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Abstract

In this article we introduce new sequence spaces c0
(τ), c(τ) and

l∞
(τ) of fractional order τ , consisting of an operator which is a com-
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with Schauder basis and α−, β− and γ−duals.
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1. Introduction

For all real number τ , the gamma function Γ (τ) is expressed as

Γ (τ) =

Z ∞
0

e−t tτ−1 dt(1.1)

which is an improper integral satisfying the following properties :
1. Γ (n+ 1) = n!, n ∈ N set of natural numbers.
2. Γ (n+ 1) = nΓ (n) for each real number n 6∈ {0,−1,−2,−3, ....}.
A paranorm on a vector space X over the real field R is a mapping

h : X → R satisfying the following conditions, for all x, y ∈ X and a scalar
λ :
(i) h(θ) = 0, where θ = (0, 0, 0, ....),
(ii) h(x) = h(−x),
(iii) h(x+ y) ≤ h(x) + h(y),
(iv) λn → λ and xn → x implies that h(λnxn)→ h(λx) as n→∞.

i.e. scalar multiplication is continuous.
Let ω be the space of all real or complex sequences. Any subspace of ω

is a sequence space. By c0, c and l∞ we denote the spaces of null, convergent
and bounded sequences respectively, which are subspaces of ω normed by
k x k∞= supk |xk|. By bs and cs we mean the spaces of all bounded and
convergent series respectively.

For p = (pk) a bounded sequence of strictly positive real numbers,
Maddox [13, 12, 11] introduced the spaces c0 (p) , c (p) and Simons [27]
introduced the space l∞ (p) as :

c0 (p) =

½
ζ = (ζk) ∈ ω : lim

k→∞
|ζk|pk = 0

¾
,

c (p) =

½
ζ = (ζk) ∈ ω : lim

k→∞
|ζk − l|pk = 0 for some l ∈ R

¾
,

l∞ (p) =

(
ζ = (ζk) ∈ ω : sup

k∈N
|ζk|pk <∞

)

and these are complete paranormed sequence spaces with paranorm

g (x) = sup
k∈N

|xk|pk/M and where M = max{1, sup
k

pk}.
The α−, β− and γ− duals of sequence space X are denoted by

Xα = {u = (u)k ∈ ω : ux = (ukxk) ∈ l1, for all, x = (xk) ∈ X} ,
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Xβ = {u = (uk)k ∈ ω : ux = (ukxk) ∈ cs, for all, x = (xk) ∈ X} ,
Xγ = {u = (u)k ∈ ω : ux = (ukxk) ∈ bs, for all x = (xk) ∈ X}

respectively.
Let λ, µ be any two sequence spaces, and let A = (ank) be an infinite

matrix of complex or real numbers, where k, n ∈ N. Then, we say that
A defines a matrix transformation from λ into µ, if for every sequence
x = (xk) ∈ λ, the sequence Ax = (Ax)n, the A-transform of x, is in µ,
where

(Ax)n =
X
k

ankxk for n ∈ N.(1.2)

When A : λ → µ, we write the class of matrices as (λ : µ). Thus,
A ∈ (λ : µ) if and only if the series in (1.2) converges for each n ∈ N. Also,
we write An = (ank) for the sequence in the nth row of A.

The difference sequence space

X (∆) = {x = (xk) ∈ ω : (xk − xk−1) ∈ X}

for X = {c0, c, l∞} was introduced in 1981 by Kızmaz [9], further it gener-
alized by Et and Çolak [17] which then attracted the attention of several
mathematicians in different directions (see [16, 17, 20]).

Altay, Başar and Mursaleen [5] and Altay and Başar [2] have stuided
Euler sequence spaces erc, e

r
0 and er∞ for 0 < r < 1. The Riesz sequence

spaces rq∞, r
q
c and rq0 were introduced by Malkowsky [7] then Altay and

Başar [4] introduced the paranorm Riesz sequence spaces rq∞ (p), r
q
c (p)

and rq0 (p). For further results on Riesz sequence spaces one may refer
[6, 3, 15, 10].

The Euler mean E1 = (enk) of order one and Riesz mean Rq = (rnk)
are defined by

enk =

( ¡n
k

¢ 1
2n (0 ≤ k ≤ n),

0 (k > n)
and rnk =

(
qk
Qn (0 ≤ k ≤ n),

0 (k > n),

where q = (qk) is a sequence of positive numbers and Qn =
Pn

k=0 qk for
n, k ∈ N0. And its inverses E1

−1 = ênk and Rq
−1 = r̂nk are given by

ênk =

( ¡n
k

¢
(−1)n−k2k (0 ≤ k ≤ n),

0 (k > n),
and

r̂nk =

(
(−1)n−k Qk

qn (n− 1 ≤ k ≤ n),

0 (otherwise).
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For a proper fraction τ , Baliarsingh [24], Baliarsingh & Dutta in a series
of papers ([21, 22, 23, 26, 25]) introduced the fractional difference operator
∆(τ) as

∆(τ)xk =
X
i

(−1)i Γ (τ + 1)

i!Γ(τ − i+ 1)
xk−i,(1.3)

along with its inverse

∆(−τ)xk =
X
i

(−1)i Γ (−τ + 1)
i!Γ(−τ − i+ 1)

xk−i.(1.4)

Here the series of fractional difference operators are convergent. It
is also appropriate to express the difference operator and its inverse as
triangles in the following manner:

∆
(τ)
nk =

(
n−k Γ(τ+1)

(n−k)!Γ(τ−n+k+1) (0 ≤ k ≤ n),

0 (k > n),
(1.5)

∆
(−τ)
nk =

(
(−1)n−k Γ(−τ+1)

(n−k)!Γ(−τ−n+k+1) (0 ≤ k ≤ n),

0 (k > n).
(1.6)

We define the Euler Riesz matrix B̃ = (b̃nk) by the composition of
matrices E1 and Rq as

b̃nk =

( Pn
i=k

¡n
i

¢ qk
2nQi

, 0 ≤ k ≤ n

0, k > n,
(1.7)

and its inverse B̃−1 = (b̂nk) is given by

b̂nk =

⎧⎪⎨⎪⎩
Pn

i=n−1
¡i
k

¢
(−1)n−k 2kQi

qn
, if0 ≤ k < n

2nQn

qn
, ifk = n

0, ifk > n,

(1.8)

for n, k ∈ N0.

Basar and Braha [8] introduced Euler-Cesaro difference sequence spaces
č, č0, ľ∞ of null, convergent and bounded sequences respectively. Baliars-
ingh and Dutta [21] introduced the fractional difference operators on various
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sequence spaces. For further investigations on difference operators one may
refer [28, 29, 10] and many others.

Now our interest is to introduce the new paranormed difference sequence
spaces of fractional order which generalizes many known spaces.

We introduce the spaces c0
(τ), c(τ) and l∞

(τ) by using the product of the
Euler mean E1 and Riesz mean Rq with fractional operator ∆

(τ). We
prove certain topological properties of these spaces and determine their
α−, β−, γ− duals.

2. Main Results

Here we introduce the matrix B̃
³
∆(τ)

´
= B̃(τ) = b̃

(τ)
nk by the product of

Euler-Riesz matrix B̃ (1.7) and fractional ordered difference operator ∆(τ)

(1.3) as follows :

b̃
(τ)
nk =

( Pn
j=k

Pn
i=j

¡n
i

¢ Γ(τ+1)(−1)j−k
(j−k)!Γ(τ−j+k+1)

qj
2nQi

, if 0 ≤ k ≤ n

0, if k > n.
(2.1)

Theorem 2.1. The inverse of the fractional ordered Euler-Riesz matrix³
B̃(τ)

´
written as

³
B̃(−τ)

´
= b̃

(−τ)
nk and is given by

b̃
(−τ)
nk =

⎧⎪⎪⎨⎪⎪⎩
Pn

j=k
Γ(−τ+1)(−1)n−k

(n−j)!Γ(−τ−n+j+1)
2k

qj

Pj
i=j−1

¡i
k

¢
Qi, if 0 ≤ k < n

2nQn

qn
, if k = n

0, if k > n.

(2.2)

Proof. This theorem can be proved using equations (1.8) and (1.6),
i. e. ³

B̃(τ)
´−1

=
³
∆(τ)

´−1
.
³
B̃
´−1

,

and
B̃(τ)B̃(−τ) = B̃(−τ)B̃(τ) = I,

where I is an identity operator. 2
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For a positive real number τ , we now introduce the classes of fractional
ordered Euler-Riesz difference sequence spaces c0

(τ), c(τ) and l∞
(τ) by

(a) c0
(τ) =

n
x = (xk) ∈ w : lim

n→∞

¯̄̄Pn
l=0

Pn
j=k

Pn
i=j

¡
n
i

¢ Γ(τ+1)(−1)j−k
(j−k)!Γ(τ−j+k+1)

qjxl
2nQi

¯̄̄pk
= 0

o
,

(b) c(τ) =
n
x = (xk) ∈ w : lim

n→∞

¯̄̄Pn
l=0

Pn
j=k

Pn
i=j

¡
n
i

¢ Γ(τ+1)(−1)j−k
(j−k)!Γ(τ−j+k+1)

qjxl
2nQi

¯̄̄pk
exists

o
,

(c) l∞
(τ) =

½
x = (xk) ∈ w : sup

n

¯̄̄Pn
l=0

Pn
j=k

Pn
i=j

¡
n
i

¢ Γ(τ+1)(−1)j−k
(j−k)!Γ(τ−j+k+1)

qjxl
2nQi

¯̄̄pk
<∞

¾
.

These spaces can also be rewritten as :
c0
(τ) = (c0 (p))(B̃(τ)) , c

(τ) = (c (p))(B̃(τ)) and l∞
(τ) = (l∞ (p))(B̃(τ)) .

Our introduced spaces generalize the known sequence space as follows:
1. For τ = 0 and p = (pk) = e, q = (qk) = e, classes (a), (b), (c) reduce to
the sequence spaces č, č0, ľ∞ studied by Basar and Braha [8].
2. For enk = I, classes (a), (b), (c) reduce to the sequence spaces rt0(p,∆

(τ)),
rtc(p,∆

(τ)) and rt∞(p,∆
(τ)) studied by Yaying [28].

3. For rnk = enk = I, classes (a), (b), (c) reduce to the sequence spaces
studied by [22].
Now with B̃(τ) - transform of x = (xk) we define the sequence y = (yk) as
follows :

yn =
³
B̃(τ)x

´
n
=

nX
l=0

nX
j=k

nX
i=j

Ã
n

i

!
Γ (τ + 1) (−1)j−k

(j − k)!Γ (τ − j + k + 1)

qjxl
2nQi

.(2.3)

By a straightforward calculation of (2.3) it can be obtained that

xn =
³
B̃(−τ)y

´
n
=

nX
l=0

nX
j=k

Γ (−τ + 1) (−1)n−k

(n− j)!Γ (−τ − n+ j + 1)

2k

qj

jX
i=j−1

Ã
i

k

!
Qiyl.(2.4)

Lemma 2.1. The operator B̃(τ) is linear.
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Proof. The proof is a routine verification, hence omitted. 2

3. Topological structure

This section deals with some interesting topological results of the spaces
c0
(τ), c(τ) and l∞

(τ).

Theorem 3.1. The spaces c0
(τ), c(τ) and l∞

(τ) are paranormed spaces with
the paranorm

gB̃(τ) (x)= sup
k∈N

¯̄̄³³
B̃(τ)

´
x
´
k

¯̄̄ pk
M

= sup
n

¯̄̄̄
¯̄ nX
l=0

nX
j=k

nX
i=j

Ã
n

i

!
Γ (τ + 1) (−1)j−k

(j − k)!Γ (τ − j + k + 1)

qjxl
2nQi

¯̄̄̄
¯̄
pk
M

,(3.1)

if and only if h = infk pk > 0 and M = max {1, supk pk}.

Proof. Consider the space c0
(τ).

Assume that h > 0, then gB̃(τ) (θ) = 0, where θ = (0, 0, 0, ....) and
gB̃(τ) (−x) = gB̃(τ) (x).
To prove the linearity of gB̃(τ) (x), we consider two sequences x = (xk), y =

(yk) ∈ c
(τ)
0 and any two scalars β1, β2 ∈ R. Since B̃(τ) is a linear operator

consider
gB̃(τ) (β1x+ β2y)

= sup
n

¯̄̄̄
¯̄ nX
l=0

nX
j=k

nX
i=j

Ã
n

i

!
Γ (τ + 1) (−1)j−k

(j − k)!Γ (τ − j + k + 1)

qj
2nQi

(β1xl + β2yl)

¯̄̄̄
¯̄
pk
M

≤ max{1, |β1|}sup
k∈N

¯̄̄³³
B̃(τ)

´
x
´
k

¯̄̄ pk
M +max{1, |β2|}sup

k∈N

¯̄̄³³
B̃(τ)

´
y
´
k

¯̄̄ pk
M

= max{1, |β1|} gB̃(τ) (x) +max{1, |β2|} gB̃(τ) (y).

Hence the subadditivity of gB̃(τ) i.e.

gB̃(τ) (x+ y) ≤ gB̃(τ) (x) + gB̃(τ) (y),
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for all x, y ∈ c0
(τ).

Now consider {un} is a sequence of points in c0(τ) then gB̃(τ) (un − u)→
0 and (λn) is a sequence of scalars such that λn → λ as n→∞. By using
the subadditivity of gB̃(τ) , we get

gB̃(τ) (u
n) ≤ gB̃(τ) (u) + gB̃(τ) (u

n − u) .

Since {gB̃(τ) (un)} is bounded, we have
gB̃(τ) (λnu

n − λu)

= sup
m

¯̄̄̄
¯̄ mX
l=0

⎡⎣ mX
j=k

mX
i=j

Ã
m

i

!
Γ (τ + 1) (−1)j−k

(j − k)!Γ (τ − j + k + 1)

qj
2mQi

⎤⎦ (λnuln + λul)

¯̄̄̄
¯̄
pk
M

≤ |λn − λ|
pk
M gB̃(τ) (u

n) + |λ|
pk
M gB̃(τ) (u

n − u)→ 0 as n→∞.

Hence it shows that the scalar multiplication of gB̃(τ) (x) is continuous and
gB̃(τ) (x) is a paranorm on the space c0

(τ). Proof for other spaces can be
done using similar techniques. 2

Theorem 3.2. The sequence space c0
(τ) is a complete linear space para-

normed by gB̃(τ) (x).

Proof. Let
n
xk
o
be a Cauchy sequence in the space c0

(τ) where xk =n
x0
(k), x1

(k), x2
(k), ....

o
. By definition of Cauchy sequence, there exists a

positive integer n0(�) for each � > 0 such that

gB̃(τ)
³
xk − xl

´
< �, for k, l ≥ n0(�).

For a fixed integer m ∈ N, the sequencen³
(B̃(τ))xk

´
m

o
=
n³
(B̃(τ))x1

´
m
,
³
(B̃(τ))x2

´
m
,
³
(B̃(τ))x3

´
m
, .....

o
is a

Cauchy sequence in R. By completeness of R, the sequence
³
(B̃(τ))xk

´
m

converges to
³
(B̃(τ))x

´
m
as k→∞. For l→∞, it is clear that

¯̄̄³
(B̃(τ))xk

´
m
−
³
(B̃(τ))x

´
m

¯̄̄ pk
M < �/2, for all, k ≥ n0(�).(3.2)
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Since
n
xk
o
∈ c0

(τ), there exists a number M ∈ R such that

sup
m

¯̄̄³
(B̃(τ))xk

´
m

¯̄̄ pk
M < �/2.(3.3)

From inequality (3.2) and (3.3) we conclude that

sup
m

¯̄̄³
(B̃(τ))x

´
m

¯̄̄ pk
M

≤ sup
m

¯̄̄³
(B̃(τ))xk

´
m
−
³
(B̃(τ))x

´
m

¯̄̄ pk
M + sup

m

¯̄̄³
(B̃(τ))xk

´
m

¯̄̄ pk
M

≤ �/2 + �/2 = �, for all k ≥ n0(�).

Hence the theorem. 2

Theorem 3.3. c0
(τ), c(τ) and l∞

(τ) are linearly isomorphic to c0(p), c(p), l∞(p)
where 0 < pk ≤ H <∞, respectively.

Proof. Now define a mapping F : l∞
(τ) → l∞(p) by x → y = Fx.

Clearly, F is a linear transformation. It is obvious that x = θ whenever
Fx = θ, and hence F is one-one.

Let y = (yn) ∈ l∞(p), define a sequence x = (xn) in (2.4) as

xn=
nX
l=0

nX
j=k

Γ (−τ + 1) (−1)n−k

(n− j)!Γ (−τ − n+ j + 1)

2k

qj

jX
i=j−1

Ã
i

k

!
Qiyl.

Then

gB̃(τ) (x) = sup
n

¯̄̄̄
¯̄ nX
l=0

nX
j=k

nX
i=j

Ã
n

i

!
Γ (τ + 1) (−1)j−k

(j − k)!Γ (τ − j + k + 1)

qjxl
2nQi

¯̄̄̄
¯̄
pk
M

= sup
n∈N

¯̄̄̄
¯̄ nX
j=0

δnj yj

¯̄̄̄
¯̄
pk
M

= sup
n∈N

|yn|
pk
M <∞,

where δnj =

(
1, if n = j
0, if n 6= j.

Thus x ∈ l∞
(τ) and F is a linear bijection and paranorm preserving.

Hence the spaces l∞
(τ) and l∞ (p) are linearly isomorphic.

i.e. l∞
(τ) ∼= l∞ (p). The proof for other spaces can be obtained in a similar

manner. 2
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4. Basis for the spaces

In this section the Schauder basis [11] for c0
(τ), c(τ) are constructed.

Theorem 4.1. For 0 < pk ≤ H < ∞, let µk (q)=
³³

B̃(τ)
´
x
´
k
. For

k ∈ N0 define b
(k)(q) =

n
bn
(k)(q)

o
n∈N0

by

n
bn
(k)(q)

o
=

⎧⎪⎪⎨⎪⎪⎩
Pn

j=k
Γ(−τ+1)(−1)n−k

(n−j)!Γ(−τ−n+j+1)
2k

qj

Pj
i=j−1

¡ i
k

¢
Qi, if 0 ≤ k < n

2nQn

qn
, if k = n

0, if k > n.

(i)
n
bn
(k)(q)

o
is a basis for c0

(τ) and each x ∈ c0
(τ) and x has unique

representation
x =

X
k

µk(q)bn
(k)(q).

(ii)
n³

B̃(−τ)
´
e, bn

(k)(q)
o
is a basis for c(τ), and each x ∈ c(τ) and x has

unique representation

x = le+
X
k

(µk − l) b(k), where l = lim
k→∞

µk.

Proof. (i) By the definition of
³
B̃(τ)

´
and bn

(k)(q),

B̃(τ)bn
(k)(q) = e(k) ∈ c0,

Let x ∈ c0
(τ), then

x[s] =
sX

k=0

µk(q)b
(k)(q)

for an integer s ≥ 0.
By applying B̃(τ) we get

B̃(τ)x[s] =
sX

k=0

µk(q)B̃
(τ)b(k)(q)

=
sX

k=0

µk(q)e
(k) =

³³
B̃(τ)

´
x
´
k
e(k)

and
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B̃(τ)
³
x− x[s]

´
r
=

(
0, if 0 ≤ r ≤ s³³

B̃(τ)
´
x
´
k
, if r > s;

(4.1)

where r, s ∈ N0. For � > 0 there exist an integer m0 s.t.

sup
r≥s

¯̄̄³³
B̃(τ)

´
x
´
r

¯̄̄ pk
M <

�

2
for all s ≥ m0.

Hence

gB̃

³
x− x[s]

´
= sup

r≥s

¯̄̄³³
B̃(τ)

´
x
´
r

¯̄̄ pk
M <

�

2
< �, for all s ≥ m0.

Assume that x =
P

k ηk(q)b
(k)(q). Since the linear mapping F from c0

(τ)

to c0 (p) is continuous we have³³
B̃(τ)

´
x
´
k
=
X
k

ηk(q)
³³

B̃(τ)
´
b(k)(q)

´
n

=
X
k

ηk(q)e
(k) = ηn(q)̇

This contradicts to our assumption that
³³

B̃(τ)
´
x
´
k
= µk(q) for each

k ∈ N0. Thus the representation is unique.

(ii) The proof as it is similar to previous one. 2

5. α−, β− and γ− duals

Here we determine α−, β− and γ− duals of c0(τ), c(τ) and l∞
(τ).

Throughout the collection of all finite subsets of N is denoted by κ. We
consider K ∈ κ.

Lemma 5.1. [14] Let A = (ank) be an infinite matrix. Then,

1. A ∈ (l∞(p), l(q)) if and only if

sup
k∈κ

X
n

¯̄̄̄
¯̄X
k∈K

ankB
1
pk

¯̄̄̄
¯̄
qn

<∞, for all integers, B > 1and qn ≥ 1 for all, n;

(5.1)
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2. A ∈ (l∞(p), l∞(q)) if and only if

sup
n∈N

ÃX
k

|ank|B
1
pk

!qn

<∞, for all integers, B > 1;(5.2)

3. A ∈ (l∞(p), c(q)) and q = (qn) be a bounded sequence of strictly
positive real numbers if and only if

sup
n∈N

X
k

|ank|B
1
pk <∞, for all, B > 1,(5.3)

there exists (τk) ⊂ R such that lim
n→∞

µP
k |ank − τk|B

1
pk

¶qn
= 0,

for all, B > 1;

4. A ∈ (l∞(p), c0(q)) if and only if

lim
n→∞

ÃX
k

|ank|B
1
pk

!qn

= 0, for all, B > 1,

.

Lemma 5.2. [14] Let A = (ank) be an infinite matrix. Then,

1. A ∈ (c0(p), l∞(q)) if and only if

sup
n∈N

ÃX
k

|ank|B
−1
pk

!qn

<∞, for all, B > 1;(5.4)

2. A ∈ (c0(p), c(q)) if and only if

sup
n∈N

X
k

|ank|B
−1
pk <∞, for all, B > 1,(5.5)

there exists (τk) ⊂ R such that sup
n∈N

X
k

|ank − τk|M
−1
pk B

−1
pk <∞,(5.6)

for all integers M,B > 1;

there exists (τk) ⊂ R such that lim
n→∞

X
k

|ank − τk|qn = 0, for all, k ∈ N ;

(5.7)
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3. A ∈ (c0(p), c0(q)) if and only if

there exists (τk) ⊂ R, such that sup
n∈N

X
k

|ank|M
−1
pk B

−1
pk <∞,(5.8)

for all integers M,B > 1;

there exists (τk) ⊂ R such that lim
n→∞

X
k

|ank|qn = 0, for all, k ∈ N.(5.9)

Lemma 5.3. [14] Let A = (ank) be an infinite matrix. Then,

1. A ∈ (c(p), l∞(q)) if and only if equation (5.4) holds and

sup
n∈N

¯̄̄̄
¯X
k

ank

¯̄̄̄
¯
qn

<∞;(5.10)

2. A ∈ (c(p), c(q)) if and only if equations (5.5), (5.6), (5.7) hold:

there exists (τ) ⊂ R such that lim
n→∞

¯̄̄̄
¯X
k

ank − τ

¯̄̄̄
¯
qn

= 0;(5.11)

3. A ∈ (c(p), c0(q)) if and only if equations (5.8), (5.9) hold and

lim
n→∞

¯̄̄̄
¯X
k

ank

¯̄̄̄
¯
qn

= 0.(5.12)

Theorem 5.1. The α−, β− and γ− duals of c0(τ), c(τ) and l∞
(τ) are the

following defined sets

D
(τ)
1 (p) =

\
M>1

⎧⎨⎩a = (ak) : supk∈τ

X
n

¯̄̄̄
¯̄X
k∈K

∙
B̃(τ)

µ
ak
qk

¶
Qk

¸¯̄̄̄¯̄M 1
pk <∞

⎫⎬⎭ ,

D
(τ)
2 (p) =

\
M>1

(
a = (ak) :

X
k

¯̄̄̄
B̃(τ)

µ
ak
qk

¶
Qk

¯̄̄̄
M

1
pk <∞,

µ
ak
qk
QkM

1
pk

¶
∈ c0

)
,

D
(τ)
3 (p) =

\
M>1

(
a = (ak) :

X
k

¯̄̄̄
B̃(τ)

µ
ak
qk

¶
Qk

¯̄̄̄
M

1
pk <∞,

½
B̃(τ)

µ
ak
qk

¶
Qk

¾
∈ l∞

)
,
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D
(τ)
4 (p) =

[
M>1

⎧⎨⎩a = (ak) : supk∈τ

X
n

¯̄̄̄
¯̄X
k∈K

∙
B̃(τ)

µ
ak
qk

¶
Qk

¸¯̄̄̄¯̄M −1
pk <∞

⎫⎬⎭ ,

D
(τ)
5 (p) =

[
M>1

(
a = (ak) :

X
n

¯̄̄̄
¯X
k

∙
B̃(τ)

µ
ak
qk

¶
Qk

¸¯̄̄̄
¯ <∞

)
,

D
(τ)
6 (p) =

\
M>1

(
a = (ak) :

X
k

¯̄̄̄
B̃(τ)

µ
ak
qk

¶
Qk

¯̄̄̄
M

−1
pk <∞

)
,

where

B̃(τ)
µ
ak
qk

¶
=

nX
j=k

Γ (−τ + 1) (−1)n−k

(n− j)!Γ (−τ − n+ j + 1)

2k

qj

jX
i=j−1

Ã
i

k

!
ak(5.13)

Thenn
l∞

(τ)
oα
= D

(τ)
1 (p),

n
l∞

(τ)
oβ
= D

(τ)
2 (p),

n
l∞

(τ)
oγ
= D

(τ)
3 (p),

n
c(τ)

oα
= D

(τ)
4 (p)∩D(τ)

5 (p),
n
c(τ)

oβ
= D

(τ)
6 (p)∩ cs,

n
c(τ)

oγ
= D

(τ)
6 (p)∩ bs,n

c0
(τ)
oα
=
n
c0
(τ)
oβ
=
n
c0
(τ)
oγ
= D

(τ)
6 (p).

Proof. Consider the space l∞
(τ). Now let x = (xk) as in (2.4), and

a = (ak) ∈ ω, define

anxn =
nX
l=0

nX
j=k

Γ (−τ + 1) (−1)n−k

(n− j)!Γ (−τ − n+ j + 1)

2k

qj

jX
i=j−1

Ã
i

k

!
Qianyl

= (Uy)n , for n ∈ N,

where matrix U = (unk) is defined as

unk =

⎧⎪⎪⎨⎪⎪⎩
Pn

j=k
Γ(−τ+1)(−1)n−k

(n−j)!Γ(−τ−n+j+1)
2k

qj

Pj
i=j−1

¡ i
k

¢
Qian, if 0 ≤ k < n

2nQn

qn
an, if k = n

0, if k > n.

Therefore we conclude that ax = (anxn) ∈ l1 whenever x = (xk) ∈ l∞
(τ)

if and only if Uy ∈ l1 as y = (yk) ∈ l∞(p). By lemma (5.1) we conclude

that
n
l∞

(τ)
oα
= D

(τ)
1 (p).

Now
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nX
k=0

akxk =
nX

k=0

ak

⎡⎣ nX
l=0

nX
j=k

Γ (−τ + 1) (−1)n−k

(n− j)!Γ (−τ − n+ j + 1)

2k

qj

jX
i=j−1

Ã
i

k

!
Qiyl

⎤⎦

=
nX

k=0

ykQkB̃
(τ)
µ
ak
qk

¶
= (V y)n ,

where matrix V = (vnk) is defined as

vnk =

⎧⎪⎪⎨⎪⎪⎩
B̃(τ)

³
ak
qk

´
Qk, if 0 ≤ k ≤ n

2nQn

qn
an, if k = n

0, if k > n.

(5.14)

Therefore we deduce that ax = (anxn) ∈ cs whenever x = (xk) ∈ l∞
(τ)

if and only if V y ∈ c whenever y = (yk) ∈ l∞(p). By using lemma (5.1) with

q = qn = 1 we conclude that
n
l∞

(τ)
oβ
= D

(τ)
2 (p). Similarly by using lemma

(5.1) with q = qn = 1 for all n, we conclude that
n
l∞

(τ)
oγ
= D

(τ)
3 (p).

Hence the theorem proved and the duals of other spaces can be obtained
in a similar manner using lemma (5.2) and lemma (5.3). 2
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