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Abstract

A graph G(Z,D) with vertex set Z is called an integer distance graph if its edge set
is obtained by joining two elements of Z by an edge whenever their absolute difference is a
member of D. When D = P or D ⊆ P where P is the set of all prime numbers then we
call it a prime distance graph. After establishing the chromatic number of G(Z, P ) as four,
Eggleton has classified the collection of graphs as belonging to class i if the chromatic number
of G(Z,D) is i.The problem of characterizing the family of graphs belonging to class i when
D is of any given size is open for the past few decades. As coloring a prime distance graph
is equivalent to producing a prime distance labeling for vertices of G, we have succeeded in
giving a prime distance labeling for certain class of all graphs considered here. We have proved

that if D = {2, 3, 5, 7, 7th prime, 10th prime, 13th prime, 16th prime, (7 +
Ps−1

j=1
4× 3j)th

prime, . . . , (4 +
Ps

j=1
4 × 3j)th prime for any s ∈ N}, then there exists a prime distance

graph with distance set D in class 4 and if D = {2, 3, 5, 4th prime, 6th prime, 8th prime,

(4 +
Ps−1

j=1
3 × 2j)th prime, . . . , (2 +

Ps

j=1
3 × 2j)th prime for any s ∈ N} then there

exists a prime distance graphs with distance set D in class 3. Further, we have also obtained
some more interesting results that are either general or existential such as a) If D is a specific
sequence of integers in arithmetic progression then there exist a prime distance graph with
distance set D, b) If G is any prime distance graph in class i for 1 ≤ i ≤ 4 then G × K2 is
also a prime distance graph in the respective class i, c) A countable union of disjoint copies
of prime distance graph is again a prime distance graph, d) The Middle/Total graph of a path
on n vertices is a prime distance graph. In addition we also provide a new different proof for
establishing a fact that all cycles are prime distance graph.
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1. Introduction

Given a graphG with finite vertex set cardinality, the task of determining a)
the biggest set of elements which are non-adjacent pairwise b) The smallest
set of colors used to color the vertices, so that any two of them forming
an edge are colored differently are basic challenges in combinatorics. The
former is called independence number α and the latter is called chromatic
number χ . Several challenging problems can be cast as tasks of finding α
or χ of G with finite number of vertices [1, 5].

The basic notion to this work is the distance graph DG. Suppose that
(Y, σ) is a metric space. Here for α1, α2 ∈ Y by σ(α1, α2) we mean the
separation distance SD. Let D = {i : 0 < i < ∞}. We follow the cus-
tom of calling G(Y,D) a DG if V (G) = Y and α1, α2 ∈ Y is deemed to
be adjacent if and only if σ(α1, α2) ∈ D. By χ(G(Y,D)) we accept that
it is the least color count used to paint the elements of Y with the at-
tribute that every adjacent pair of elements is painted with distinct colors.
We also give it an exclusive name called the chromatic number of G. In
some sense this type of painting actually precludes a collection D of well-
defined distances. If D = {α} with α > 0, then the corresponding graph
is understood as a DG. We agree with the practice of setting σ as Eu-
clidean distance metric. So if Y is a subset of Rn for some n ∈ Z+ and
if α1, α2 ∈ Y with α1 = (α

1
1, α

2
1, α

3
1, . . . , α

n
1 ) and α2 = (α12, α

2
2, α

3
2, . . . , α

n
2 )

then σ(α1, α2) =
nX

j=1

[(αj1 − αj2)
2]
1
2 =| α1 − α2 |.

The task of finding χ(G(R, {1})) is simple. Express V (G(R, {1})) =

V1 ∪ V2 with V1 =
∞[

p=−∞
[2p, 2p + 1) and V2 =

∞[
p=−∞

[2p + 1, 2p + 2). As

V1 ∩ V2 = ∅ it becomes a bipartite graph with chromatic number 2. When
we attempt to find χ(G(R2, {1})) the task becomes extremely hard and got
included as one among in the list of all time selected problems of Paul Erdos.
We need not really search for words to explain the level of difficulty to find
χ(G(R2, {1})). For more detailed discussion on the history of Euclidean
DG coloring one can see [1].

We deem G(V.E) the UDG if f : V (G)→ R2 is an embedding with the
attribute that | f(α) − f(β) |= 1 whenever (α, β) ∈ E(G), the edge set of
G. One can find in the literature a volley of unsolved problems concerning
UDG. Erdos epitomized the problem due to Hadwiger-Nelson-HN regarding
the chromatic number of the uncountably infinite UDG G(R2, {1}), whose
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edge set is all those pairs of vertices separated by a unit-distance. The
upper bound of 7 as the χ of this graph is still unchallenged. However,
a long standing lower bound of 4 is improved to 5 in the recent attempt
[2] by Grey. This was improved further in [3] in terms of the vertex set
cardinality it should possess.

Suppose D = {i : 0 < i <∞} and r ∈ Q+ then for any k ∈ Z+ one can
observe that χ(G(Qk,D)) = χ(G(Qk, rD)). This is because if g : Qk → Qk

is defined as g(α) = (rα1, rα2, . . . , rαk) for α = (α1, α2, . . . , αk) ∈ Qk.
Then g is one-one as g(α) = g(β)⇒ (rα1, rα2, . . . , rαk)
= (rβ1, rβ2, . . . , rβk)⇒ α = β; g is onto as for all (rα1, rα2, . . . , rαk) ∈ Qk

there exist (α1, α2, . . . , αk) ∈ Qk such that g(α1, α2, . . . , αk)
= (rα1, rα2, . . . , rαk); g is a homomorphism as g(α+ β) = g(α1 + β1, α2 +
β2, . . . , αk+βk) = (r(α1+β1), r(α2+β2), . . . , r(αk+βk)) = (rα1, rα2, . . . , rαk)+
(rβ1, rβ2, . . . , rβk) = g(α)+g(β). So, g is an isomorphism among V (G(Qk,D))
and V (G(Qk, rD)). Moreover, we notice that for α, β ∈ Qk, | α − β |= s,
for s ∈ Z+ ⇔| g(α) − g(β) |= rs. Hence G(Qk,D) ∼= G(Qk, rD) and
χ(G(Qk,D)) = χ(G(Qk, rD)). Motivated by this, researchers explored the
computation of χ for DGs whose vertex sets are Qk for k ≥ 1. For an
interesting exposition on the Euclidean coloring over Q an good choice is
[4] and for nice deductions such as χ(G(Q2, {1})) = 2, χ(G(Q3, {1})) = 2
and χ(G(Q4, {1})) = 4 one can consult [5].

2. Coloring Integer Distance Graphs

We restrict our attention here to coloring integer DGs G(Z,D) withD ⊆ P .
The main reason that can be attributed for this work lies in the following
discussion.

Consider G(Z,D) where D ⊆ Z+. It is understood that α1, α2 ∈ Z+
with α1 < α2 are linked by drawing an edge if and only if α2 − α1 ∈ D.
Probes of such DGs were done in [6, 7] stimulated by HN Problem con-
cerning computation of χ for two dimensional Euclidean plane R2. A
tough task is to identify those D with χ(G(Z,D)) < ∞. For instance
χ(G(Z, 2Z)) <∞ due to the presence of a clique of infinite size in G(Z,D)
and χ(G(Z, 2Z + 1)) = 2. This actually conveys that χ varies drastically
over distance sets that are translates of each other. Katznelson-Razza con-
jectured that χ(G(Z,D)) <∞⇔ D can be written as the union of a finite
number of lonely sets [By lonely set we mean: For α1, α2 > 0 with the
understanding that | y | means its distance from y to its closest integer
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| α1y |≥ α2 for every y ∈ D]. Suppose D = 2Z + 1, then one can conve-
niently choose α1 = α2 = 1/2 and the set 2Z+1 is a lonely set. In [8, 9] the
sufficiency of D being lonely to guarantee χ(G(Z, 2Z + 1)) < ∞ is estab-
lished and the respective author groups have in fact done it independently
of the other. By doing this they have successfully settled a challenge thrown
by Erdos regarding χ being finite for distance sets that are lacunary(sets
witnessing growth in an exponential manner). In [10] the author has es-
tablished the existence of a 2-coloring of Z that do not contain arithmetic
progression that are monochromatic and long arbitrarily for each lonely set
with steps y ∈ D. One can see [11, 12, 13] for more.

3. Coloring Prime Distance Graphs

Eggleton et.al coined the term PDG in 1985 [14, 15]. In the DG G(Z,D)
if D = P or D ⊆ P , then we call G(Z,P ) a PDG. Equivalently one can
also deem G(Z,P ) a PDG if one can produce a 1—1 labeling g : V (G)→ Z
with the property that any member of E(G), say (α, β) possess a prime
distance between them. To be precise, | g(α) − g(β) |= g((α, β)) ∈ P .
Observe that in a PDL the labels allotted to the elements of V (G) must be
non-repeating. However, the labels that result out of this labeling on the
elements of E(G) need not be nonrepeating. Further it is to be understood
that in a PDG, G(Z,D) a non edge may possess a prime distance. This is
because when D ⊆ P , the labels on V (G) may produce a prime distance
that is not a member of D. So, between such two vertices an edge will not
be drawn. Note that this however will not happen for the PDG, G(Z,P )
as every prime number distance warrants an edge between them. Joshua
D Leuson et. al in [16] made use of famous results and open conjectures
in number theory to establish the PDG property of certain infinite families
of graphs as well. For instance, using the Green Taos Theorem: For any
given k ∈ Z+ one can find a arithmetic progression of primes possessing a
length k, he has proved that all bipartite graphs are PDGs. In Section 6 we
give a fourth proof for “All cycles are PDGs” by not depending on any of
the three proof techniques indicated in [16]. Eggleton et.al in [11, 12] also
established that χ(G(Z,P )) = 4 and classified the collection of graphs as
belonging to class i if χ(G(Z,D∗)) = i where D∗ ⊂ P for 1 ≤ i ≤ 4. One
can see [17, 18, 19] for more. Motivated by the results already available in
the literature for DGs and PDGs we obtain several new results concerning
the existence of PDGs belonging class 2 or class 3 or class 4 whose distance
sets are subsets of P with varied cardinality.
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4. Some Motivational Results from Number Theory

Before we proceed further, we quickly give some pertinent properties of
integers that has acted as sources of inspiration to obtain the PDL of certain
classes of graphs and stimulated our thought process. First observe that if
1 + t, 1 + 2t, 1 + 3t, . . . , 1 + it, . . . t ∈ Z are the sequence of integers then
gcd(1 + (i − 1)t, 1 + it) = 1 for all i. This is because, Suppose s is a
positive integer such that 1 + (i− 1)t ≡ 0 (mod s) and 1 + it ≡ 0 (mod s).
Then as 1 + (i − 1)t = st1 and 1 + it = st2 for some t1, t2 ∈ Z+ we have
t = (1 + it)− (1 + (i− 1)t) = st1 − st2 = s(t1 − t2). Hence t ≡ 0 (mod s).
If we set t1 − t2 = t3 so that t = st3. As (it + 1) ≡ 0 (mod s) and
(i − 1)t + 1 ≡ 0 (mod s), it + 1 = i(st3) + 1. These forces s = 1 and
gcd(1+(i−1)t, 1+it) = 1. Next if | α−β |= p, a prime, then gcd(α, β) = 1
or p. If either α 6≡ 0 (mod p) or β 6≡ 0 (mod p), then gcd(α, β) = 1. This
is because, by Fundamental theorem of Arithmetic, both u and v admit
prime factorization. Let u = qm1

1 qm2
2 . . . qmn

n and v = si11 s
i2
2 . . . siww . Also

let gcd(u, v) = m. Then u − v = (qm1
1 qm2

2 . . . qmn
n ) − (si11 si22 . . . siww ) and as

p =| u−v | we see that p ≡ 0 (mod m). So, either m = 1 or m = p. If both
u and v are not multiples of p, then gcd cannot be p. So gcd(u, v) = 1.
Next, Suppose that s ≥ 5 is an odd integer. If q is the least prime factor of
s−2 then gcd(sq− q−s+3, (q+1)s− (q+1)−s+2) = 1. This is because,
Suppose r ∈ Z+ is such that q ≡ 0 (mod r) and s−2 ≡ 0 (mod r). Then we
can find t1, t2 such that rt1 = qs−q−s+3 and rt2 = (q+1)s−(q+1)−s+2.
Then rt2−rt1 = [(q+1)s− (q+1)−s+2]− [qs−q−s+3]. So, r(t2− t1) =
[qs+s−q−1−s+2]− [qs−q−s+3] = [qs−q+1]− [qs−q−s+3] = s−2.
So (s− 2) ≡ 0 (mod r). As q is the smallest prime factor of s− 2, we can
express s−2 = qw for some w ∈ Z+. Note that w will then be deemed as a
product of primes more than or equal to q as q is the smallest prime factor.
Also see that qs−q−s+3 = (q−1)(s−1)+2 = (q−1)(s−2)+(q−1)+2 =
(q − 1)(s− 2) + (q + 1). Now as (q − 1)(s− 2) + (q + 1) ≡ 0 (mod r) and
(s − 2) ≡ 0 (mod r) we see that (q + 1) ≡ 0 (mod r). But as q + 1 ∈ 2Z,
its prime decomposition consists of powers of 2 and other prime factors
less than q. However, as q is the least prime factor of s − 2, (q + 1) ≡
0 (mod r) and (s− 2) ≡ 0 (mod r) only if r = 1. Hence the only positive
number that divides qs − q − s + 3 and (q + 1)s − (q + 1) − s + 2 is 1.
So, when s is odd and q is the least prime divisor of s − 2 it follows that
gcd(qs− q − s+ 3, (q + 1)s− (q + 1)− s+ 2) = 1. Also, the following are
true: a) The gcd of any two consecutive positive numbers is equal to 1; b)
gcd(1, s) = 1 ∀ s ∈ N ; c) If i, i+ 2 ∈ 2Z + 1 then gcd(i, i+ 2) = 1; d) If p
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is a prime and x 6≡ 0 (mod p), then gcd(p, x) = 1. This is because, a) By
Bezouts identity, gcd(x, y) = 1 for x, y ∈ Z+ if and only if t1x + t2y = 1
for some t1, t2 ∈ Z. Take x = j, y = j + 1. Now if t1 = −1 and t2 = 1
then we see that t1x + t2y = 1 and hence the gcd of any two consecutive
positive numbers is equal to 1. b) Next take x = 1, y ∈ Z+. If t1 = 1 and
t2 = 0 then gcd(1, s) = 1. c) Take x = 2j + 1 and y = 2j + 3, j ∈ Z+. If
t1 = −(j + 2) and t2 = j + 1 then we see that Bezouts identity is satisfied
and hence gcd(2j + 1, 2j + 3) = 1. Finally note that a prime integer p will
have the gcd equal to 1 with every number less than p by the definition
of prime. Moreover, the only integers larger than p with whom the prime
integer p will share common factors are those that are multiples of p.

5. Some Existence Results on PDGs

Theorem 1. Suppose that D = {p− (c− 1)s, p− (c− 2)s, . . . , p− s, p, p+
s, p+2s, . . . , p+ (d− 2)s, p+ (d− 1)s}. Then there exists a PDG G(Z,D)
in class 2.

Proof. Note that elements of D are all primes due to the Green-Tao
Theorem said in Section 3. Clearly | D |= c + d− 1 and D ⊂

6−
P . We now

create a bipartite graph with A ∪ B as partite sets where | A |= c and
| B |= d. Let V (G) = A ∪ B = {α1, α2, . . . , αc} ∪ {β1, β2, . . . , βd}, where
αl+1 = ls with l = 0, 1, . . . , (c−1) and vl+1 = p+ls with l = 0, 1, . . . , (d−1).
Now introduce edges between A and B as we please. Then one can check
that the edge labels are of the type p +ms where m can be any member
of the set {−(c− 1),−(c− 2), . . . ,−1, 0, 1, . . . , d− 2, d− 1} and all possible
p+ms labels are prime. As G(Z,D) is bipartite, it belongs to class 2. 2

Theorem 2. Suppose that D = {2, p1} where p1 is that prime with p1 +
p2 = 2s− 4 where s ≥ 6 and p2 ∈ P . Then there exists a PDG, G(Z,D) in
class 2 or class 3 depending on whether s ∈ 2Z or s ∈ 2Z + 1.

Proof. We know that by Goldbachs conjecture, any even integer > 2 can
be set as a sum of two primes. Assume that it is true. Then the 2s−4 ∈ 2Z
can be written as 2s − 4 = p1 + p2 where p1, p2 ∈ P . Form G(Z,D) with
V (G) = {α1, α2, . . . , αs} where αi−1 = 2i− 4 for 2 ≤ i ≤ s and αs = p1 or
p2. Form an edge set E(G) by allowing edges between αi and αi+1 for all
1 ≤ i ≤ s− 1 and between αs and α1. Then all the edges labeled between
αi and αi+1 for 1 ≤ i ≤ s − 1 is 2 and the edge between αs and α1 carry
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the label (2s− 4)− p1 = p2 or (2s− 4)− p2 = p1. One can easily see that
G(Z,D) constructed as above is a PDG and isomorphic to Cs, the cycle
graph on s vertices. 2

Theorem 3. Suppose that D = {2, p1, p2} where p1, p2 ∈ P are twin
primes. Then there exists a PDG, G(Z,D) in class 3.

Proof. We know that by twin prime conjecture that there are countable
number of primes p1, p2 such that p2 = p1+2. Assume that the twin prime
conjecture is true. Build a graphG(Z,D) with V (G) = {α0, α1, α2, . . . , α2n},
where α0 = 0, α1 = p11 α2 = p12, α3 = p21, α4 = p22, . . ., α2n−1 = pn1 ,
α2n = pn2 where (p

i
1, p

i
2) is i

th twin prime pair for 1 ≤ i ≤ n. Now in-
troduce an edge between (α0, αi) for 1 ≤ i ≤ 2n. Also introduce an edge
between α1 and α2, α3 and α4, . . ., α2n−1 and α2n. Then G(Z,D) is a PDG
with | α2 − α1 |=| α4 − α3 |= . . . =| α2n − α2n−1 |= 2; | α1 − α0 |= p11;
| α2 − α0 |= p12; . . . , | α0 − α2n−1 |= pn1 ; | α0 − α2n |= pn2 . Now give the
color 1 to α0 and the color 2 to α1, α3, α5, . . . , α2n−1 and the color 3 to
α2, α4, α6, . . . , α2n. Then G(Z,D) belongs to class 3. 2

Theorem 4. Suppose that D = {2, 5, 7}. Then there exists a prime dis-
tance square graph G(Z,D) in class 3.

Proof. By a square graph of G we mean a graph G2 where V is same
as G and E(G2) = {(x, y) : d(x, y) ≤ 2}. Take G = Pn = α1, α2, . . . , αn.
Then E(P 2n) = E(Pn) ∪ {(αj , αj+2) : 1 ≤ j ≤ n − 2}. Now define a 1-1
function g : V (G) → Z+ by g(α1) = 2; g(α2) = 4; g(αi) = g(αi−2) + 7 for
3 ≤ i ≤ n. Then we see that | g(α1) − g(α2) |= 2; | g(α2) − g(α3) |= 5;
| g(α3) − g(α4) |= 2; | g(α4) − g(α5) |= 5; . . . | g(αi) − g(αi−1) |= 2 or
5 for 1 ≤ i ≤ n − 1; Further | g(α1) − g(α3) |=| g(α2) − g(α4) |= . . . =|
g(αi) − g(αi−2) |= 7 for 3 ≤ i ≤ n. Therefore, g is a PDL for P 2n and P 2n
is a prime distance square graph. Clearly C3 ⊆ P 2n and hence χ(P

2
n) ≥ 3.

Now color the vertices of P 2n as follows: Define f : V (P
2
n) → {a, b, c} by

f(α3k−2) = a for 1 ≤ i ≤ n; f(α3k−1) = b for 1 ≤ i ≤ n; f(α3k) = c for
1 ≤ i ≤ n. Then f is a proper 3 coloring for P 2n and χ(P 2n) ≤ 3. Hence
χ(P 2n) = 3 and P 2n ∈ class 3. That is G(Z, {2, 5, 7}) = (P 2n ,D = {2, 5, 7})
is a prime distance square graph in class 3. 2
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Theorem 5. Let D = {2, 3, 5, 4thprime, 6thprime, 8thprime, (4 +
s−1X
j=1

3 ×

2j)thprime, . . ., (2 +
sX

j=1

3 × 2j)thprime} where s ∈ N . Then there exist a

PDG G in class 3 with D as its distance set.

Proof. We begin by constructing a family {T ∗s } of graphs for s =
0, 1, 2, . . ., as follows. We set T ∗0 = K3. Let V (T

∗
0 ) = {u0,1, u0,2, u0,3} and

E(T ∗0 ) = {(u0,1, u0,2), (u0,2, u0,3), (u0,3, u0,1)}. So, the number of K3’s in
T ∗0 is 1.

We obtain T ∗1 from the 1-crown of T ∗0 by affixing a copy of K3 on each
of the pendent vertices of 1-crown of T ∗0 starting from u0,1 in the clockwise
direction as shown in the Figure 5.1(a). The vertices of each copy of K3

are ui1,1, u
i
1,2, u

i
1,3, 1 ≤ i ≤ 3. Hence V (T ∗1 ) = V (T ∗0 ) ∪ {ui1,1, ui1,2, ui1,3, | 1 ≤

i ≤ 3} and E(T ∗1 ) = E(T ∗0 ) ∪ {(ui1,1, ui1,2), (ui1,2, ui1,3), (ui1,3, ui1,1) | 1 ≤ i ≤
3} ∪ {(u0,1, u11,1), (u0,2, u21,1), (u0,3, u31,1)}. Number of K3’s in T ∗1 is 1 + 3 =
4 .

Next T ∗2 is obtained by affixing a copy of K3 on each of the pendent
vertices of 1-crown of T ∗1 at u

i
1,2, u

i
1,3 1 ≤ i ≤ 3 by an edge starting from

u11,2 in the clockwise direction as shown in the Figure 5.1(b). The K3 that
is affixed on u11,2 is taken as the first copy of K3 in level 2. There will be 6
copies of K3 in the second level. The vertices of each copy of K3’s are given
by ui2,1, u

i
2,2, u

i
2,3 1 ≤ i ≤ 6. Hence V (T ∗2 ) = V (T ∗1 ) ∪ {ui2,1, ui2,2, ui2,3 | 1 ≤

i ≤ 6} and E(T ∗2 ) = E(T ∗1 ) ∪ {(ui2,1, ui2,2), (ui2,2, ui2,3), (ui2,3, ui2,1) | 1 ≤ i ≤
6} ∪ {(u11,2, u12,1), (u11,3, u22,1), (u21,2, u32,1), (u21,3, u42,1), (u31,2, u52,1), (u31,3, u62,1)}.
Number of K3’s in T ∗2 is 1 + (2

0 × 3) + (21 × 3) = 10.
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Figure 5.1(a): Level 1 T ∗0 , (b) Level 2 T
∗
1 , (c) Level 3 T

∗
2

Now T ∗s is obtained by the similar procedure of affixing a copy of K3

on each of the pendent vertices of 1-crown of T ∗s−1 at u
i
s−1,2, u

i
s−1,3 1 ≤

i ≤ 3 × 2s−1 by an edge starting from u1s−1,2 in the clockwise direction.

The K3 that is affixed on u1s−1,2 is called the 1
st copy of K3 in the sth

level. The vertices of 3 × 2s−1 copies K3 in the s
th level is uis,1, u

i
s,2, u

i
s,3

1 ≤ i ≤ 3 × 2s−1 and hence V (T ∗s ) = V (T ∗s−1) ∪ {uis,1, uis,2, uis,3 | 1 ≤ i ≤
3 × 2s−1} and E(T ∗s ) = E(T ∗s−1) ∪ {(uis,1.uis,2), (uis,2, uis,3), (uis,3, uis,1) | 1 ≤
i ≤ 3× 2s−1} ∪ {(u1s−1,2, u1s,1), (u1s−1,3, u2s,1), (u2s−1,2, u3s,1), (u2s−1,3, u4s,1), . . .,
(u3×2

s−2−1
s−1,2 , u3×2

s−1−3
s,1 ), (u3×2

s−2−1
s−1,3 , u3×2

s−1−2
s,1 ), (u3×2

s−2
s−1,2 , u3×2

s−1−1
s,1 ),

(u3×2
s−2

s−1,3 , u3×2
s−1

s,1 )}.
Next, we illustrate the process of allotting PDL of T ∗s for s = 0, 1, 2, . . ..

For s = 0, define f0 : V (T
∗
0 ) → Z as f0(U0,1) = a; f0(u0,2) = a + 2,

f0(u0,3) = a + 5. Then we observe that the edge labels induced by f0 are
| f0(u0,1)− f0(u0,2) |= 2; | f0(u0,2)− f0(u0,3) |= 3; | f0(u0,3)− f0(u0,1) |= 5
are primes and hence f0 is a PDL of T

∗
0 . Moreover as T

∗
0 ≡ K3, it is clear

that χ(T ∗0 ) = χ(K3) = 3 and hence T
∗
0 is a class 3 graph.

For s = 1, define f1 : V (T
∗
1 ) → Z as f1(V ) = f0(V ) if v ∈ (T ∗0 );

For v 6∈ V (T ∗0 ), f1(u
1
1,1) = a + 7; f1(u

1
1,2) = a + 9; f1(u

1
1,3) = a + 12;

f1(u
2
1,1) = a + 15; f1(u

2
1,2) = a + 17; f1(u

2
1,3) = a + 20; f1(u

3
1,1) = a + 24;

f1(u
3
1,2) = a + 26; f1(u

3
1,3) = a + 29. Since we retain the labels of f0, it is

enough to exhibit the edge labelling of the 3 copies of K3 in level 1 and 3
connecting edges between level 0 and level 1. The edge labels of 3 copies

pc
fu-1
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of K3’s for 1 ≤ i ≤ 3 are as below
| f1(ui1,1)−f1(ui1,2) |= 2; | f1(ui1,2)−f1(ui1,3) |= 3; | f1(ui1,3)−f1(ui1,1) |= 5;
The edge labels of 3 connecting edges are given below
| f1(u0,1)− f1(u

1
1,1) |= 7; | f1(u0,2)− f1(u

2
1,1) |= 13; | f1(u0,3)− f1(u

3
1,1) |=

19.

Note that all these edge labels are prime numbers. Hence f1 is a PDL
for T ∗1 .

Moreover, we note that one can assign colors 1, 2, 3 in a cyclic manner
around the innermost copy of K3 in the clockwise direction and then by
starting at the 1st copy of K3 of level 1, we can color the vertices of the 1

st

copy of K3 of level 1 with the colors 2, 3, 1; we can color the vertices of 2
nd

copy of K3 of level 1 with the colors 3, 1, 2; we can color the vertices of 3
rd

copy of K3 of level 1 with the colors 1, 2, 3. Then it is easy to check that
3 colors are necessary and sufficient to color the vertices of T ∗1 and hence
T ∗1 is a class 3 graph.

For s = 2, define f2 : V (T
∗
2 ) → Z as f2(V ) = f1(V ) if v ∈ V (T ∗1 ); For

v 6∈ V (T ∗1 ),
f2(u

1
2,1) = a+ 38; f2(u

1
2,2) = a+ 40; f2(u

1
2,3) = a+ 43; f2(u

2
2,1) = a+ 49;

f2(u
2
2,2) = a+ 51; f2(u

2
2,3) = a+ 54; f2(u

3
2,1) = a+ 60; f2(u

3
2,2) = a+ 62;

f2(u
3
2,3) = a+ 65; f2(u

4
2,1) = a+ 73; f2(u

4
2,2) = a+ 75; f2(u

4
2,3) = a+ 78;

f2(u
5
2,1) = a+ 87; f2(u

5
2,2) = a+ 89; f2(u

5
2,3) = a+ 92; f2(u

6
2,1) = a+ 100;

f2(u
6
2,2) = a+ 102; f2(u

6
2,3) = a+ 105.

Since we retain the labels of f1, it is enough to exhibit the edge la-
bels induced by 6 copies of outermost K3’s in level 2 and the respective 6
connecting edges between level 1 and level 2 are given below.

The edge labels of K3’s of T
∗
2 \T ∗1 . For 1 ≤ i ≤ 6 are:

| f2(ui2,1)− f2(u
i
2,2) |= 2; | f2(ui2,2)− f2(u

i
2,3) |= 3; | f2(ui2,3)− f2(u

i
2,1) |= 5

The edge labels of connecting edges between level 1 to level 2 are:
| f2(u11,2)−f2(u12,1) |= 29; | f2(u11,3)−f2(u22,1) |= 37; | f2(u21,2)−f2(u32,1) |=
43;
| f2(u21,3)−f2(u42,1) |= 53; | f2(u31,2)−f2(u52,1) |= 61; | f2(u31,3)−f2(u62,1) |=
71;
Hence f2 is a PDL for T

∗
2 .

Define a map g2 : V (T
∗
2 ) → {1, 2, 3} such that g2 retains the colors

of the vertices of V (T ∗1 ) as it is given at level 1. Now for the remaining
outermost K3’s of T

∗
2 , we assign colors in the cyclic manner by proceeding
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in clockwise direction exactly as we did in level 1. This produces a proper
3-coloring for T ∗2 and hence χ(T

∗
2 ) = 3 and T ∗2 is in class 3.

We now describe the vertex and edge pattern of T ∗3 . T
∗
3 is obtained from

the 1-crown of T ∗2 by affixing a copy of K3 at the 12 pendent vertices of the
1-crown of T ∗2 . The vertices of T

∗
3 are V (T

∗
3 ) = V (T ∗2 ) ∪ {ui3,1, ui3,2, ui3,3 |

1 ≤ i ≤ 12}. The 12 connecting edges between level 2 and level 3 are given
by X = {(u12,2, u13,1), (u12,3, u23,1), (u22,2, u33,1), (u22,3, u43,1), . . . , (u62,2, u113,1),
(u62,3, u

12
3,1)}.

Note that we have added 10th, 12th, 14th, 16th, 18th, 20th primes namely
29, 37, 43, 53, 61, 71 to the vertex labels of ui1,2, u

i
1,3 for 1 ≤ i ≤ 3 to

obtain the vertex labels of ui2,1 for 1 ≤ i ≤ 6. Similarly, we add 22nd,

24th, . . ., 44th primes namely 79, 89, . . ., 193 on the vertices ui2,2, u
i
2,3 for

1 ≤ i ≤ 6 to obtain the vertex labels of ui3,1 for 1 ≤ i ≤ 12 namely
a+119, a+132, . . . , a+296 respectively. Hence the vertex labels of 12 copies
of K3’s of level 3 are defined through f3 : V (T

∗
3 )→ Z as f3(V ) = f2(V ) if

v ∈ V (T ∗2 ) and for v 6∈ V (T ∗2 )

f3(u
1
3,1) = a+119; f3(u

1
3,2) = a+121; f3(u

1
3,3) = a+124; f3(u

2
3,1) = a+132;

f3(u
2
3,2) = a+134; f3(u

2
3,3) = a+137; f3(u

3
3,1) = a+152; f3(u

3
3,2) = a+154;

f3(u
3
3,3) = a+157; f3(u

4
3,1) = a+161; f3(u

4
3,2) = a+163; f3(u

4
3,3) = a+166;

f3(u
5
3,1) = a+175; f3(u

5
3,2) = a+177; f3(u

5
3,3) = a+180; f3(u

6
3,1) = a+196;

f3(u
6
3,2) = a+198; f3(u

6
3,3) = a+201; f3(u

7
3,1) = a+214; f3(u

7
3,2) = a+216;

f3(u
7
3,3) = a+219; f3(u

8
3,1) = a+229; f3(u

8
3,2) = a+231; f3(u

8
3,3) = a+234;

f3(u
9
3,1) = a+252; f3(u

9
3,2) = a+254; f3(u

9
3,3) = a+257; f3(u

10
3,1) = a+265;

f3(u
10
3,2) = a+267; f3(u

10
3,3) = a+270; f3(u

11
3,1) = a+281; f3(u

11
3,2) = a+283;

f3(u
11
3,3) = a+286; f3(u

12
3,1) = a+296; f3(u

12
3,2) = a+298; f3(u

12
3,3) = a+301.

The edge labels of K3’s of T
∗
3 \T ∗2 for 1 ≤ i ≤ 12 are:

| f3(ui3,1)−f3(ui3,2) |= 2; | f3(ui3,2)−f3(ui3,3) |= 3; | f3(ui3,3)−f3(ui3,1) |= 5.
The edge labels of connecting edges between level 2 to level 3 are:

| f3(u12,2)− f3(u
1
3,1) |= 22nd prime = 79;

| f3(u12,3)− f3(u
2
3,1) |= 24th prime = 89;

| f3(u22,2)− f3(u
3
3,1) |= 26th prime = 101;

| f3(u22,3)− f3(u
4
3,1) |= 28th prime = 107;

| f3(u32,2)− f3(u
5
3,1) |= 30th prime = 113;

| f3(u32,3)− f3(u
6
3,1) |= 32nd prime = 131;

| f3(u42,2)− f3(u
7
3,1) |= 34th prime = 139;

| f3(u42,3)− f3(u
8
3,1) |= 36th prime = 151;
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| f3(u52,2)− f3(u
9
3,1) |= 38th prime = 163;

| f3(u52,3)− f3(u
10
3,1) |= 40th prime = 173;

| f3(u62,2)− f3(u
11
3,1) |= 42nd prime = 181;

| f3(u62,3)− f3(u
12
3,1) |= 44th prime = 193.

Hence f3 is a PDL for T
∗
3 . Next define a map g3 : V (T

∗
3 ) → {1, 2, 3}

such that g3 retains the colors of the vertices of V (T
∗
2 ) as it is given at

level 2. Now for the remaining 12 outermost K3’s of T
∗
3 , we assign colors

in the cyclic manner by proceeding in clockwise direction exactly as we did
previously. This produces a proper 3-coloring for T ∗3 and hence χ(T

∗
3 ) = 3

and T ∗3 is in class 3.

Now we proceed to the higher levels with the induction process. Let
us assume that T ∗s−1 is a PDG in class 3. Consider T ∗s . Let V (T

∗
s ) =

V (T ∗s−1) ∪ {uis,1, uis,2, uis,3 | 1 ≤ i ≤ 3 × 2s−1}. These exclusive 3 × 2s−1
outermost K3’s in sth level are joined to the 1-crown of T ∗s−1. The ver-
tex labeling of T ∗s is defined by fs : V (T

∗
s ) → Z as fs(V ) = fs−1(V ) if

v ∈ V (T ∗s−1). For v 6∈ V (T ∗s−1)

fs(u
1
s,1) = fs(u

1
s−1,2) + (4 +

s−1X
j=1

3× 2j)th prime; fs(u1s,2) = fs(u
1
s,1) + 2;

fs(u
1
s,3) = fs(u

5
s,1) + 5; fs(u

2
s,1) = fs(u

1
s−1,3) + (4 + (

s−1X
j=1

3 × 2j) + 2)th

prime; fs(u
2
s,2) = fs(u

2
s,1) + 2; fs(u

2
s,3) = fs(u

2
s,1) + 5, . . ., fs(u

3×2s−1−1
s,1 ) =

fs(u
3×2s−2
s−1,2 )+(2+(

sX
j=1

3×2j)−2)th prime; fs(u3×2
s−1−1

s,2 ) = fs(u
3×2s−1−1
s,1 )+2;

fs(u
3×2s−1−1
s,3 ) = fs(u

3×2s−1−1
s,1 )+5; fs(u

3×2s−1
s,1 ) = fs(u

3×2s−2
s−1,3 )+(2+(

sX
j=1

3×

2j))th prime; fs(u
3×2s−1
s,2 ) = fs(u

3×2s−1
s,1 ) + 2; fs(u

3×2s−1
s,3 ) = fs(u

3×2s−1
s,1 ) + 5.

The edge labels of E(T ∗s )\E(T ∗s−1) are as follows: The edge labels of K3’s
in T ∗s \T ∗s−1 for 1 ≤ i ≤ 3× 2s−1
| fs(uis,1)− fs(u

i
s,2) |= 2; | fs(uis,2)− fs(u

i
s,3) |= 3; | fs(uis,3)− fs(u

i
s,1) |= 5.

The edge labels of connecting edges between level s− 1 to level s are:
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fs(u
1
s−1,2)− fs(u

1
s,1) |

=| fs(u1s−1,2)− [fs(u1s−1,2) +
³
4 +

Ps−1
j=1 3× 2j

´th
prime] |

= (4 +
Ps−1

j=1 3× 2j)th prime
| fs(u1s−1,3)− fs(u

2
s,1) |

=| fs(u1s−1,3)− [fs(u1s−1,3) + (4 + (
Ps−1

j=1 3× 2j) + 2)th prime] |

= (4 + (
Ps−1

j=1 3× 2j) + 2)th prime
etc., | fs(u3×2

s−2
s−1,2 )− fs(u

3×2s−1−1
s,1 ) |

=| fs(u3×2
s−2

s−1,2 )− [fs(u3×2
s−2

s−1,2 ) + (2 + (
Ps−1

j=1 3× 2j)− 2)th prime] |

= (2 + (
Ps

j=1 3× 2j)− 2)th prime
| fs(u3×2

s−2
s−1,3 )− fs(u

3×2s−1
s,1 ) |

=| fs(u3×2
s−2

s−1,3 )− [fs(u3×2
s−2

s−1,3 ) + (2 +
Ps−1

j=1 3× 2j)th prime] |

= (2 +
Ps

j=1 3× 2j)th prime
So T ∗s is a PDG. Now define a map gs : V (T

∗
s ) → {1, 2, 3} such that

gs retains the colors of the vertices of V (T
∗
s−1) as it is given at level s− 1.

Now for the remaining 3× 2s−1 outermost K3’s of T
∗
s , we assign colors in

the cyclic manner by proceeding in clockwise direction exactly as we did
in previous levels. This produces a proper 3-coloring for T ∗s and hence
χ(T ∗s ) = 3 and T ∗s is in class 3. 2

Theorem 6. Let D = {2, 3, 5, 7, 7th prime, 10th prime, 13th prime, 16th
prime, (7 +

Ps−1
j=1 4 × 3j)th prime, . . ., (4 +

Ps
j=1 4 × 3j)th prime} where

s ∈ N . Then there exists a PDG G in class 4 with D as its distance set.
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Figure 5.2(a): Level 0 K∗
0 , (b) Level 1 K

∗
1 .

Proof. We begin by constructing a family {K∗
s} of graphs for s =

0, 1, 2, . . . as follows. We set K∗
0 = K4. Let V (K

∗
0) = {u0,1, u0,2, u0,3, u0,4},

E(K∗
0) = {(u0,1, u0,2), (u0,1, u0,3), (u0,1, u0,4), (u0,2, u0,3), (u0,2, u0,4), (u0,3, u0,4)}.

So, the number of K4’s in K∗
0 is 1.

We obtain K∗
1 from the 1-crown of K∗

0 by affixing a copy of K4 on
each of the pendent vertices of 1-crown of K∗

0 starting from u0,1 in the
clockwise direction as shown in the Figure 5.2(a). The vertices of each
copy of K4 are u

i
1,1, u

i
1,2, u

i
1,3, u

i
1,4, 1 ≤ i ≤ 4. Hence V (K∗

1) = V (K∗
0) ∪

{ui1,1, ui1,2, ui1,3, ui1,4 | 1 ≤ i ≤ 4} and E(K∗
1) = E(K∗

0) ∪ {(ui1,1, ui1,2),
(ui1,1, u

i
1,3), (u

i
1,1, u

i
1,4), (u

i
1,2, u

i
1,3), (u

i
1,2, u

i
1,4), (u

i
1,3, u

i
1,4) | 1 ≤ i ≤ 4} ∪

{(u0,1, u11,1), (u0,2, u21,1), (u0,3, u31,1), (u0,4, u41,1)}. Number of K4’s in K∗
1 is

1 + 22.

pc
fu-2
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Figure 5.3: Level 2 K∗
2 .

Next K∗
2 is obtained by affixing a copy of K4 on each of the 12 pendent

vertices of 1-crown of K∗
1 at u

i
1,2, u

i
1,3, u

i
1,4, 1 ≤ i ≤ 4 by an edge starting

from u11,2 in the clockwise direction as shown in the Figure 5.3. The K4’s
that is affixed on u11,2 is taken as the first copy of K4 in level 2. There
will be 12 copies of K4 given by ui2,1, u

i
2,2, u

i
2,3, u

i
2,4, 1 ≤ i ≤ 12. Hence

V (K∗
2) = V (K∗

1)∪{ui2,1, ui2,2, ui2,3, ui2,4 | 1 ≤ i ≤ 12} and E(K∗
2) = E(K∗

1)∪
{(ui1,1, ui1,2), (ui1,1, ui1,3), (ui1,1, ui1,4), (ui1,2, ui1,3), (ui1,2, ui1,4), (ui1,3, ui1,4) | 1 ≤
i ≤ 12}∪{(u11,2, u12,1), (u11,3, u22,1), (u11,4, u32,1), . . . (u41,2, u102,1), (u41,3, u112,1), (u41,4, u122,1)}.
Here the number of K4’s in K∗

2 is 1 + (3
0 × 22) + (31 × 22) = 17.

Now K∗
s is obtained by the similar procedure of affixing a copy of K4

on each of the pendent vertices of 1-crown of K∗
s−1 at u

i
s−1,2, u

i
s−1,3, u

i
s−1,4,

1 ≤ i ≤ 4× 3s−1 by an edge starting from u1s−1,2 in the clockwise direction.

The K4 that is affixed on u
1
s−1,2 is called the 1

st copy of K4 in the s
th level.

The vertices of 4 × 3s−1 copies K4 in the sth level is uis,1, u
i
s,2, u

i
s,3, u

i
s,4,

1 ≤ i ≤ 4× 3s−1 and hence there will be 4× 3s−1 copies of K4 are given by
ui2,1, u

i
2,2, u

i
2,3, u

i
2,4 for 1 ≤ i ≤ 4× 3s−1.

pc
fu-3
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Hence V (K∗
s ) = V (K∗

s−1) ∪ {uis,1, uis,2, uis,3, uis,4 | 1 ≤ i ≤ 4 × 3s−1}
and E(K∗

s ) = E(K∗
s−1) ∪ {(uis,1, uis,2), (uis,1, uis,3), (uis,1, uis,4), (uis,2, uis,3),

(uis,2, u
i
s,4), (u

i
s,3, u

i
s,4) | 1 ≤ i ≤ 4 × 3s−1} ∪ {(u1s−1,2, u1s,1), (u1s−1,3, u2s,1),

(u1s−1,4, u
3
s,1), . . . (u

4×3s−2
s−1,2 , u4×3

s−1−2
s,1 ), (u4×3

s−2
s−1,3 , u4×3

s−1−1
s,1 ),

(u4×3
s−2

s−1,4 , u4×3
s−1

s,1 )}.

Next, we illustrate the process of allotting the PDL of K∗
s for s =

0, 1, 2, . . . For s = 0, define f0 : V (K
∗
0)→ Z as f0(u0,1) = a; f0(u0,2) = a+2;

f0(u0,3) = a + 5; f0(u0,4) = a + 7. Then we observe that the edge labels
induced by f0 are | f0(u0,1) − f0(u0,2) |= 2; | f0(u0,1) − f0(u0,3) |= 5;
| f0(u0,1)−f0(u0,4) |= 7; | f0(u0,2)−f0(u0,3) |= 3; | f0(u0,2)−f0(u0,4) |= 5;
| f0(u0,3)−f0(u0,4) |= 2 are primes and hence f0 is a PDL forK∗

0 . Moreover
as K∗

0 ≡ K4, it is clear that χ(K
∗
0) = χ(K4) = 4 and hence K

∗
0 is a class 4

graph.

For s = 1, define f1 : V (K
∗
1)→ Z as f1(V ) = f0(V ) if v ∈ V (K∗

0);
For v 6∈ V (K∗

0).
f1(u

1
1,1) = a+ 17; f1(u

1
1,2) = a+ 19; f1(u

1
1,3) = a+ 22; f1(u

1
1,4) = a+ 24;

f1(u
2
1,1) = a+ 31; f1(u

2
1,2) = a+ 33; f1(u

2
1,3) = a+ 36; f1(u

2
1,4) = a+ 38;

f1(u
3
1,1) = a+ 46; f1(u

3
1,2) = a+ 48; f1(u

3
1,3) = a+ 51; f1(u

3
1,4) = a+ 53;

f1(u
4
1,1) = a+ 60; f1(u

4
1,2) = a+ 62; f1(u

4
1,3) = a+ 65; f1(u

4
1,4) = a+ 67;

Since we retain the labels of f0, it is enough to exhibit the edge labels
of the copies of K4 in level 1and 4 connecting edges between level 0 and
level 1. The edge labels of 4 copies of K4’s for 1 ≤ i ≤ 4 are as given below:
| f1(ui1,1)−f1(ui1,2) |= 2; | f1(ui1,1)−f1(ui1,3) |= 5; | f1(ui1,1)−f1(ui1,4) |= 7;
| f1(ui1,2)−f1(ui1,3) |= 3; | f1(ui1,2)−f1(ui1,4) |= 5; | f1(ui1,3)−f1(ui1,4) |= 2.

The edge labels of 4 connecting edges between level 0 and level 1 are
given below:
| f1(u0,1)−f1(u11,1) |= 17; | f1(u0,2)−f1(u21,1) |= 29; | f1(u0,3)−f1(u31,1) |=
41; | f1(u0,4)− f1(u

4
1,1) |= 53

Note that the above edge labels are prime numbers. Hence f1 is a PDL
for K∗

1 . Moreover, we note that one can assign colors 1, 2, 3, 4 in a cyclic
manner around the innermost copy of K4 in the clockwise direction and
then by starting at the level 1 we can color the vertices of the 1st copy of
K4 with the colors 2, 3, 4, 1; we can color the vertices of the 2

nd copy of
K4 with the colors 3, 4, 1, 2; we can color the vertices of the 3

rd copy of
K4 with the colors 4, 1, 2, 3; we can color the vertices of the 4

th copy of
K4 with the colors 1, 2, 3, 4. Then it is easy to check that 4 colors are
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necessary and sufficient to color the vertices of K∗
1 and hence K

∗
1 is a class

4 graph.

For s = 2, define f2 : V (K
∗
2)→ Z as f2(V ) = f1(V ) if v ∈ V (K∗

1);
For v 6∈ V (K∗

1).
f2(u

1
2,1) = a+ 86; f2(u

1
2,2) = a+ 88; f2(u

1
2,3) = a+ 91; f2(u

1
2,4) = a+ 93;

f2(u
2
2,1) = a+101; f2(u

2
2,2) = a+103; f2(u

2
2,3) = a+106; f2(u

2
2,4) = a+108;

f2(u
3
2,1) = a+121; f2(u

3
2,2) = a+123; f2(u

3
2,3) = a+126; f2(u

3
2,4) = a+128;

f2(u
4
2,1) = a+140; f2(u

4
2,2) = a+142; f2(u

4
2,3) = a+145; f2(u

4
2,4) = a+147;

f2(u
5
2,1) = a+163; f2(u

5
2,2) = a+165; f2(u

5
2,3) = a+168; f2(u

5
2,4) = a+170;

f2(u
6
2,1) = a+177; f2(u

6
2,2) = a+179; f2(u

6
2,3) = a+182; f2(u

6
2,4) = a+184;

f2(u
7
2,1) = a+205; f2(u

7
2,2) = a+207; f2(u

7
2,3) = a+210; f2(u

7
2,4) = a+212;

f2(u
8
2,1) = a+224; f2(u

8
2,2) = a+226; f2(u

8
2,3) = a+229; f2(u

8
2,4) = a+231;

f2(u
9
2,1) = a+244; f2(u

9
2,2) = a+246; f2(u

9
2,3) = a+249; f2(u

9
2,4) = a+251;

f2(u
10
2,1) = a+261; f2(u

10
2,2) = a+263; f2(u

10
2,3) = a+266; f2(u

10
2,4) = a+268;

f2(u
11
2,1) = a+292; f2(u

11
2,2) = a+294; f2(u

11
2,3) = a+297; f2(u

11
2,4) = a+299;

f2(u
12
2,1) = a+306; f2(u

12
2,2) = a+308; f2(u

12
2,3) = a+311; f2(u

12
2,4) = a+313.

Since we retain the labels of f1, we observe that the edge labels induced
by 12 copies of outermost K4’s and the connecting edges between level 1
and level 2 are given below:
The edge labels of K4’s of K

∗
2\K∗

1 for 1 ≤ i ≤ 12 are:
| f2(ui2,1)−f2(ui2,2) |= 2; | f2(ui2,1)−f2(ui2,3) |= 5; | f2(ui2,1)−f2(ui2,4) |= 7;
| f2(ui2,2)−f2(ui2,3) |= 3; | f2(ui2,2)−f2(ui2,4) |= 5; | f2(ui2,3)−f2(ui2,4) |= 2.

The edge labels of connecting edges between level 1 to level 2 are:
| f2(u11,2)−f2(u12,1) |= 67; | f2(u11,3)−f2(u22,1) |= 79; | f2(u11,4)−f2(u32,1) |=
97;
| f2(u

2
1,2) − f2(u

4
2,1) |= 107; | f2(u21,3) − f2(u

5
2,1) |= 127; | f2(u

2
1,4) −

f2(u
6
2,1) |= 139;

| f2(u
3
1,2) − f2(u

7
2,1) |= 157; | f2(u21,3) − f2(u

8
2,1) |= 173; | f2(u

3
1,4) −

f2(u
9
2,1) |= 191;

| f2(u
4
1,2) − f2(u

10
2,1) |= 199; | f2(u31,3) − f2(u

11
2,1) |= 227; | f2(u

4
1,4) −

f2(u
12
2,1) |= 239

So f2 is a PDL for K
∗
2 . Now define a map g2 : V (K

∗
2)→ {1, 2, 3, 4} such

that g retains the colors of the vertices of V (K∗
1) as it is given at level 1.

Now for the remaining outermost K4’s of K
∗
2 , we assign colors in the cyclic

manner by proceeding in clockwise direction exactly as we did in level 1.
This produces a proper 4-coloring for K∗

2 and hence χ(K
∗
2) = 4 and hence

K∗
2 is in class 4.
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We now describe the vertex and edge pattern of K∗
3 . K∗

3 is obtained
from the 1-crown of K∗

2 by affixing a copy of K4 at the 36 pendent ver-
tices of the 1-crown of K∗

2 . The vertices of K
∗
3 are V (K∗

3) = V (K∗
2) ∪

{ui3,1, ui3,2, ui3,3, ui3,4 | 1 ≤ i ≤ 36}. The 36 connecting edges between level 2
and level 3 connecting each of the 36 K4’s are given by X = {(u12,2, u13,1),
(u12,3, u

2
3,1), (u

1
2,4, u

3
3,1), (u

2
2,2, u

4
3,1), (u

2
2,3, u

5
3,1), (u

2
2,4, u

6
3,1), . . ., (u

11
2,2, u

31
3,1),

(u112,3, u
32
3,1), (u

11
2,4, u

33
3,1), (u

12
2,2, u

34
3,1),

(u122,3, u
35
3,1), (u

12
2,4, u

36
3,1)}.

Note that we have added 19th, 22nd 25th, . . ., 52nd primes namely 67,
79, 97, . . ., 239 to obtain the vertex labels of ui1,2, u

i
1,3, u

i
1,4 for 1 ≤ i ≤ 4.

Similarly, we have added 55th, 58th, 61st, . . ., 160th primes namely 257,
271, 283, . . ., 941 to obtain the vertex labels of ui2,2, u

i
2,3, u

i
2,4 for 1 ≤ i ≤ 12

namely a+ 88, a+ 91, a+ 93, . . . , a+ 313 respectively.

Hence the vertex labels of 36 copies ofK4’s of level 3 are defined through
f3 : V (K

∗
3)→ Z as f3(V ) = f2(V ) if v ∈ V (K∗

2) and for v 6∈ V (K∗
2)

f3(u
1
3,1) = a+345; f3(u

1
3,2) = a+347; f3(u

1
3,3) = a+350; f3(u

1
3,4) = a+352;

f3(u
2
3,1) = a+362; f3(u

2
3,2) = a+364; f3(u

2
3,3) = a+367; f3(u

2
3,4) = a+369;

f3(u
3
3,1) = a+376; f3(u

3
3,2) = a+378; f3(u

3
3,3) = a+381; f3(u

3
3,4) = a+383;

f3(u
4
3,1) = a+414; f3(u

4
3,2) = a+416; f3(u

4
3,3) = a+419; f3(u

4
3,4) = a+421;

f3(u
5
3,1) = a+437; f3(u

5
3,2) = a+439; f3(u

5
3,3) = a+442; f3(u

5
3,4) = a+444;

f3(u
6
3,1) = a+457; f3(u

6
3,2) = a+459; f3(u

6
3,3) = a+462; f3(u

6
3,4) = a+464;

f3(u
7
3,1) = a+490; f3(u

7
3,2) = a+492; f3(u

7
3,3) = a+495; f3(u

7
3,4) = a+497;

f3(u
8
3,1) = a+509; f3(u

8
3,2) = a+511; f3(u

8
3,3) = a+514; f3(u

8
3,4) = a+516;

f3(u
9
3,1) = a+529; f3(u

9
3,2) = a+531; f3(u

9
3,3) = a+534; f3(u

9
3,4) = a+536;

f3(u
10
3,1) = a+563; f3(u

10
3,2) = a+565; f3(u

10
3,3) = a+568; f3(u

10
3,4) = a+570;

f3(u
11
3,1) = a+584; f3(u

11
3,2) = a+586; f3(u

11
3,3) = a+589; f3(u

11
3,4) = a+591;

f3(u
12
3,1) = a+604; f3(u

12
3,2) = a+606; f3(u

12
3,3) = a+609; f3(u

12
3,4) = a+611;

f3(u
13
3,1) = a+632; f3(u

13
3,2) = a+634; f3(u

13
3,3) = a+637; f3(u

13
3,4) = a+639;

f3(u
14
3,1) = a+659; f3(u

14
3,2) = a+661; f3(u

14
3,3) = a+664; f3(u

14
3,4) = a+666;

f3(u
15
3,1) = a+679; f3(u

15
3,2) = a+681; f3(u

15
3,3) = a+684; f3(u

15
3,4) = a+686;

f3(u
16
3,1) = a+720; f3(u

16
3,2) = a+722; f3(u

16
3,3) = a+725; f3(u

16
3,4) = a+727;

f3(u
17
3,1) = a+745; f3(u

17
3,2) = a+747; f3(u

17
3,3) = a+750; f3(u

17
3,4) = a+752;

f3(u
18
3,1) = a+761; f3(u

18
3,2) = a+763; f3(u

18
3,3) = a+766; f3(u

18
3,4) = a+768;

f3(u
19
3,1) = a+806; f3(u

19
3,2) = a+808; f3(u

19
3,3) = a+811; f3(u

19
3,4) = a+813;

f3(u
20
3,1) = a+823; f3(u

20
3,2) = a+825; f3(u

20
3,3) = a+828; f3(u

20
3,4) = a+830;

f3(u
21
3,1) = a+843; f3(u

21
3,2) = a+845; f3(u

21
3,3) = a+848; f3(u

21
3,4) = a+850;

f3(u
22
3,1) = a+873; f3(u

22
3,2) = a+875; f3(u

22
3,3) = a+878; f3(u

22
3,4) = a+880;

f3(u
23
3,1) = a+890; f3(u

23
3,2) = a+892; f3(u

23
3,3) = a+895; f3(u

23
3,4) = a+897;
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f3(u
24
3,1) = a+914; f3(u

24
3,2) = a+916; f3(u

24
3,3) = a+919; f3(u

24
3,4) = a+921;

f3(u
25
3,1) = a+955; f3(u

25
3,2) = a+957; f3(u

25
3,3) = a+960; f3(u

25
3,4) = a+962;

f3(u
26
3,1) = a+982; f3(u

26
3,2) = a+984; f3(u

26
3,3) = a+987; f3(u

26
3,4) = a+989;

f3(u
27
3,1) = a + 1002; f3(u

27
3,2) = a + 1004; f3(u

27
3,3) = a + 1007; f3(u

27
3,4) =

a+ 1009;
f3(u

28
3,1) = a + 1032; f3(u

28
3,2) = a + 1034; f3(u

28
3,3) = a + 1037; f3(u

28
3,4) =

a+ 1039;
f3(u

29
3,1) = a + 1063; f3(u

29
3,2) = a + 1065; f3(u

29
3,3) = a + 1068; f3(u

29
3,4) =

a+ 1070;
f3(u

30
3,1) = a + 1089; f3(u

30
3,2) = a + 1091; f3(u

30
3,3) = a + 1094; f3(u

30
3,4) =

a+ 1096;
f3(u

31
3,1) = a + 1123; f3(u

31
3,2) = a + 1125; f3(u

31
3,3) = a + 1128; f3(u

31
3,4) =

a+ 1130;
f3(u

32
3,1) = a + 1154; f3(u

32
3,2) = a + 1156; f3(u

32
3,3) = a + 1159; f3(u

32
3,4) =

a+ 1161;
f3(u

33
3,1) = a + 1176; f3(u

33
3,2) = a + 1178; f3(u

33
3,3) = a + 1181; f3(u

33
3,4) =

a+ 1183;
f3(u

34
3,1) = a + 1195; f3(u

34
3,2) = a + 1197; f3(u

34
3,3) = a + 1200; f3(u

34
3,4) =

a+ 1202;
f3(u

35
3,1) = a + 1230; f3(u

35
3,2) = a + 1232; f3(u

35
3,3) = a + 1235; f3(u

35
3,4) =

a+ 1237;
f3(u

36
3,1) = a + 1254; f3(u

36
3,2) = a + 1256; f3(u

36
3,3) = a + 1259; f3(u

36
3,4) =

a+ 1261;

Here the edge labels of K∗
3\K∗

2 are as follows:
The edge labels of K4’s in K∗

3\K∗
2 for 1 ≤ i ≤ 36 are as below:

| f3(ui3,1)−f3(ui3,2) |= 2; | f3(ui3,1)−f3(ui3,3) |= 5; | f3(ui3,1)−f3(ui3,4) |= 7;
| f3(ui3,2)−f3(ui3,3) |= 3; | f3(ui3,2)−f3(ui3,4) |= 5; | f3(ui3,3)−f3(ui3,4) |= 2.

The edge labels of connecting edges between level 2 to level 3 are:
| f3(u12,2)− f3(u

1
3,1) |= 55th prime = 257;

| f3(u12,3)− f3(u
2
3,1) |= 58th prime = 271;

| f3(u12,4)− f3(u
3
3,1) |= 61st prime = 283;

| f3(u22,2)− f3(u
4
3,1) |= 64th prime = 311;

| f3(u22,3)− f3(u
5
3,1) |= 67th prime = 331;

| f3(u22,4)− f3(u
6
3,1) |= 70th prime = 349;

| f3(u32,2)− f3(u
7
3,1) |= 73rd prime = 367;

| f3(u32,3)− f3(u
8
3,1) |= 76th prime = 383;

| f3(u32,4)− f3(u
9
3,1) |= 79th prime = 401;

| f3(u42,2)− f3(u
10
3,1) |= 82nd prime = 421;
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| f3(u42,3)− f3(u
11
3,1) |= 85th prime = 439;

| f3(u42,4)− f3(u
12
3,1) |= 88th prime = 457;

| f3(u52,2)− f3(u
13
3,1) |= 91st prime = 467;

| f3(u52,3)− f3(u
14
3,1) |= 94th prime = 491;

| f3(u52,4)− f3(u
15
3,1) |= 97th prime = 509;

| f3(u62,2)− f3(u
16
3,1) |= 100th prime = 541;

| f3(u62,3)− f3(u
17
3,1) |= 103rd prime = 563;

| f3(u62,4)− f3(u
18
3,1) |= 106th prime = 577;

| f3(u72,2)− f3(u
19
3,1) |= 109th prime = 599;

| f3(u72,3)− f3(u
20
3,1) |= 112th prime = 613;

| f3(u72,4)− f3(u
21
3,1) |= 115th prime = 631;

| f3(u82,2)− f3(u
22
3,1) |= 118th prime = 647;

| f3(u82,3)− f3(u
23
3,1) |= 121st prime = 661;

| f3(u82,4)− f3(u
24
3,1) |= 124th prime = 683;

| f3(u92,2)− f3(u
25
3,1) |= 127th prime = 709;

| f3(u92,3)− f3(u
26
3,1) |= 130th prime = 733;

| f3(u92,4)− f3(u
27
3,1) |= 133rd prime = 751;

| f3(u102,2)− f3(u
28
3,1) |= 136th prime = 769;

| f3(u102,3)− f3(u
29
3,1) |= 139th prime = 797;

| f3(u102,4)− f3(u
30
3,1) |= 142nd prime = 821;

| f3(u112,2)− f3(u
31
3,1) |= 145th prime = 829;

| f3(u112,3)− f3(u
32
3,1) |= 148th prime = 857;

| f3(u112,4)− f3(u
33
3,1) |= 151st prime = 877;

| f3(u122,2)− f3(u
34
3,1) |= 154th prime = 887;

| f3(u122,3)− f3(u
35
3,1) |= 157th prime = 919;

| f3(u122,4)− f3(u
36
3,1) |= 160th prime = 941.

Hence f3 is a PDL for K
∗
3 . Define a map g3 : V (K

∗
3)→ {1, 2, 3, 4} such

that g3 retains the colors of the vertices of V (K
∗
2) as it is given at level

2. Now for the remaining 36 outermost K4’s of K
∗
3 , we assign colors in

the cyclic manner by proceeding in clockwise direction exactly as we did
previously. This produces a proper 4-coloring for K∗

3 and hence χ(K
∗
3) = 4

and K∗
3 is in class 4.

Now we proceed to the higher levels with the induction process. Let
us assume that K∗

s−1 is a PDG in class 4. Let V (K∗
s ) = V (K∗

s−1) ∪
{uis,1, uis,2, uis,3, uis,4 | 1 ≤ i ≤ 4× 3s−1}. These exclusive 4× 3s−1 outermost
K4’s in sth level are joined to the 1-crown of K∗

s−1. The vertex labeling of
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K∗
s is given by fs : V (K

∗
s )→ Z as fs(V ) = fs−1(V ) if v ∈ V (K∗

s−1) and for
v 6∈ V (K∗

s−1)
fs(u

1
s,1) = fs(u

1
s−1,2) + (7 + (

Ps−1
j=1 4× 3j))th prime;

fs(u
1
s,2) = fs(u

1
s,1) + 2; fs(u

1
s,3) = fs(u

1
s,1) + 5; fs(u

1
s,4) = fs(u

1
s,1) + 7;

fs(u
2
s,1) = fs(u

1
s−1,3) + (7 + (

Ps−1
j=1 4× 3j) + 3)th prime;

fs(u
2
s,2) = fs(u

2
s,1) + 2; fs(u

2
s,3) = fs(u

2
s,1) + 5; fs(u

2
s,4) = fs(u

2
s,1) + 7;

. . . fs(u
4×3s−1−1
s,1 ) = fs(u

4×3s−2
s−1,3 ) + (4 + (

Ps
j=1 4× 3j)− 3)th prime;

fs(u
4×3s−1−1
s,2 ) = fs(u

4×3s−1−1
s,1 ) + 2; fs(u

4×3s−1−1
s,3 ) = fs(u

4×3s−1−1
s,1 ) + 5;

fs(u
4×3s−1−1
s,4 ) = fs(u

4×3s−1−1
s,1 )+7; fs(u

4×3s−1
s,1 ) = fs(u

4×3s−2
s−1,4 )+(4+(

Ps
j=1 4×

3j))th prime;

fs(u
4×3s−1
s,2 ) = fs(u

4×3s−1
s,1 ) + 2; fs(u

4×3s−1
s,3 ) = fs(u

4×3s−1
s,1 ) + 5;

fs(u
4×3s−1
s,4 ) = fs(u

4×3s−1
s,1 ) + 7.

The edge labels of E(K∗
s )\E(K∗

s−1) are as follows:
The edge labels of K4’s in K∗

s\K∗
s−1 for 1 ≤ i ≤ 4× 3s−1 are as below:

| fs(u
i
s,1) − fs−1(uis,2) |= 2; | fs(u

i
s,1) − fs−1(uis,3) |= 5; | fs(u

i
s,1) −

fs−1(uis,4) |= 7;
| fs(u

i
s,2) − fs−1(uis,3) |= 3; | fs(u

i
s,2) − fs−1(uis,4) |= 5; | fs(u

i
s,3) −

fs−1(uis,4) |= 2.

The edge labels of connecting edges between level s− 1 to level s are:
| fs(u1s−1,2)− fs(u

1
s,1) | =| fs(u1s−1,2)− [fs(u1s−1,2) +

³
7 +

Ps−1
j=1 4× 3j

´th
prime] |

= (7 +
Ps−1

j=1 4× 3j)th prime
| fs(u1s−1,3)− fs(u

2
s,1) | =| fs(u1s−1,3)− [fs(u1s−1,3) + (7 +

Ps−1
j=1 4× 3j + 3)th prime] |

= (7 +
Ps−1

j=1 4× 3j + 3)th prime etc.,
| fs(u4×3

s−2
s−1,3 )− fs(u

4×3s−1−1
s,1 ) |

=| fs(u4×3
s−2

s−1,3 )− [fs(u4×3
s−2

s−1,3 ) + (4 + (
Ps

j=1 4× 3j)− 3)th prime] |
= (4 + (

Ps
j=1 4× 3j)− 3)th prime

| fs(u4×3
s−2

s−1,4 )− fs(u
4×3s−1
s,1 ) |

=| fs(u4×3
s−2

s−1,4 )− [fs(u4×3
s−2

s−1,4 ) + (4 + (
Ps

j=1 4× 3j))th prime] |
= (4 + (

Ps
j=1 4× 3j))th prime

This clearly shows that K∗
s is a PDG. Define a map gs : V (K

∗
s ) →

{1, 2, 3, 4} such that gs retains the colors of the vertices of V (K∗
s−1) as it is

given at level s− 1. Now for the remaining 4× 3s−1 outermost K4’s of K
∗
s ,

we assign colors in the cyclic manner by proceeding in clockwise direction
exactly as we did in previous levels. This produces a proper 4-coloring for
K∗
s and hence χ(K

∗
s ) = 4 and K∗

s is in class 4. 2
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Note 5.1. A Similar construction of family of graphs like the one in The-
orem 5 and Theorem 6 with base graph Kn for n ≥ 5 is not considered
here due to the fact that Kn admits no PDL for n ≥ 5. Moreover in
such constructions a non-PDG Kn with n ≥ 5 sits as an induced subgraph
precluding the possibility of a PDL for the bigger graphs.

6. Some General Results

Theorem 1. For any two G and H, χ(G×H) = max{χ(G), χ(H)}. Here
× stands for the cartesian product.

Proof. First χ(G × H) is at least χ(G) as the G portion of G ×H ∼=
G. Similarly, χ(G × H) ≥ χ(H). So, we deduce that χ(G × H) ≥
max{χ(G), χ(H)}. Let χ(G) ≥ χ(H). Let f1 : V (G) → {1, 2, . . . , χ(G)}
be a proper vertex coloring of V (G) and f2 : V (H) → {1, 2, . . . , χ(H)} be
a proper vertex coloring of V (H). Suppose we define g : V (G × H) →
{1, 2, . . . , χ(G)} as g(α, β) = f1(α) + f2(β)(mod χ(G) + 1) then we can
deduce the following. If ((α, β1), (α, β2)) ∈ E(G×H) with (β1, β2) ∈ E(H)
then g(α, β1) 6= g(α, β2). Similarly, if ((α1, β), (α2, β)) ∈ E(G × H) with
(α1, β2) ∈ E(G) then g(α1, β) 6= g(α2, β). Hence g is a χ(G) vertex coloring
of G×H and so χ(G×H) is at most max{χ(G), χ(H)}. 2

Theorem 2. Let G be any PDG in class i for 1 ≤ i ≤ 4. Then G×K2 is
also a PDG of the respective class.

Proof. Given that G is a PDG. Then G has a PDL g : V (G)→ Z+. Let
V (G) = {β1, β2, . . . , βn}. Now consider the graph G×K2. Let V (G×K2) =
{βi, β0i for 1 ≤ i ≤ n}. Suppose that βr is that vertex of G with the largest
label among the vertices of G under g. Pick the first prime number q that
is greater than g(βr). Now define a 1-1 function g∗ : V (G×K2)→ Z+ by
g∗(βi) = g(βi); g

∗(β0i) = g(βi)+q for 1 ≤ i ≤ n. Note that g∗(β0r) = g(βr)+q
and g∗(β0s) = g(βs) + q. Therefore whenever (β0r, β

0
s) belongs to second

copy of G we see that | g∗(β0r) − g∗(β0s) |=| (g(βr) + q) − (g(βs) + q) |=|
g(βr)− g(βs) |= a prime. Also | g∗(βi)− g∗(β0i) |=| g(βi)− (g(βi)+ q) |= q,
a prime. So G×K2 admits a PDL provided by g

∗. This means that G×K2

is a PDG. By Theorem 1, we see that χ(G × K2) = max{χ(G), χ(K2)}.
Clearly as K2 ⊆ G for any connected graph G and χ is a monotone function
χ(K2) ≤ χ(G) and max{χ(G), χ(K2)} = χ(G). Thus χ(G ×K2) = χ(G).
Now if χ(G) ∈ Class i for 1 ≤ i ≤ 4 then G ×K2 also belongs to class i,
for 1 ≤ i ≤ 4. 2
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Theorem 3. Let G be any PDG. Then any countable union of disjoint
copies of G is a PDG. Moreover both G and nG, n ∈ Z+ belongs to the
same class i, for 1 ≤ i ≤ 4.

Proof. Let G be any PDG with PDL g. Let V (G) = {β1, . . . , βn}. Con-
sider nG. Let V (nG) = {β11 , β12 , . . . , β1n;β21 , β22 , . . . , β2n; . . . ;βn1 , βn2 , . . . , βnn}.
We proceed by the principle of mathematical induction. Let n = 2, choose
the first prime say q larger than the max{g(βi) : 1 ≤ i ≤ n} and define
h(β2i ) = g(βi) + q for 1 ≤ i ≤ n. Then h is a PDL for the second copy of G
and if we let h(β1i ) = g(βi) for 1 ≤ i ≤ n then h : V (2G) → Z+ is a PDL
for 2G and 2G is a PDG. Next assume that for n = r the result is true and
let n = r + 1. Now consider (r + 1)G. Let g∗ : V (rG)→ Z+ be a PDL of
rG. Now define h∗ : V ((r + 1)G) → Z+ by h∗(β) = g∗(β) if β ∈ V (rG)
and h∗(βr+1j ) = g∗(βrj ) + q if βr+1j ∈ V ((r + 1)G) for 1 ≤ j ≤ n. Also, q
is the first prime larger than the max{g∗(β)} where β ∈ V (rG). Then one
can check that h∗ is a PDL of (r + 1)G and (r + 1)G is a PDG. Hence,
we deduce that nG is a PDG for n ∈ Z+ by the principle of mathematical
induction. Moreover χ(nG) = χ(G) as the same color can be retained in
all copies of G. So, both G and nG for n ∈ Z+ belongs to the same class
i, for 1 ≤ i ≤ 4. 2

Theorem 4. The middle graph of a path on n vertices is a PDG and it
belongs to class 3.

Proof. Let Pn = β1β2 . . . βn be the path on n vertices. Then the middle
graph of Pn denoted M(Pn) has V (M(Pn)) = {β1, β2, . . ., βn, ϕ1, ϕ2,
. . ., ϕn−1} where ϕi is the edge between βi and βi+1 for 1 ≤ i ≤ n− 1 and
E(M(Pn)) = E1∪E2 where E1 = {(ϕr, ϕs) : ϕr and ϕs are adjacent in Pn}
and E2 = {(a, b) : a is an edge and b is a vertex or a is a vertex and
b is an edge in Pn and one is incident on the other}. Clearly K3 is an
induced subgraph of M(Pn) and hence χ(M(Pn)) ≥ 3. Moreover define
g : V (Pn) → {a, b, c} such that g(βj) = c, if 1 ≤ j ≤ n and g(ϕ2j−1) = a
if 1 ≤ j ≤ n − 1; g(ϕ2j) = b if 1 ≤ j ≤ n − 1. Then g is a chromatic
3-coloring of M(Pn) and hence χ(M(Pn)) ≤ 3 and so χ(M(Pn)) = 3. Also
define g∗ : V (M(Pn)) → Z as follows: g∗(β3j−2) = x; g∗(β3j−1) = x + 3;
g∗(β3j) = x+5 for 1 ≤ j ≤ n where x ∈ Z; g∗(ϕ3r−2) = x+5; g∗(ϕ3r−1) =
x; g∗(ϕ3r) = x + 7 1 ≤ r ≤ n − 1 for x ∈ Z Then one can check that
| g∗(β3r−1)− g∗(ϕ3j−2) |=| g∗(β3r)− g∗(ϕ3j) |=| g∗(ϕ3j)− g∗(ϕ3j−2) |= 2;
| g∗(β3r−1)−g∗(ϕ3j−1) |=| g∗(β3r−2)−g∗(ϕ3j) |=| g∗(ϕ3j−1)−g∗(ϕ3j) |= 3;
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| g∗(β3r−2)−g∗(ϕ3j−2) |=| g∗(β3r)−g∗(ϕ3j−1) |=| g∗(ϕ3j−2)−g∗(ϕ3j−1) |=
5 for 1 ≤ r ≤ n and 1 ≤ j ≤ n− 1. So M(Pn) is a PDG with PDL g∗ and
M(Pn) belongs to class 3. 2

Theorem 5. The total graph of a path on n vertices is a PDG and it
belongs to class 3.

Proof. Let Pn = β1β2 . . . βn be the path on n vertices. Then the total
graph of Pn denoted by T (Pn) has vertex set
V (T (Pn)) = {β1, β2, . . . , βn, ϕ1, ϕ2, . . ., ϕn−1} where ϕi is the edge between
βi and βi+1 for 1 ≤ i ≤ n−1. The edge set of T (Pn) is given by E(T (Pn)) =
{(a, b) : a, b are vertices adjacent in Pn or a, b are edges adjacent in Pn or a
is a vertex and b is an edge or a is an edge and b is vertex with one incident
on the other}. Clearly K3 is an induced subgraph of T (Pn) and hence
χ(T (Pn)) ≥ 3. Moreover define g : V (T (Pn)) → {a, b, c} by g(β3j−2) = a;
g(β3j−1) = b; g(β3j) = c for 1 ≤ j ≤ n; g(ϕ3r−2) = c; g(ϕ3r−1) = a;
g(ϕ3r) = b for 1 ≤ r ≤ n − 1. Then g is a proper 3-coloring of T (Pn) and
hence χ(T (Pn)) ≤ 3 and so χ(T (Pn)) = 3. Also define g∗ : V (T (Pn))→ Z
as follows: g∗(β3j−2) = x; g∗(β3j−1) = x+ 3; g∗(β3j) = x+ 5; g∗(ϕ3r−2) =
x+ 5; g∗(ϕ3r−1) = x; g∗(ϕ3r) = x+ 3 for x ∈ Z 1 ≤ r ≤ n− 1, 1 ≤ j ≤ n.
Then one can check that | g∗(β3j−1) − g∗(ϕ3r−2) |=| g∗(β3j) − g∗(ϕ3r) |=|
g∗(ϕ3r)−g∗(ϕ3r−2) |=| g∗(β3j−1)−g∗(β3j) |= 2; | g∗(β3j−1)−g∗(ϕ3r−1) |=|
g∗(β3j−2)− g∗(ϕ3r) |=| g∗(ϕ3r−1)− g∗(ϕ3r) |=| g∗(β3j−2)− g∗(β3j−1) |= 3;
| g∗(β3j−2)−g∗(ϕ3r−2) |=| g∗(β3j)−g∗(ϕ3r−1) |=| g∗(ϕ3r−2)−g∗(ϕ3r−1) |=|
g∗(β3j) − g∗(β3j−2) |= 5 for 1 ≤ r ≤ n− 1 and 1 ≤ j ≤ n. So, T (Pn) is a
PDG with PDL g∗ and T (Pn) belongs to class 3. 2

Theorem 6. Let G and H be any two PDGs belonging to class i for 3 ≤
i ≤ 4. Then G ∨H is not a PDG.

Proof. χ(G(Z,P )) = 4 by a result in [15]. Therefore if G(Z,D) is any
PDG with D ⊆ P then χ(G(Z,D)) is at most 4. A contrapositive of this
statement reveals that if the χ of any DG, G(Z,D) at least 5 then G(Z,D)
is not a PDG. Note that χ(G ∨H) = χ(G) + χ(H). Hence if χ(G) = 3 or
4 and χ(H) = 3 or 4 then obviously χ(G∨H) = χ(G) + χ(H) is at least 6
and hence G ∨H is not a PDG. 2

Corollary 7. If G and H are any two PDGs with either G ∈ class 3 and
H ∈ class 2 or vice-versa then G ∨H is not a PDG.
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Observation 1. If G(Z,D) with D ⊂ P is a PDG then χ(G(Z,D)) is at
most 4. But the reverse implication is not necessarily be true. For instance,
the wheel graphWn = Cn−1∨K1 has chromatic number 3. But if n ≥ 9 then
Wn admits no PDL. This is because one can find only three consecutives
odd labels induced by a twin prime triple (3, 5, 7). One another set of
such consecutive odd labels are induced by (−3,−5,−7). Also, as 2 is
the only even prime, we see that it is induced by an edge of a wheel only
by two vertex labels namely α + 2 or α − 2 with α as any label for the
vertex of K1 in Cn−1 ∨K1. That is, there can be at most 8 labels namely
α+ 3, α+ 5, α+ 7, α− 3, α− 5, α− 7, α+ 2 and α− 2 that can appear as
vertex labels of the vertices of Wn = Cn−1 ∨K1 with α as the label for the
vertex of K1 to produce prime edge labels on the edges of Wn. Hence Wn

admits no PDL for n ≥ 9.

Observation 2. It is easy to see that any subgraph of a PDG is a PDG.
The same can be said differently using contrapositive statement that if any
subgraph of a graph admits no PDL then the graph itself admits no PDL.
In view of this and above observation we note that Helm graph constructed
out of a wheel graph by attaching a pendant edge on each of the vertices
of the cycle Cn−1, admits no PDL and hence it is not a PDG. Also Helm
graph is another instance of a graph with chromatic number 3 possessing
no PDL.

Lemma 8. Any PDL f of K4 allots to the vertices of K4 the labels in any
order either of the form x, x+2, x+5, x+7 or x, x−2, x−5, x−7 for x ∈ Z

Proof. V (K4) = {u1, u2, u3, u4} and E(K4) = {uiui+1 for 1 ≤ i ≤ 3,
u1u3, u2u4}. Suppose that f is a PDL of K4. As f(ui) is distinct for
1 ≤ i ≤ 4, we have either f(ui) < f(uj) or f(ui) > f(uj) for any i < j.
Without lose of generality assume that f(ui) < f(uj) for any i < j. As f is
a PDL it is clear that | f(ui)− f(ui+1) |, | f(u1)− f(u3) |, | f(u2)− f(u4) |
are all prime numbers. Let | f(u1) − f(u2) |= p1, | f(u1) − f(u3) |= p2
and | f(u1) − f(u4) |= p3. Then all pi’s are distinct. This is because, if
any two pi’s are equal say p1 = p2. Then the distance between u2 and
u3 is 0, a contradiction. Now we claim that pi 6∈ 2Z + 1 for all i with
1 ≤ i ≤ 3. Suppose not, then as | {f(u1) − f(u4)} − {f(u1) − f(u3)} |=|
f(u3)−f(u4) |= p3−p2; | f(u3)−f(u2) |= p2−p1; | f(u4)−f(u2) |= p3−p1
are all in 2Z we infer that p1 = p2, a contradiction. Hence it follows that
p1 = 2 and p2, p3 ∈ 2Z + 1. Moreover p3 = p2 + 1. Next if p2 ∈ 3Z then
p2 = 3t for some t ∈ Z. Now t divides p2 implies t = 1 or t = p2. As
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t = p2 is not possible we get p2 = 3. But then p2− p1 = 1, a contradiction.
Similarly if p2 ∈ 3Z + 1 then one can derive a contradiction with similar
reasoning. So p2 ∈ 3Z + 2. As p2 − p1 = 3t for some t ∈ Z and 3t is
composite for all t ≥ 2 we infer that p2− p1 is a prime only when t = 1. So
p2 = 5. Further p3 = p2 + 2 implies p3 = 7. Also | f(u1)− f(u2) |= p1 = 2
implies f(u1) = 0. Hence one sequence of PDL allotted for K4 is 0, 2, 5, 7.
One can obtain different sequence of such PDLs by giving a uniform shift
of x to the above labels. Thus x, x+ 2, x+ 5, x+ 7 for any x is a PDL for
K4. Further one can argue in a similar manner that x, x − 2, x − 5, x − 7
for any x ∈ Z is a PDL for K4. 2

Theorem 9. K5 − e is not a PDG.

Proof. Let V (K5 − e) = {u1, u2, u3, u4, u5} and E(K5 − e) = {uiui+1
for 1 ≤ i ≤ 4, u1u3, u1u4, u1u5, u2u4, u3u5}. We claim that K5 − e is not a
PDG. Suppose that K5− e admits a PDL f with f(u1) = x; f(u2) = x+2;
f(u3) = x+5; f(u4) = x+7 and f(u5) = y by Lemma 8 as {u1, u3, u4, u5}
induces a K4 in K5 − e. Here two cases arise.

Case 1: x ∈ 2Z Now the label y can be either odd or even. If y ∈ 2Z then
as | f(u1) − f(u5) | is a prime one can deduce that y = x + 2. Observe
that y cannot lie between x and x+ 7. So, either y < x or y > x+ 7. This
means y cannot be x+ 2. Hence y 6∈ 2Z. If y ∈ 2Z + 1 and y > x+ 7 then
we derive a contradiction as | f(u5) − f(u3) | is a prime and | y − x + 5 |
is even and 2 is the only even prime. Again if y ∈ 2Z + 1 and y < x then
also one can derive a contradiction as | f(u3)− f(u5) |=| (x+5)− y | is an
even prime and 2 is the only even prime.

Case 2: x ∈ 2Z+1 A similar argument as in Case 1 yields a contradiction.
This means in both Case 1 and Case 2 one cannot give a label for y

which yields a PDL for K5 − e. 2

Corollary 10. If G and H are any two bipartite graphs then G∨H admits
no PDL and hence there exist a graph which is not a member of class 4 but
has chromatic number 4.

Proof. Note thatK5−e is an induced subgraph of G∨H and χ(G∨H) =
χ(G) + χ(H) = 2 + 2 = 4. Also, it is a fact that a subgraph of a PDG is



Chromatic coloring of distance graphs, III 201

a PDG and hence if the subgraph of a graph is not a PDG then the graph
itself is not a PDG. So, we are done by Theorem 9. 2

Theorem 11. All cycles are PDGs

Proof. Let Cn = α1, α2, . . . , αn−1, αn be the cycle graph on n-vertices
then the execution of the following procedure yields a PDL for Cn

Step 1:
(i) If n = 2t for some t ∈ N , then label the vertices α1 and α2t as x and
x+ 2
(ii) If n = 2t+ 1 for some t ∈ N , then label the vertices α1 and α2t+1 as x
and x+ 2

Step 2:
Choose any twin prime pair p1 and p2
(i) If n = 2t, for some t ∈ N , then label the vertices α2 and α2t−1 as x+ p1
and x+ 2 + p1
(ii) If n = 2t+ 1, for some t ∈ N , then label the vertices of α2 and α2t as
x+ p1 and x+ 2 + p1

Step 3:
(i) If n = 2t, for some t ∈ N then label the vertices α3, α4, . . . , αt as
(x+ p1) + 3, (x+ p1) + 2(3), . . . , (x+ p1) + 3(t− 2) in order
(ii) If n = 2t + 1, for some t ∈ N then label the vertices α3, α4, . . . αt as
(x+ p1) + 3, (x+ p1) + 2(3), . . . , (x+ p1) + 3(t− 2) in order

Step 4:
(i) If n = 2t, for some t ∈ N then label the vertices α2t−2, α2t−3, . . . αt+1 as
(x+2+p1)+3, (x+2+p1)+2(3), (x+2+p1)+3(3), . . . , (x+2+p1)+3(t−2)
in order.
(ii) If n = 2t+1, for some t ∈ N , then label the vertices α2t−1, α2t−2, . . . , αt+1
as (x+ 2 + p1) + 3, (x+ 2 + p1 + 2(3)), . . . , (x+ 2 + p1) + p(t− 1)

Step 5:
(i) if n = 2t, t ∈ N , then check whether the edge labels in the clockwise
direction are p1, 3, 3, . . . 3(2t− 3) times, p2, 2. If so, then go to Step 6



202 George Barnabas and V. Yegnanarayanan

(ii) if n = 2t t ∈ N , then check whether edge labels in the clockwise direc-
tion are p1, 3, 3, . . . 3(2t− 2) times, p2, 2. If so, then go to Step 6

Step 6:
Declare the above labeling as PDL and call Cn as PDG for all n and go to
Step 7

Step 7:
Stop

2

7. Conclusion

While attempting the problem of characterizing the family of graphs be-
longing to class i when D is of any given size we have somehow succeeded
in obtaining one family each of graphs in class 3 and 4 whose distance set
consists of countably many elements in Theorem 5 and Theorem 6. We also
obtained certain interesting general results and existential results regarding
class i collection of graphs.
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