) = f(V)$. Obviously, $A, B, A \cup B, A \cap B \in g_2(U)$. But

 $A \oplus B = (A \cup B) \oplus (A \cap B)$ $A \oplus (A \cup B) = B \setminus A = B \oplus (A \cap B)$ $A \oplus (A \cap B) = A \setminus B = B \oplus (A \cup B).$

Hence atleast 3 edges should be absent in the subgraph of H induced by the vertices with labels $A, B, A \cup B$ and $A \cap B$. Note that $(v_2, v_3) \in E$ but $(u_2, u_3) \notin F$. Also $(v_1, v_4) \notin E$ but $(u_1, u_4) \in F$. Consequently, we must have $A, B, A \cup B, A \cap B \in \{g_2(u_1), g_2(u_2), g_2(u_3), g_2(u_4)\}$. Also $g_2(u_1, u_4) = f(v_1) \oplus f(v_4) = f(v_2, v_3)$ and $g_2(u_i, u_j) = f(v_i, v_j)$, for all $(u_i, u_j) \in F \setminus \{(u_1, u_4)\}$. Therefore, the edge labels of H under g_2 are distinct so that g_2 is a t-set-indexer of H.

Conversely, let g be a t-set-indexer of H. Then by theorem 3.18, the removal of atmost one set from g(U) results in a chain topology. If g(U) itself is a chain topology, then we can define a set-indexer say f_1 of G by $f_1(v_i) = g(u_i)$ for i = 1, ..., n. Clearly $f_1(V) = g(U)$ so that f_1 is a t-set-indexer of G.

Otherwise, there exists $C \in g(U)$ such that $g(U) \setminus C$ is a chain topology. Evidently, there exists $D(\neq C)$ in g(U) such that $C \cup D \neq C$, D. Now consider a set-valuation say f_2 of G defined by $f_2(v_i) = g(u_i)$ for i = $1, \ldots, n$. Clearly, $f_2(V) = g(U)$. Obviously, $C, D, C \cup D, C \cap D \in f_2(V)$. But

$$C \oplus D = (C \cup D) \oplus (C \cap D)$$
$$C \oplus (C \cup D) = D \setminus C = D \oplus (C \cap D)$$
$$C \oplus (C \cap D) = C \setminus D = D \oplus (C \cup D).$$

Hence at least 3 edges should be absent in the subgraph of G induced by the vertices with labels $C, D, C \cup D$ and $C \cap D$. Note that $(u_1, u_4) \in F$ but $(v_1, v_4) \notin E$. Also $(u_2, u_3) \notin F$ but $(v_2, v_3) \in E$. Consequently we must have $C, D, C \cup D, C \cap D \in \{f_2(v_1), f_2(v_2), f_2(v_3), f_2(v_4)\}$. Also $f_2(v_2, v_3) = g(u_2) \oplus g(u_3) = g(u_1, u_4)$ and $f_2(v_i, v_j) = g(u_i, u_j)$, for all $(v_i, v_j) \in E \setminus \{(v_2, v_3)\}$. Therefore, the edge labels of G under f_2 are distinct so that f_2 is a t-set-indexer of G.

Remark 3.20. From the above theorem it follows that there is a one-toone correspondence between the t-set indexers of $K_n \setminus E(K_{1,3})$ and $K_n \setminus E(K_3)$, in such a way that the corresponding t-set indexers induce the same topology on the common indexing set.

An immediate consequence of the above theorem is:

Corollary 3.21. Let (X, τ) be a topological space. Then $K_n \setminus E(K_{1,3}) \in \mathcal{G}_{\tau}(or \mathcal{M}_{\tau})$ if and only if $K_n \setminus E(K_3) \in \mathcal{G}_{\tau}(or \mathcal{M}_{\tau})$.

Theorem 3.22. Let (X, τ) ; $|\tau| = n \geq 4$ be a given topological space such that the removal of exactly one set from τ results in a chain topology. Then a graph G of order n is a graphical realization of (X, τ) if and only if $G \notin A = \{H : K_n \setminus E(C_n) \subseteq H \subseteq K_n\}.$

Proof 10. We have to prove that if $G \in \mathcal{G}_{\tau}$, then $G \notin A$. Suppose $G \in A$. Then by theorem 2.15 we have $G \notin \mathcal{G}_{\tau}$.

Conversely, let $G \notin A$. Then $G \subseteq K_n \setminus E(K_{1,3})$ or $G \subseteq K_n \setminus E(K_3)$. By theorem 3.17 and theorem 3.18 we have $K_n \setminus E(K_{1,3})$ and $K_n \setminus E(K_3) \in \mathcal{G}_{\tau}$. Since every spanning subgraph of any graph in \mathcal{G}_{τ} is also in \mathcal{G}_{τ} we have $G \in \mathcal{G}_{\tau}$.

The following is a consequence of theorem 2.15 and theorem 2.16.

Theorem 3.23. No graph $G \in A = \{H : K_n \setminus E(C_n) \subseteq H \subset K_n\}$ is a maximal graphical realization of any topological space (X, τ) ; $|\tau| = n > 2$.

Theorem 3.24. Let (X, τ) be a topological space. Then $\mathcal{M}_{\tau} = \{K_{|\tau|}\}$ if and only if τ is a chain topology on X.

Proof 11. Follows from theorem 2.15 and theorem 2.16. \Box

Conjecture 3.25. If the topological space (X, τ) has a unique maximal graphical realization, then τ is a chain topology.

Theorem 3.26. Let (X, τ) be a finite topological space. If \mathcal{M}_{τ} contains a tree, then τ is quasi-discrete.

Proof 12. Let *T* be a tree and $T \in \mathcal{M}_{\tau}$. Then there exists a *t*-set-indexer say, *f* of *T* with $f(V) = \tau$ and let $|\tau| = n$. By the star realization of (X, τ) we have $K_{1,n-1} \in \mathcal{G}_{\tau}$. Since $s(T) = n - 1 = s(K_{1,n-1})$ we have $K_{1,n-1} \in \mathcal{M}_{\tau}$. Let $V(K_{1,n-1}) = \{v_0, v_1, \ldots, v_{n-1}\}; d(v_0) = n - 2$. Now by assigning \emptyset to v_0 and the remaining distinct nonempty elements of f(V(T))to the pendant vertices of $K_{1,n-1}$ in any order we get a *t*-set-indexer say *g* of $K_{1,n-1}$ with *t*-indexing set *X*. Without loss of generality assume that $g(v_1) = X$. Then we have $g(v_1) \oplus g(v_j) = X \setminus g(v_j)$ for all $j \in \{2, \ldots, n-1\}$ so that $X \setminus g(v_j)$ is an edge label of $K_{1,n-1}$ for all $j \in \{2, \ldots, n-1\}$, since $K_{1,n-1} \in \mathcal{M}_{\tau}$. But the central vertex v_0 is of label \emptyset . Consequently, $X \setminus g(v_j)$ is also a vertex label of $K_{1,n-1}$ under *g* for every $j \in \{2, \ldots, n-1\}$. Thus, $X \setminus g(v_j) \in \tau$ whenever $g(v_j) \in \tau$. Hence, τ is quasi-discrete. \Box

It is already shown that every topology admits a star realization. Then the natural question, what about the maximality of these star realizations, arises. The following theorem answers this.

Theorem 3.27. Let (X, τ) be a finite topological space. Then $K_{1,|\tau|-1} \in \mathcal{M}_{\tau}$ if and only if (X, τ) is quasi-discrete.

Proof 13. The necessary part follows from theorem 3.26. On the other hand, let (X, τ) be a finite quasi-discrete space. Then $|\tau|$ is an even number. If $|\tau| = 2$, then \mathcal{M}_{τ} contains only one graph namely the tree K_2 . If $|\tau| = 4$, then $\tau = \{X, \emptyset, A, X \setminus A\}$; $A \subset X$. Let G be a graphical realization of (X, τ) . By theorem 2.14 such a graph exists. Since

we have either $G \subseteq K_{1,3}$ or $G \subseteq K_3 \cup K_1$. Consequently $s(G) \leq 3$ and therefore the star realization $K_{1,3}$ of (X, τ) belongs to \mathcal{M}_{τ} .

Suppose $|\tau| \geq 6$ and $A, B \in \tau$. Since (X, τ) is a quasi-discrete, τ is closed under symmetric difference. By the star realization of (X, τ) we have $K_{1,|\tau|-1} \in \mathcal{G}_{\tau}$ and let g be the corresponding t-set-indexer with $g(V) = \tau$ and $g(v_0) = \emptyset$ where v_0 is the central vertex of $K_{1,|\tau|-1}$. Let v_i and v_j be any two distinct pendant vertices of $K_{1,|\tau|-1}$. Then we have $g(v_i) \oplus g(v_j) \in \tau$. Since $g(v_i) \oplus g(v_j)$ is different from both $g(v_i)$ and $g(v_j)$, there exists another pendant vertex v_k in $K_{1,|\tau|-1}$ such that $g(v_k) = g(v_i) \oplus g(v_j)$ and $k \in \{1, \ldots, |\tau|-1\} \setminus \{i, j\}$. Then we have $g(v_0) \oplus g(v_k) = g(v_j) \oplus g(v_j) \oplus g(v_j) \oplus g(v_k) = g(v_j) \oplus g(v_j) \oplus g(v_k) \oplus g(v$

 $g(v_k) = g(v_i) \oplus g(v_j)$. Consequently, no more edges can be drawn in $K_{1,|\tau|-1}$ such that the resulting graph realizes (X, τ) keeping g fixed. Then by theorem 3.3 we have $K_{1,|\tau|-1} \in \mathcal{M}_{\tau}$. \Box

A consequence of the above theorem is,

Corollary 3.28. No tree of odd order is a maximal graphical realization of a topological space.

Theorem 3.29. Maximal graphical realization of a topology is a cycle if and only if it is C_3 .

Proof 14. Let (X, τ) ; $|\tau| = n$ be a given topological space and suppose $C_n \in \mathcal{M}_{\tau}$ where $n \geq 3$. By the star realization of (X, τ) we have $K_{1,n-1} \in \mathcal{G}_{\tau}$ and let g be the corresponding t-set-indexer. Let $V = \{v_0, v_1, \ldots, v_{n-1}\}$ with $d(v_0) = n - 1$ be the vertex set of $K_{1,n-1}$. Then we have $g(v_0) = \emptyset$ and $g(v_k) = X$ for some $v_k \neq v_0$. Since $C_n \in \mathcal{M}_{\tau}$, by corollary 3.5, we can extend $K_{1,n-1}$ to a maximal graphical realization G = (V, E) of (X, τ) just by joining two distinct pendant vertices v_i and v_j , keeping all the vertex labels fixed. Let f be the corresponding t-set-indexer which is an extension of g.

It is claimed that either $v_i = v_k$ or $v_j = v_k$.

Suppose $v_k \notin \{v_i, v_j\}$ and let $f(v_i) = A$ and $f(v_j) = B$. Obviously A and B are nonempty and $B \neq X \setminus A$. Since $(v_k, v_i), (v_k, v_j) \notin E$ and $G \in \mathcal{M}_{\tau}$, both $X \setminus A$ and $X \setminus B$ are edge labels of G under f. But $f|_{K_{1,n-1}} = g$ and g corresponds to the star realization of $K_{1,n-1}$. Consequently, there are vertices $v_a, v_b \in V \setminus \{v_i, v_j, v_k, v_0\}$ such that $f(v_a) = X \setminus A$ and $f(v_b) = X \setminus B$.

Now A, B, $X \setminus A$, $X \setminus B \in f(V) = \tau$

 $\Rightarrow A \cap (X \setminus B), B \cap (X \setminus A) \in \tau$

 $\Rightarrow (A \cap (X \setminus B)) \cup (B \cap (X \setminus A)) = (A \setminus B) \cup (B \setminus A) = A \oplus B \in \tau.$

 \Rightarrow there exists $v_l \in V$ such that $f(v_l) = A \oplus B$.

Because of obvious reasons, $v_l \notin \{v_0, v_i, v_j, v_k, v_a, v_b\}$.

But then $f(v_0, v_l) = A \oplus B = f(v_i, v_j)$ – a contradiction. Hence, we must have $v_k = v_i$ or $v_k = v_j$ as claimed.

Without loss of generality assume that $v_k = v_i$ so that $f(v_i) = A = X$. Then $f(v_i, v_j) = X \setminus B$ and $X \setminus B \notin f(V)$. Suppose G contains a fourth vertex v_x other than v_0 , v_i and v_j . Let $f(v_x) = D$. Clearly, $D \notin \{X, B, \emptyset, X \setminus B\}$. Since $(v_i, v_x) \notin E$ and $G \in \mathcal{M}_{\tau}$, there exists a vertex $v_y \in V \setminus \{v_0, v_i, v_j, v_x\}$ such that $f(v_y) = X \setminus D$. But $B, D, X \setminus D \in f(V)$ and $G \in \mathcal{M}_{\tau}$ $\Rightarrow (B \oplus D), (B \oplus (X \setminus D)) \in f(V)$ $\Rightarrow (B \oplus D) \cup (B \oplus (X \setminus D)) \in \tau = f(V)$ $\Rightarrow B \oplus (D \cup (X \setminus D)) = B \oplus X = X \setminus B \in \tau = f(V).$ \Rightarrow there exists $v_z \in V \setminus \{v_0, v_i, v_j, v_x, v_y\}$ such that $f(v_z) = X \setminus B.$ $\Rightarrow f(v_0, v_z) = X \setminus B = f(v_i, v_j) - a$ contradiction. Consequently, $V = \{v_0, v_i, v_j\}$ and $G = C_3$.

Converse part follows from theorem 3.24.

Theorem 3.30. Let (X, τ) be a topological space with $|\tau| \ge 4$ and $G \in \mathcal{M}_{\tau}$. Then $s(G) = |\tau| - 1$ if τ is quasi-discrete and $s(G) > |\tau|$ otherwise.

Proof 15. If τ is quasi-discrete, by theorem 3.27, $K_{1,|\tau|-1} \in \mathcal{M}_{\tau}$ so that $s(G) = s(K_{1,|\tau|-1}) = |\tau| - 1.$

If τ is not quasi-discrete, then again by theorem 3.27, $K_{1,|\tau|-1} \notin \mathcal{M}_{\tau}$. But by the star realization, $K_{1,|\tau|-1} \in \mathcal{G}_{\tau}$ so that $s(G) \geq |\tau|$. Suppose $s(G) = |\tau|$ and let H = (V, E) be a graph obtained from $K_{1,|\tau|-1}$ by joining two nonadjacent vertices of $K_{1,|\tau|-1}$ by an edge such that $H \in \mathcal{M}_{\tau}$ and f be the corresponding t-set-indexer of H with $f(V) = \tau$. Let V = $\{v_0, v_1, \ldots, v_n\}; n = |\tau| - 1, d(v_0) = n$ and $d(v_1) = 2 = d(v_2)$. Clearly, $f(v_0) = \emptyset$. Suppose $f(v_1) = A$ and $f(v_2) = B; A, B \subset X$. Obviously, $A \oplus B \notin f(V)$.

Suppose $X \notin \{A, B\}$. Since $f(V) = \tau$ and $n \geq 3$, there exists a vertex $v_3 \in V \setminus \{v_0, v_1, v_2\}$ such that $f(v_3) = X$. Also $B \neq X \setminus A$. Otherwise, $f(v_1, v_2) = X = f(v_0, v_3)$ – a contradiction. Obviously, $A \cup B, A \cap B \in f(V)$. Since $G \in \mathcal{M}_{\tau}, f(v_0) = \emptyset$ and $f(v_3) = X$, we must have $X \setminus A, X \setminus B, X \setminus (A \cap B), X \setminus (A \cup B) \in f(V)$. Now $A \oplus B = (A \cap (X \setminus B)) \cup (B \cap (X \setminus A)) \in f(V)$ – a contradiction. Consequently, $X \in \{A, B\}$.

Without loss of generality, assume that B = X. Then $f(v_1, v_2) = X \setminus A$ and since $G \in \mathcal{M}_{\tau}$ and $f(v_0) = \emptyset$ it follows that $X \setminus A \notin f(V)$. Since $n \geq 3$, there exists a vertex v_3 in $V \setminus \{v_0, v_1, v_2\}$ and let $f(v_3) = C$. Note that $C \neq X \setminus A$, otherwise $f(v_1, v_2) = X \setminus A = f(v_0, v_3) - a$ contraction. Obviously, $A \cup C$, $A \cap C \in f(V)$. Since $G \in \mathcal{M}_{\tau}$ and $f(v_0) = \emptyset$ we must have $X \setminus C$, $X \setminus (A \cup C)$, $X \setminus (A \cap C)$, $A \oplus C$, $X \setminus (A \oplus C) \in f(V)$. But $X \setminus A = \begin{cases} (X \setminus C) \cup (X \setminus (A \oplus C)); & C \subset A \\ (X \setminus (A \cup C)) \cup (C \cap (X \setminus (A \cap C)); & C \notin A \end{cases}$.

This shows that $X \setminus A \in f(V)$ – a contradiction. Consequently, $s(G) > |\tau|$, if τ is not quasi-discrete.

Obviously, \mathcal{O}_{τ} is non empty whenever $\mathcal{M}_{\tau} \subseteq \mathcal{O}_{\tau}$. There is every reason to believe that the converse is also true and the study puts forward the following:

Conjecture 3.31. Let (X, τ) be a topological space. Then $\mathcal{M}_{\tau} \subseteq \mathcal{O}_{\tau}$ whenever \mathcal{O}_{τ} is non empty.

Acknowledgement

The authors are thankful to a reviewer for his valuable suggestions which improved the presentation of this paper.

References

- Acharya B. D., Set valuations of graphs and their applications. MRI Lecture Notes in Applied Mathematics No. 2, Mehta Research Institute, Allahabad, 1983.
- [2] Acharya B D, Set valuations of graphs and their applications. Proc. Sympos. On Optimization, Design of Experiments and Graph Theory I.I.T. Bombay, pp 218-242, 1986.
- [3] E. Čech, Topological Spaces, Wiley, 1966.
- [4] Hegde S. M., On set valuations of graphs, *Nat. Acad. Sci. Letters*, Vol. 14 (4), pp. 181-182, 1991.
- [5] Hegde S. M., On set colourings of graphs, *Eur. J. Comb.*, Vol. 30 (4), pp. 986-995, 2009.
- [6] Mathew S. C. and Thomas U., Strongly t-set graceful graphs, Graph Theory Notes N. Y. LXII, pp. 17-28, 2012.
- [7] Mollard M. and Payan C., On two conjectures about set-graceful graphs, *European J. Combin.*, Vol. 10, pp. 185-187, 1989.
- [8] Princy K. L., Some Studies on Set Valuation of Graphs-Embedding and NP Completeness, Ph. D. Thesis, Kannur University, 2007.
- [9] Shiu W. C. and Lam P. C. B., Super-edge-graceful labelings of multi-level wheel graphs, fan graphs and actinia graphs, *Congr. Numer.*, Vol. 174, pp. 49-63, 2005.

- [10] Stong R. E., Finite topological spaces, *Trans. Amer. Math. Soc.*, Vol. 123 (2), pp. 325-340, 1966.
- [11] Thomas U. and Mathew S. C., On set-indexers of paths, cycles and certain related graphs, *Discrete Math. Algorithms Appl.*, Vol. 4 (3), 1250025 (12 pages), 2012.
- [12] Thomas U and Mathew S. C., On topological set indexers of graphs, Adv. Appl. Discrete Math., Vol. 5 (2), pp. 115-130, 2010.
- [13] Thomas U and Mathew S. C., Topologically set-graceful stars, paths and related graphs, *South Asian J. Math.*, Vol. 2 (4), pp. 392-408, 2012.
- [14] Thomas U. and Mathew S. C., Graphical realization of a topology, J. Adv. Res. Pure Math., Vol. 5 (3), pp. 73-87, 2013.
- [15] Thomas U. and Mathew S. C., On Set-Indexers of Graphs, Palestine Journal of Mathematics, Vol. 3 (2), pp. 273-280, 2014.
- [16] Thomas U. and Mathew S. C., On topological numbers of graphs, Novi Sad J. Math., Vol. 45 (2), pp. 85-95, 2015.
- [17] Willard S., General Topology, Addison-Wesley, 1970.

Ullas Thomas

Department of Mathematics S. B. College Changanassery Changanassery P. O. 686101 Kottayam, Kerala, India e-mail: ullasmanickathu@rediffmail.com

and

Sunil C. Mathew

Department of Mathematics Deva Matha College Kuravilangad Kuravilangad P. O. - 686633 Kottayam, Kerala, India e-mail: sunilcmathew@gmail.com Corresponding author