Fractional ordered Euler Riesz difference sequence spaces

Diptimayee Jena
Utkal University, India
and
Salila Dutta
Utkal University, India
Received: October 2022. Accepted: July 2023

Abstract

In this article we introduce new sequence spaces $c_{0}{ }^{(\tau)}, c^{(\tau)}$ and $l_{\infty}{ }^{(\tau)}$ of fractional order τ, consisting of an operator which is a composition of Euler-Riesz operator and fractional difference operator. Certain topological properties of these spaces are investigated along with Schauder basis and $\alpha-, \beta-$ and $\gamma-$ duals.

Keywords: Euler-Riesz difference sequence space, difference operator $\left(\Delta^{\tau}\right)$, Schauder basis, infinite matrices and $\alpha-, \beta-$ and $\gamma-$ duals.

2010 Mathematics Subject Classification: 47A10; 40A05; 46A45.

1. Introduction

For all real number τ, the gamma function $\Gamma(\tau)$ is expressed as

$$
\begin{equation*}
\Gamma(\tau)=\int_{0}^{\infty} e^{-t} t^{\tau-1} d t \tag{1.1}
\end{equation*}
$$

which is an improper integral satisfying the following properties :

1. $\Gamma(n+1)=n!, n \in \mathbf{N}$ set of natural numbers.
2. $\Gamma(n+1)=n \Gamma(n)$ for each real number $n \notin\{0,-1,-2,-3, \ldots$.$\} .$

A paranorm on a vector space X over the real field \mathbf{R} is a mapping $h: X \rightarrow \mathbf{R}$ satisfying the following conditions, for all $x, y \in X$ and a scalar λ :
(i) $h(\theta)=0$, where $\theta=(0,0,0, \ldots$.$) ,$
(ii) $h(x)=h(-x)$,
(iii) $h(x+y) \leq h(x)+h(y)$,
(iv) $\lambda^{n} \rightarrow \lambda$ and $x^{n} \rightarrow x$ implies that $h\left(\lambda^{n} x^{n}\right) \rightarrow h(\lambda x)$ as $n \rightarrow \infty$.
i.e. scalar multiplication is continuous.

Let ω be the space of all real or complex sequences. Any subspace of ω is a sequence space. By c_{0}, c and l_{∞} we denote the spaces of null, convergent and bounded sequences respectively, which are subspaces of ω normed by $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|$. By bs and $c s$ we mean the spaces of all bounded and convergent series respectively.

For $p=\left(p_{k}\right)$ a bounded sequence of strictly positive real numbers, Maddox [13, 12, 11] introduced the spaces $c_{0}(p), c(p)$ and Simons [27] introduced the space $l_{\infty}(p)$ as :

$$
\begin{aligned}
& c_{0}(p)=\left\{\zeta=\left(\zeta_{k}\right) \in \omega: \lim _{k \rightarrow \infty}\left|\zeta_{k}\right|^{p_{k}}=0\right\}, \\
& c(p)=\left\{\zeta=\left(\zeta_{k}\right) \in \omega: \lim _{k \rightarrow \infty}\left|\zeta_{k}-l\right|^{p_{k}}=0 \text { for some } l \in R\right\}, \\
& l_{\infty}(p)=\left\{\zeta=\left(\zeta_{k}\right) \in \omega: \sup _{k \in N}\left|\zeta_{k}\right|^{p_{k}}<\infty\right\}
\end{aligned}
$$

and these are complete paranormed sequence spaces with paranorm

$$
g(x)=\sup _{k \in N}\left|x_{k}\right|^{p_{k} / M} \text { and where } M=\max \left\{1, \sup _{k} p_{k}\right\} .
$$

The $\alpha-, \beta$ - and $\gamma-$ duals of sequence space X are denoted by

$$
X^{\alpha}=\left\{u=(u)_{k} \in \omega: u x=\left(u_{k} x_{k}\right) \in l_{1}, \text { for all, } x=\left(x_{k}\right) \in X\right\},
$$

$$
\begin{gathered}
X^{\beta}=\left\{u=\left(u_{k}\right)_{k} \in \omega: u x=\left(u_{k} x_{k}\right) \in c s, \text { for all, } x=\left(x_{k}\right) \in X\right\}, \\
X^{\gamma}=\left\{u=(u)_{k} \in \omega: u x=\left(u_{k} x_{k}\right) \in b s, \text { for all } x=\left(x_{k}\right) \in X\right\}
\end{gathered}
$$

respectively.
Let λ, μ be any two sequence spaces, and let $A=\left(a_{n k}\right)$ be an infinite matrix of complex or real numbers, where $k, n \in \mathbf{N}$. Then, we say that A defines a matrix transformation from λ into μ, if for every sequence $x=\left(x_{k}\right) \in \lambda$, the sequence $A x=(A x)_{n}$, the A-transform of x , is in μ, where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k} \text { for } n \in \mathbf{N} . \tag{1.2}
\end{equation*}
$$

When $A: \lambda \rightarrow \mu$, we write the class of matrices as $(\lambda: \mu)$. Thus, $A \in(\lambda: \mu)$ if and only if the series in (1.2) converges for each $n \in \mathbf{N}$. Also, we write $A_{n}=\left(a_{n k}\right)$ for the sequence in the nth row of A.

The difference sequence space

$$
X(\Delta)=\left\{x=\left(x_{k}\right) \in \omega:\left(x_{k}-x_{k-1}\right) \in X\right\}
$$

for $X=\left\{c_{0}, c, l_{\infty}\right\}$ was introduced in 1981 by Kızmaz [9], further it generalized by Et and Çolak [17] which then attracted the attention of several mathematicians in different directions (see [16, 17, 20]).

Altay, Başar and Mursaleen [5] and Altay and Başar [2] have stuided Euler sequence spaces e_{c}^{r}, e_{0}^{r} and e_{∞}^{r} for $0<r<1$. The Riesz sequence spaces $r_{\infty}^{q}, r_{c}^{q}$ and r_{0}^{q} were introduced by Malkowsky [7] then Altay and Başar [4] introduced the paranorm Riesz sequence spaces $r_{\infty}^{q}(p), r_{c}^{q}(p)$ and $r_{0}^{q}(p)$. For further results on Riesz sequence spaces one may refer $[6,3,15,10]$.

The Euler mean $E_{1}=\left(e_{n k}\right)$ of order one and Riesz mean $R_{q}=\left(r_{n k}\right)$ are defined by

$$
\mathrm{e}_{n k}=\left\{\begin{array}{ll}
\binom{n}{k} \frac{1}{2^{n}} & (0 \leq k \leq n), \\
0 & (k>n)
\end{array} \quad \text { and } r_{n k}= \begin{cases}\frac{q_{k}}{Q^{n}} & (0 \leq k \leq n), \\
0 & (k>n),\end{cases}\right.
$$

where $q=\left(q_{k}\right)$ is a sequence of positive numbers and $Q_{n}=\sum_{k=0}^{n} q_{k}$ for $n, k \in \mathbf{N}_{0}$. And its inverses $E_{1}^{-1}=\hat{e}_{n k}$ and $R_{q}^{-1}=\hat{r}_{n k}$ are given by

$$
\begin{aligned}
& \hat{e}_{n k}=\left\{\begin{array}{ll}
\binom{n}{k}(-1)^{n-k} 2^{k} & (0 \leq k \leq n), \\
0 & (k>n),
\end{array}\right. \text { and } \\
& \hat{r}_{n k}= \begin{cases}(-1)^{n-k} \frac{Q_{k}}{q^{n}} & (n-1 \leq k \leq n), \\
0 & \text { (otherwise). }\end{cases}
\end{aligned}
$$

For a proper fraction τ, Baliarsingh [24], Baliarsingh \& Dutta in a series of papers ($[21,22,23,26,25]$) introduced the fractional difference operator $\Delta^{(\tau)}$ as

$$
\begin{equation*}
\Delta^{(\tau)} x_{k}=\sum_{i}(-1)^{i} \frac{\Gamma(\tau+1)}{i!\Gamma(\tau-i+1)} x_{k-i} \tag{1.3}
\end{equation*}
$$

along with its inverse

$$
\begin{equation*}
\Delta^{(-\tau)} x_{k}=\sum_{i}(-1)^{i} \frac{\Gamma(-\tau+1)}{i!\Gamma(-\tau-i+1)} x_{k-i} . \tag{1.4}
\end{equation*}
$$

Here the series of fractional difference operators are convergent. It is also appropriate to express the difference operator and its inverse as triangles in the following manner:

$$
\begin{gather*}
\Delta_{n k}^{(\tau)}=\left\{\begin{array}{cc}
n-k & \Gamma(\tau+1) \\
\frac{\Gamma-k)!\Gamma(\tau-n+k+1)}{0} & (0 \leq k \leq n), \\
0 & (k>n),
\end{array}\right. \tag{1.5}\\
\Delta_{n k}^{(-\tau)}= \begin{cases}(-1)^{n-k} \frac{\Gamma(-\tau+1)}{(n-k)!\Gamma(-\tau-n+k+1)} & (0 \leq k \leq n), \\
0 & (k>n) .\end{cases} \tag{1.6}
\end{gather*}
$$

We define the Euler Riesz matrix $\tilde{B}=\left(\tilde{b}_{n k}\right)$ by the composition of matrices E_{1} and R_{q} as

$$
\tilde{b}_{n k}= \begin{cases}\sum_{i=k}^{n}\binom{n}{i} \frac{q_{k}}{2^{n} Q_{i}}, & 0 \leq k \leq n \tag{1.7}\\ 0, & k>n\end{cases}
$$

and its inverse $\tilde{B}^{-1}=\left(\hat{b}_{n k}\right)$ is given by

$$
\hat{b}_{n k}= \begin{cases}\sum_{i=n-1}^{n}\binom{i}{k}(-1)^{n-k} \frac{2_{k} Q_{i}}{q_{n}}, & \text { if } 0 \leq k<n \tag{1.8}\\ \frac{2^{n} Q_{n}}{q_{n}}, & \text { ifk }=n \\ 0, & \text { ifk }>n,\end{cases}
$$

for $n, k \in \mathbf{N}_{0}$.
Basar and Braha [8] introduced Euler-Cesaro difference sequence spaces $\check{c}, \check{c}_{0}, \check{l}_{\infty}$ of null, convergent and bounded sequences respectively. Baliarsingh and Dutta [21] introduced the fractional difference operators on various
sequence spaces. For further investigations on difference operators one may refer $[28,29,10]$ and many others.

Now our interest is to introduce the new paranormed difference sequence spaces of fractional order which generalizes many known spaces.

We introduce the spaces $c_{0}^{(\tau)}, c^{(\tau)}$ and $l_{\infty}{ }^{(\tau)}$ by using the product of the Euler mean E_{1} and Riesz mean R_{q} with fractional operator $\Delta^{(\tau)}$. We prove certain topological properties of these spaces and determine their $\alpha-, \beta-, \gamma-$ duals.

2. Main Results

Here we introduce the matrix $\tilde{B}\left(\Delta^{(\tau)}\right)=\tilde{B}^{(\tau)}=\tilde{b}_{n k}^{(\tau)}$ by the product of Euler-Riesz matrix $\tilde{B}(1.7)$ and fractional ordered difference operator $\Delta^{(\tau)}$ (1.3) as follows :

$$
\tilde{b}_{n k}^{(\tau)}= \begin{cases}\sum_{j=k}^{n} \sum_{i=j}^{n}\binom{n}{i} \frac{\Gamma(\tau+1)(-1)^{j-k}}{(j-k)!\Gamma(\tau-j+k+1)} \frac{q_{j}}{2^{n} Q_{i}}, & \text { if } 0 \leq k \leq n \tag{2.1}\\ 0, & \text { if } k>n .\end{cases}
$$

Theorem 2.1. The inverse of the fractional ordered Euler-Riesz matrix $\left(\tilde{B}^{(\tau)}\right)$ written as $\left(\tilde{B}^{(-\tau)}\right)=\tilde{b}_{n k}^{(-\tau)}$ and is given by

$$
\tilde{b}_{n k}^{(-\tau)}= \begin{cases}\sum_{j=k}^{n} \frac{\Gamma(-\tau+1)(-1)^{n-k}}{(n-j)!\Gamma(-\tau-n+j+1)} \frac{2^{k}}{q_{j}} \sum_{i=j-1}^{j}\binom{i}{k} Q_{i}, & \text { if } 0 \leq k<n \tag{2.2}\\ \frac{2^{n} Q_{n}}{q_{n}}, & \text { if } k=n \\ 0, & \text { if } k>n .\end{cases}
$$

Proof. This theorem can be proved using equations (1.8) and (1.6),
i. e.

$$
\left(\tilde{B}^{(\tau)}\right)^{-1}=\left(\Delta^{(\tau)}\right)^{-1} \cdot(\tilde{B})^{-1}
$$

and

$$
\tilde{B}^{(\tau)} \tilde{B}^{(-\tau)}=\tilde{B}^{(-\tau)} \tilde{B}^{(\tau)}=I,
$$

where I is an identity operator.

For a positive real number τ, we now introduce the classes of fractional ordered Euler-Riesz difference sequence spaces $c_{0}^{(\tau)}, c^{(\tau)}$ and $l_{\infty}{ }^{(\tau)}$ by
(a) $c_{0}{ }^{(\tau)}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty}\left|\sum_{l=0}^{n} \sum_{j=k}^{n} \sum_{i=j}^{n}\binom{n}{i} \frac{\Gamma(\tau+1)(-1)^{j-k}}{(j-k) \Gamma(\tau-j+k+1)} \frac{q_{j} x_{l}}{2^{n} Q_{i}}\right|^{p_{k}}=0\right\}$,
(b) $c^{(\tau)}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty}\left|\sum_{l=0}^{n} \sum_{j=k}^{n} \sum_{i=j}^{n}\binom{n}{i} \frac{\Gamma(\tau+1)(-1)^{j-k}}{(j-k)!\Gamma(\tau-j+k+1)} \frac{q_{j} x l^{2}}{2^{n} Q_{i}}\right|^{p_{k}}\right.$ exists $\}$,
(c) $l_{\infty}{ }^{(\tau)}=\left\{x=\left(x_{k}\right) \in w: \sup _{n}\left|\sum_{l=0}^{n} \sum_{j=k}^{n} \sum_{i=j}^{n}\binom{n}{i} \frac{\Gamma(\tau+1)(-1)^{j-k}}{(j-k)!\Gamma(\tau-j+k+1)} \frac{q_{j} x_{l}}{2^{n} Q_{i}}\right|^{p_{k}}<\infty\right\}$.

These spaces can also be rewritten as :
$c_{0}{ }^{(\tau)}=\left(c_{0}(p)\right)_{\left(\tilde{B}^{(\tau)}\right)}, c^{(\tau)}=(c(p))_{\left(\tilde{B}^{(\tau)}\right)}$ and $l_{\infty}{ }^{(\tau)}=\left(l_{\infty}(p)\right)_{\left(\tilde{B}^{(\tau)}\right)}$.
Our introduced spaces generalize the known sequence space as follows:

1. For $\tau=0$ and $p=\left(p_{k}\right)=e, q=\left(q_{k}\right)=e$, classes (a), (b), (c) reduce to the sequence spaces $\check{c}, \check{c_{0}}, \check{l}_{\infty}$ studied by Basar and Braha [8].
2. For $e_{n k}=I$, classes (a), (b), (c) reduce to the sequence spaces $r_{0}^{t}\left(p, \Delta^{(\tau)}\right)$, $r_{c}^{t}\left(p, \Delta^{(\tau)}\right)$ and $r_{\infty}^{t}\left(p, \Delta^{(\tau)}\right)$ studied by Yaying [28].
3. For $r_{n k}=e_{n k}=I$, classes (a), (b), (c) reduce to the sequence spaces studied by [22].
Now with $\tilde{B}^{(\tau)}$ - transform of $x=\left(x_{k}\right)$ we define the sequence $y=\left(y_{k}\right)$ as follows :

$$
\begin{equation*}
y_{n}=\left(\tilde{B}^{(\tau)} x\right)_{n}=\sum_{l=0}^{n} \sum_{j=k}^{n} \sum_{i=j}^{n}\binom{n}{i} \frac{\Gamma(\tau+1)(-1)^{j-k}}{(j-k)!\Gamma(\tau-j+k+1)} \frac{q_{j} x_{l}}{2^{n} Q_{i}} . \tag{2.3}
\end{equation*}
$$

By a straightforward calculation of (2.3) it can be obtained that
(2.4) $x_{n}=\left(\tilde{B}^{(-\tau)} y\right)_{n}=\sum_{l=0}^{n} \sum_{j=k}^{n} \frac{\Gamma(-\tau+1)(-1)^{n-k}}{(n-j)!\Gamma(-\tau-n+j+1)} \frac{2^{k}}{q_{j}} \sum_{i=j-1}^{j}\binom{i}{k} Q_{i} y_{l}$.

Lemma 2.1. The operator $\tilde{B}^{(\tau)}$ is linear.

Proof. The proof is a routine verification, hence omitted.

3. Topological structure

This section deals with some interesting topological results of the spaces $c_{0}{ }^{(\tau)}, c^{(\tau)}$ and $l_{\infty}{ }^{(\tau)}$.

Theorem 3.1. The spaces $c_{0}{ }^{(\tau)}, c^{(\tau)}$ and $l_{\infty}{ }_{\infty}^{(\tau)}$ are paranormed spaces with the paranorm

$$
\begin{gather*}
g_{\tilde{B}(\tau)}(x)=\sup _{k \in N}\left|\left(\left(\tilde{B}^{(\tau)}\right) x\right)_{k}\right|^{\frac{p_{k}}{M}} \\
=\sup _{n}\left|\sum_{l=0}^{n} \sum_{j=k}^{n} \sum_{i=j}^{n}\binom{n}{i} \frac{\Gamma(\tau+1)(-1)^{j-k}}{(j-k)!\Gamma(\tau-j+k+1)} \frac{q_{j} x_{l}}{2^{n} Q_{i}}\right|^{\frac{p_{k}}{M}}, \tag{3.1}
\end{gather*}
$$

if and only if $h=\inf _{k} p_{k}>0$ and $M=\max \left\{1, \sup _{k} p_{k}\right\}$.

Proof. Consider the space $c_{0}{ }^{(\tau)}$.
Assume that $h>0$, then $g_{\tilde{B}(\tau)}(\theta)=0$, where $\theta=(0,0,0, \ldots)$ and $g_{\tilde{B}^{(\tau)}}(-x)=g_{\tilde{B}^{(\tau)}}(x)$.
To prove the linearity of $g_{\tilde{B}^{(\tau)}}(x)$, we consider two sequences $x=\left(x_{k}\right), y=$ $\left(y_{k}\right) \in c_{0}^{(\tau)}$ and any two scalars $\beta_{1}, \beta_{2} \in \mathbf{R}$. Since $\tilde{B}^{(\tau)}$ is a linear operator consider

$$
\begin{aligned}
& g_{\tilde{B}^{(\tau)}}\left(\beta_{1} x+\beta_{2} y\right) \\
& =\sup _{n}\left|\sum_{l=0}^{n} \sum_{j=k}^{n} \sum_{i=j}^{n}\binom{n}{i} \frac{\Gamma(\tau+1)(-1)^{j-k}}{(j-k)!\Gamma(\tau-j+k+1)} \frac{q_{j}}{2^{n} Q_{i}}\left(\beta_{1} x_{l}+\beta_{2} y_{l}\right)\right|^{\frac{p_{k}}{M}} \\
& \leq \max \left\{1,\left|\beta_{1}\right|\right\} \sup _{k \in N}\left|\left(\left(\tilde{B}^{(\tau)}\right) x\right)_{k}\right|^{\frac{p_{k}}{M}}+\left.\max \left\{1,\left|\beta_{2}\right|\right\} \sup _{k \in N}\left|\left(\left(\tilde{B}^{(\tau)}\right) y\right)\right|_{k}\right|^{\frac{p_{k}}{M}} \\
& \quad=\max \left\{1,\left|\beta_{1}\right|\right\} g_{\tilde{B}^{(\tau)}}(x)+\max \left\{1,\left|\beta_{2}\right|\right\} g_{\tilde{B}^{(\tau)}}(y) .
\end{aligned}
$$

Hence the subadditivity of $g_{\tilde{B}^{(\tau)}}$ i.e.

$$
g_{\tilde{B}(\tau)}(x+y) \leq g_{\tilde{B}^{(\tau)}}(x)+g_{\tilde{B}(\tau)}(y),
$$

for all $x, y \in c_{0}{ }^{(\tau)}$.
Now consider $\left\{u^{n}\right\}$ is a sequence of points in $c_{0}^{(\tau)}$ then $g_{\tilde{B}(\tau)}\left(u^{n}-u\right) \rightarrow$ 0 and $\left(\lambda_{n}\right)$ is a sequence of scalars such that $\lambda_{n} \rightarrow \lambda$ as $n \rightarrow \infty$. By using the subadditivity of $g_{\tilde{B}^{(\tau)}}$, we get

$$
g_{\tilde{B}^{(\tau)}}\left(u^{n}\right) \leq g_{\tilde{B}^{(\tau)}}(u)+g_{\tilde{B}^{(\tau)}}\left(u^{n}-u\right) .
$$

Since $\left\{g_{\tilde{B}^{(\tau)}}\left(u^{n}\right)\right\}$ is bounded, we have

$$
\begin{aligned}
& =\sup _{m}\left|\sum_{l=0}^{m}\left[\sum_{j=k}^{m} \sum_{i=j}^{m}\binom{m}{i} \frac{\Gamma(\tau+1)(-1)^{j-k}}{(j-k)!\Gamma(\tau-j+k+1)} \frac{q_{j}}{2^{m} Q_{i}}\right]\left(\lambda_{n} u_{l}^{n}+\lambda u_{l}\right)\right|^{\frac{p_{k}}{M}} \\
& \quad \leq\left|\lambda_{n}-\lambda\right|^{\frac{p_{k}}{M}} g_{\tilde{B}^{(\tau)}}\left(u^{n}\right)+|\lambda|^{\frac{p_{k}}{M}} g_{\tilde{B}^{(\tau)}}\left(u^{n}-u\right) \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence it shows that the scalar multiplication of $g_{\tilde{B}^{(\tau)}}(x)$ is continuous and $g_{\tilde{B}^{(\tau)}}(x)$ is a paranorm on the space $c_{0}^{(\tau)}$. Proof for other spaces can be done using similar techniques.

Theorem 3.2. The sequence space $c_{0}{ }^{(\tau)}$ is a complete linear space paranormed by $g_{\tilde{B}(\tau)}(x)$.

Proof. Let $\left\{x^{k}\right\}$ be a Cauchy sequence in the space $c_{0}{ }^{(\tau)}$ where $x^{k}=$ $\left\{x_{0}{ }^{(k)}, x_{1}{ }^{(k)}, x_{2}{ }^{(k)}, \ldots.\right\}$. By definition of Cauchy sequence, there exists a positive integer $n_{0}(\epsilon)$ for each $\epsilon>0$ such that

$$
g_{\tilde{B}^{(\tau)}}\left(x^{k}-x^{l}\right)<\epsilon, \text { for } k, l \geq n_{0}(\epsilon) .
$$

For a fixed integer $m \in \mathbf{N}$, the sequence
$\left\{\left(\left(\tilde{B}^{(\tau)}\right) x^{k}\right)_{m}\right\}=\left\{\left(\left(\tilde{B}^{(\tau)}\right) x^{1}\right)_{m},\left(\left(\tilde{B}^{(\tau)}\right) x^{2}\right)_{m},\left(\left(\tilde{B}^{(\tau)}\right) x^{3}\right)_{m}, \ldots ..\right\}$ is a Cauchy sequence in \mathbf{R}. By completeness of \mathbf{R}, the sequence $\left(\left(\tilde{B}^{(\tau)}\right) x^{k}\right)_{m}$ converges to $\left(\left(\tilde{B}^{(\tau)}\right) x\right)_{m}$ as $k \rightarrow \infty$. For $l \rightarrow \infty$, it is clear that

$$
\begin{equation*}
\left|\left(\left(\tilde{B}^{(\tau)}\right) x^{k}\right)_{m}-\left(\left(\tilde{B}^{(\tau)}\right) x\right)_{m}\right|^{\frac{p_{k}}{M}}<\epsilon / 2, \text { for all, } k \geq n_{0}(\epsilon) \tag{3.2}
\end{equation*}
$$

Since $\left\{x^{k}\right\} \in c_{0}^{(\tau)}$, there exists a number $M \in \mathbf{R}$ such that

$$
\begin{equation*}
\sup _{m}\left|\left(\left(\tilde{B}^{(\tau)}\right) x^{k}\right)_{m}\right|^{\frac{p_{k}}{M}}<\epsilon / 2 \tag{3.3}
\end{equation*}
$$

From inequality (3.2) and (3.3) we conclude that

$$
\begin{gathered}
\sup _{m}\left|\left(\left(\tilde{B}^{(\tau)}\right) x\right)_{m}\right|^{\frac{p_{k}}{M}} \\
\leq \sup _{m}\left|\left(\left(\tilde{B}^{(\tau)}\right) x^{k}\right)_{m}-\left(\left(\tilde{B}^{(\tau)}\right) x\right)_{m}\right|^{\frac{p_{k}}{M}}+\sup _{m}\left|\left(\left(\tilde{B}^{(\tau)}\right) x^{k}\right)_{m}\right|^{\frac{p_{k}}{M}} \\
\leq \epsilon / 2+\epsilon / 2=\epsilon, \text { for all } k \geq n_{0}(\epsilon) .
\end{gathered}
$$

Hence the theorem.

Theorem 3.3. $c_{0}{ }^{(\tau)}, c^{(\tau)}$ and $l_{\infty}{ }^{(\tau)}$ are linearly isomorphic to $c_{0}(p), c(p), l_{\infty}(p)$ where $0<p_{k} \leq H<\infty$, respectively.

Proof. Now define a mapping $F: l_{\infty}{ }^{(\tau)} \rightarrow l_{\infty}(p)$ by $x \rightarrow y=F x$. Clearly, F is a linear transformation. It is obvious that $x=\theta$ whenever $F x=\theta$, and hence F is one-one.

Let $y=\left(y_{n}\right) \in l_{\infty}(p)$, define a sequence $x=\left(x_{n}\right)$ in (2.4) as

$$
x_{n}=\sum_{l=0}^{n} \sum_{j=k}^{n} \frac{\Gamma(-\tau+1)(-1)^{n-k}}{(n-j)!\Gamma(-\tau-n+j+1)} \frac{2^{k}}{q_{j}} \sum_{i=j-1}^{j}\binom{i}{k} Q_{i} y_{l} .
$$

Then

$$
\begin{gathered}
g_{\tilde{B}(\tau)}(x)=\sup _{n}\left|\sum_{l=0}^{n} \sum_{j=k}^{n} \sum_{i=j}^{n}\binom{n}{i} \frac{\Gamma(\tau+1)(-1)^{j-k}}{(j-k)!\Gamma(\tau-j+k+1)} \frac{q_{j} x_{l}}{2^{n} Q_{i}}\right|^{\frac{p_{k}}{M}} \\
=\sup _{n \in N}\left|\sum_{j=0}^{n} \delta_{n j} y_{j}\right|^{\frac{p_{k}}{M}}=\sup _{n \in N}\left|y_{n}\right|^{\frac{p_{k}}{M}}<\infty, \\
\text { where } \delta_{n j}= \begin{cases}1, & \text { if } n=j \\
0, & \text { if } n \neq j .\end{cases}
\end{gathered}
$$

Thus $x \in l_{\infty}{ }^{(\tau)}$ and F is a linear bijection and paranorm preserving. Hence the spaces $l_{\infty}{ }^{(\tau)}$ and $l_{\infty}(p)$ are linearly isomorphic.
i.e. $l_{\infty}(\tau) \cong l_{\infty}(p)$. The proof for other spaces can be obtained in a similar manner.

4. Basis for the spaces

In this section the Schauder basis [11] for $c_{0}{ }^{(\tau)}, c^{(\tau)}$ are constructed.
Theorem 4.1. For $0<p_{k} \leq H<\infty$, let $\mu_{k}(q)=\left(\left(\tilde{B}^{(\tau)}\right) x\right)_{k}$. For $k \in N_{0}$ define $b^{(k)}(q)=\left\{b_{n}{ }^{(k)}(q)\right\}_{n \in N_{0}}$ by

$$
\left\{b_{n}{ }^{(k)}(q)\right\}= \begin{cases}\sum_{j=k}^{n} \frac{\Gamma(-\tau+1)(-1)^{n-k}}{(n-j)!\Gamma(-\tau-n+j+1)} \frac{2^{k}}{q_{j}} \sum_{i=j-1}^{j}\binom{i}{k} Q_{i}, & \text { if } 0 \leq k<n \\ \frac{2^{n} Q_{n}}{q_{n}}, & \text { if } k=n \\ 0, & \text { if } k>n .\end{cases}
$$

(i) $\left\{b_{n}{ }^{(k)}(q)\right\}$ is a basis for $c_{0}{ }^{(\tau)}$ and each $x \in c_{0}{ }^{(\tau)}$ and x has unique representation

$$
x=\sum_{k} \mu_{k}(q) b_{n}^{(k)}(q)
$$

(ii) $\left\{\left(\tilde{B}^{(-\tau)}\right) e, b_{n}{ }^{(k)}(q)\right\}$ is a basis for $c^{(\tau)}$, and each $x \in c^{(\tau)}$ and x has unique representation

$$
x=l e+\sum_{k}\left(\mu_{k}-l\right) b^{(k)}, \quad \text { where } l=\lim _{k \rightarrow \infty} \mu_{k}
$$

Proof. (i) By the definition of $\left(\tilde{B}^{(\tau)}\right)$ and $b_{n}{ }^{(k)}(q)$,

$$
\tilde{B}^{(\tau)} b_{n}^{(k)}(q)=e^{(k)} \in c_{0}
$$

Let $x \in c_{0}{ }^{(\tau)}$, then

$$
x^{[s]}=\sum_{k=0}^{s} \mu_{k}(q) b^{(k)}(q)
$$

for an integer $s \geq 0$.
By applying $\tilde{B}^{(\tau)}$ we get

$$
\begin{aligned}
& \tilde{B}^{(\tau)} x^{[s]}=\sum_{k=0}^{s} \mu_{k}(q) \tilde{B}^{(\tau)} b^{(k)}(q) \\
= & \sum_{k=0}^{s} \mu_{k}(q) e^{(k)}=\left(\left(\tilde{B}^{(\tau)}\right) x\right)_{k} e^{(k)}
\end{aligned}
$$

and

$$
\tilde{B}^{(\tau)}\left(x-x^{[s]}\right)_{r}= \begin{cases}0, & \text { if } 0 \leq r \leq s \tag{4.1}\\ \left(\left(\tilde{B}^{(\tau)}\right) x\right)_{k}, & \text { if } r>s ;\end{cases}
$$

where $r, s \in \mathbf{N}_{0}$. For $\epsilon>0$ there exist an integer m_{0} s.t.

$$
\sup _{r \geq s}\left|\left(\left(\tilde{B}^{(\tau)}\right) x\right)_{r}\right|^{\frac{p_{k}}{M}}<\frac{\epsilon}{2} \text { for all } s \geq m_{0} .
$$

Hence

$$
g_{\tilde{B}}\left(x-x^{[s]}\right)=\sup _{r \geq s}\left|\left(\left(\tilde{B}^{(\tau)}\right) x\right)_{r}\right|^{\frac{p_{k}}{M}}<\frac{\epsilon}{2}<\epsilon, \text { for all } s \geq m_{0} .
$$

Assume that $x=\sum_{k} \eta_{k}(q) b^{(k)}(q)$. Since the linear mapping F from $c_{0}{ }^{(\tau)}$ to $c_{0}(p)$ is continuous we have

$$
\begin{gathered}
\left(\left(\tilde{B}^{(\tau)}\right) x\right)_{k}=\sum_{k} \eta_{k}(q)\left(\left(\tilde{B}^{(\tau)}\right) b^{(k)}(q)\right)_{n} \\
=\sum_{k} \eta_{k}(q) e^{(k)}=\eta_{n}(q)
\end{gathered}
$$

This contradicts to our assumption that $\left(\left(\tilde{B}^{(\tau)}\right) x\right)_{k}=\mu_{k}(q)$ for each $k \in \mathbf{N}_{0}$. Thus the representation is unique.
(ii) The proof as it is similar to previous one.

5. $\alpha-, \beta-$ and $\gamma-$ duals

Here we determine $\alpha-, \beta-$ and $\gamma-$ duals of $c_{0}{ }^{(\tau)}, c^{(\tau)}$ and $l_{\infty}{ }^{(\tau)}$. Throughout the collection of all finite subsets of \mathbf{N} is denoted by κ. We consider $K \in \kappa$.

Lemma 5.1. [14] Let $A=\left(a_{n k}\right)$ be an infinite matrix. Then,

1. $A \in\left(l_{\infty}(p), l(q)\right)$ if and only if
$\sup _{k \in \kappa} \sum_{n}\left|\sum_{k \in K} a_{n k} B^{\frac{1}{p_{k}}}\right|^{q_{n}}<\infty$, for all integers, $B>1$ and $q_{n} \geq 1$ for all, n;
2. $A \in\left(l_{\infty}(p), l_{\infty}(q)\right)$ if and only if
(5.2) $\sup _{n \in N}\left(\sum_{k}\left|a_{n k}\right| B^{\frac{1}{p_{k}}}\right)^{q_{n}}<\infty, \quad$ for all integers, $B>1$;
3. $A \in\left(l_{\infty}(p), c(q)\right)$ and $q=\left(q_{n}\right)$ be a bounded sequence of strictly positive real numbers if and only if

$$
\begin{equation*}
\sup _{n \in N} \sum_{k}\left|a_{n k}\right| B^{\frac{1}{p_{k}}}<\infty, \quad \text { for all, } B>1 \tag{5.3}
\end{equation*}
$$

there exists $\left(\tau_{k}\right) \subset \mathbf{R}$ such that $\lim _{n \rightarrow \infty}\left(\sum_{k}\left|a_{n k}-\tau_{k}\right| B^{\frac{1}{p_{k}}}\right)^{q_{n}}=0$, for all, $B>1$;
4. $A \in\left(l_{\infty}(p), c_{0}(q)\right)$ if and only if

$$
\lim _{n \rightarrow \infty}\left(\sum_{k}\left|a_{n k}\right| B^{\frac{1}{p_{k}}}\right)^{q_{n}}=0, \quad \text { for all, } B>1
$$

Lemma 5.2. [14] Let $A=\left(a_{n k}\right)$ be an infinite matrix. Then,

1. $A \in\left(c_{0}(p), l_{\infty}(q)\right)$ if and only if

$$
\begin{equation*}
\sup _{n \in N}\left(\sum_{k}\left|a_{n k}\right| B^{\frac{-1}{p_{k}}}\right)^{q_{n}}<\infty, \quad \text { for all, } B>1 \tag{5.4}
\end{equation*}
$$

2. $A \in\left(c_{0}(p), c(q)\right)$ if and only if

$$
\begin{equation*}
\sup _{n \in N} \sum_{k}\left|a_{n k}\right| B^{\frac{-1}{p_{k}}}<\infty, \quad \text { for all, } B>1 \tag{5.5}
\end{equation*}
$$

(5.6)there exists $\left(\tau_{k}\right) \subset R$ such that $\sup _{n \in N} \sum_{k}\left|a_{n k}-\tau_{k}\right| M^{\frac{-1}{p_{k}}} B^{\frac{-1}{p_{k}}}<\infty$, for all integers $M, B>1$;
there exists $\left(\tau_{k}\right) \subset R$ such that $\lim _{n \rightarrow \infty} \sum_{k}\left|a_{n k}-\tau_{k}\right|^{q_{n}}=0$, for all, $k \in N$;
3. $A \in\left(c_{0}(p), c_{0}(q)\right)$ if and only if
(5.8) there exists $\left(\tau_{k}\right) \subset R$, such that $\sup _{n \in N} \sum_{k}\left|a_{n k}\right| M^{\frac{-1}{p_{k}}} B^{\frac{-1}{p_{k}}}<\infty$, for all integers $M, B>1$;
(5.9) there exists $\left(\tau_{k}\right) \subset R$ such that $\lim _{n \rightarrow \infty} \sum_{k}\left|a_{n k}\right|^{q_{n}}=0$, for all, $k \in N$.

Lemma 5.3. [14] Let $A=\left(a_{n k}\right)$ be an infinite matrix. Then,

1. $A \in\left(c(p), l_{\infty}(q)\right)$ if and only if equation (5.4) holds and

$$
\begin{equation*}
\sup _{n \in N}\left|\sum_{k} a_{n k}\right|^{q_{n}}<\infty ; \tag{5.10}
\end{equation*}
$$

2. $A \in(c(p), c(q))$ if and only if equations (5.5), (5.6), (5.7) hold:
(5.11) there exists $(\tau) \subset R$ such that $\lim _{n \rightarrow \infty}\left|\sum_{k} a_{n k}-\tau\right|^{q_{n}}=0$;
3. $A \in\left(c(p), c_{0}(q)\right)$ if and only if equations (5.8), (5.9) hold and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\sum_{k} a_{n k}\right|^{q_{n}}=0 . \tag{5.12}
\end{equation*}
$$

Theorem 5.1. The $\alpha-, \beta-$ and $\gamma-$ duals of $c_{0}{ }^{(\tau)}, c^{(\tau)}$ and $l_{\infty}{ }^{(\tau)}$ are the following defined sets

$$
\begin{gathered}
D_{1}^{(\tau)}(p)=\bigcap_{M>1}\left\{a=\left(a_{k}\right): \sup _{k \in \tau} \sum_{n}\left|\sum_{k \in K}\left[\tilde{B}^{(\tau)}\left(\frac{a_{k}}{q_{k}}\right) Q_{k}\right]\right| M^{\frac{1}{p_{k}}}<\infty\right\}, \\
D_{2}^{(\tau)}(p)=\bigcap_{M>1}\left\{a=\left(a_{k}\right): \sum_{k}\left|\tilde{B}^{(\tau)}\left(\frac{a_{k}}{q_{k}}\right) Q_{k}\right| M^{\frac{1}{p_{k}}}<\infty,\left(\frac{a_{k}}{q_{k}} Q_{k} M^{\frac{1}{p_{k}}}\right) \in c_{0}\right\}, \\
D_{3}^{(\tau)}(p)=\bigcap_{M>1}\left\{a=\left(a_{k}\right): \sum_{k}\left|\tilde{B}^{(\tau)}\left(\frac{a_{k}}{q_{k}}\right) Q_{k}\right| M^{\frac{1}{p_{k}}}<\infty,\left\{\tilde{B}^{(\tau)}\left(\frac{a_{k}}{q_{k}}\right) Q_{k}\right\} \in l_{\infty}\right\},
\end{gathered}
$$

$$
\begin{gathered}
D_{4}^{(\tau)}(p)=\bigcup_{M>1}\left\{a=\left(a_{k}\right): \sup _{k \in \tau} \sum_{n}\left|\sum_{k \in K}\left[\tilde{B}^{(\tau)}\left(\frac{a_{k}}{q_{k}}\right) Q_{k}\right]\right| M^{\frac{-1}{p_{k}}}<\infty\right\}, \\
D_{5}^{(\tau)}(p)=\bigcup_{M>1}\left\{a=\left(a_{k}\right): \sum_{n}\left|\sum_{k}\left[\tilde{B}^{(\tau)}\left(\frac{a_{k}}{q_{k}}\right) Q_{k}\right]\right|<\infty\right\}, \\
D_{6}^{(\tau)}(p)=\bigcap_{M>1}\left\{a=\left(a_{k}\right): \sum_{k}\left|\tilde{B}^{(\tau)}\left(\frac{a_{k}}{q_{k}}\right) Q_{k}\right| M^{\frac{-1}{p_{k}}}<\infty\right\},
\end{gathered}
$$

where

$$
\begin{equation*}
\tilde{B}^{(\tau)}\left(\frac{a_{k}}{q_{k}}\right)=\sum_{j=k}^{n} \frac{\Gamma(-\tau+1)(-1)^{n-k}}{(n-j)!\Gamma(-\tau-n+j+1)} \frac{2^{k}}{q_{j}} \sum_{i=j-1}^{j}\binom{i}{k} a_{k} \tag{5.13}
\end{equation*}
$$

Then

$$
\begin{gathered}
\left\{l_{\infty}^{(\tau)}\right\}^{\alpha}=D_{1}^{(\tau)}(p),\left\{l_{\infty}^{(\tau)}\right\}^{\beta}=D_{2}^{(\tau)}(p),\left\{l_{\infty}^{(\tau)}\right\}^{\gamma}=D_{3}^{(\tau)}(p) \\
\left\{c^{(\tau)}\right\}^{\alpha}=D_{4}^{(\tau)}(p) \cap D_{5}^{(\tau)}(p),\left\{c^{(\tau)}\right\}^{\beta}=D_{6}^{(\tau)}(p) \cap c s,\left\{c^{(\tau)}\right\}^{\gamma}=D_{6}^{(\tau)}(p) \cap b s, \\
\left\{c_{0}^{(\tau)}\right\}^{\alpha}=\left\{c_{0}^{(\tau)}\right\}^{\beta}=\left\{c_{0}^{(\tau)}\right\}^{\gamma}=D_{6}^{(\tau)}(p) .
\end{gathered}
$$

Proof. Consider the space $l_{\infty}{ }^{(\tau)}$. Now let $x=\left(x_{k}\right)$ as in (2.4), and $a=\left(a_{k}\right) \in \omega$, define

$$
\begin{gathered}
a_{n} x_{n}=\sum_{l=0}^{n} \sum_{j=k}^{n} \frac{\Gamma(-\tau+1)(-1)^{n-k}}{(n-j)!\Gamma(-\tau-n+j+1)} \frac{2^{k}}{q_{j}} \sum_{i=j-1}^{j}\binom{i}{k} Q_{i} a_{n} y_{l} \\
=(U y)_{n}, \quad \text { for } n \in N,
\end{gathered}
$$

where matrix $U=\left(u_{n k}\right)$ is defined as

$$
u_{n k}= \begin{cases}\sum_{j=k}^{n} \frac{\Gamma(-\tau+1)(-1)^{n-k}}{(n-j)!\Gamma(-\tau-n+j+1)} \frac{2}{k}_{q_{j}}^{q_{j}} \sum_{i=j-1}^{j}\binom{i}{k} Q_{i} a_{n}, & \text { if } 0 \leq k<n \\ \frac{2^{n} Q_{n}}{q_{n}} a_{n}, & \text { if } k=n \\ 0, & \text { if } k>n .\end{cases}
$$

Therefore we conclude that $a x=\left(a_{n} x_{n}\right) \in l_{1}$ whenever $x=\left(x_{k}\right) \in l_{\infty}{ }^{(\tau)}$ if and only if $U y \in l_{1}$ as $y=\left(y_{k}\right) \in l_{\infty}(p)$. By lemma (5.1) we conclude that $\left\{l_{\infty}^{(\tau)}\right\}^{\alpha}=D_{1}^{(\tau)}(p)$.
Now

$$
\begin{gathered}
\sum_{k=0}^{n} a_{k} x_{k}=\sum_{k=0}^{n} a_{k}\left[\sum_{l=0}^{n} \sum_{j=k}^{n} \frac{\Gamma(-\tau+1)(-1)^{n-k}}{(n-j)!\Gamma(-\tau-n+j+1)} \frac{2^{k}}{q_{j}} \sum_{i=j-1}^{j}\binom{i}{k} Q_{i} y_{l}\right] \\
=\sum_{k=0}^{n} y_{k} Q_{k} \tilde{B}^{(\tau)}\left(\frac{a_{k}}{q_{k}}\right)=(V y)_{n},
\end{gathered}
$$

where matrix $V=\left(v_{n k}\right)$ is defined as

$$
v_{n k}= \begin{cases}\tilde{B}^{(\tau)}\left(\frac{a_{k}}{q_{k}}\right) Q_{k}, & \text { if } 0 \leq k \leq n \tag{5.14}\\ \frac{2^{n} Q_{n}}{q_{n}} a_{n}, & \text { if } k=n \\ 0, & \text { if } k>n .\end{cases}
$$

Therefore we deduce that $a x=\left(a_{n} x_{n}\right) \in c s$ whenever $x=\left(x_{k}\right) \in l_{\infty}(\tau)$ if and only if $V y \in c$ whenever $y=\left(y_{k}\right) \in l_{\infty}(p)$. By using lemma (5.1) with $q=q_{n}=1$ we conclude that $\left\{l_{\infty}^{(\tau)}\right\}^{\beta}=D_{2}^{(\tau)}(p)$. Similarly by using lemma (5.1) with $q=q_{n}=1$ for all n , we conclude that $\left\{l_{\infty}{ }^{(\tau)}\right\}^{\gamma}=D_{3}^{(\tau)}(p)$. Hence the theorem proved and the duals of other spaces can be obtained in a similar manner using lemma (5.2) and lemma (5.3).

6. Acknowledgment

We are deeply indebted to the referee for his/her valuable suggestions which greatly improved the presentation of this paper.

References

[1] A. Sönmez and F. Başar, "Generalized Difference Spaces of Non-Absolute Type of Convergent and Null Sequences", Abstract and Applied Analysis, Article ID 435076, p. 20, 2012. doi: 10.1155/2012/435076
[2] B. Altay and F. Başar, "On some Euler sequence spaces of nonabsolute type", Ukrainian Mathematical Journal, vol. 57, 1-17, 2005. doi: 10.1007/s11253-005-0168-9
[3] B. Altay and F. Başar, "On the paranormed Riesz sequence space of non-absolute type", Southeast A sian Bulletin of M athematics, vol. 26, pp. 701-715, 2002.
[4] B. Altay and F. Başar, "Some paranormed Riesz sequence spaces of non-absolute type", Southeast Asian Bulletin of Mathematics, vol. 30, pp. 591-608, 2006.
[5] B. Altay, F. Başar and M. M ursaleen, "On the Euler sequence spaces which include the spaces Ip and los I", Information Sciences, vol. 176, pp. 1450-1462, 2006. doi: 10.1016/j.ins.2005.05.008
[6] B. Altay and H. Polat, "On some new Euler difference sequence spaces", Southeast A sian Bulletin of M athematics, vol. 30, pp. 209-220, 2006.
[7] E. M alkowsky, "Recent results in the theory of matrix transformations in sequence spaces", M atematički V esnik, vol. 49, pp. 187-196, 1997.
[8] F. Başar and N. L. Braha, "Euler- Cesaro Difference Spaces of Bounded, Convergent and Null Sequences", Tamkang Journal of M athematics, vol. 47, no. 4, pp. 405-420, 2016. doi: 10.5556/j.tkjm.47.2016.2065
[9] H. Kızmaz, "On certain sequence spaces", Canadian M athematical Bulletin, vol. 24, pp. 169-176, 1981 doi: 10.4153/CM B-1981-027-5
[10] H. Polat and F. Başar, "Some Euler spaces of difference sequences of order m", Acta Mathematica Scientia, vol. 27, no. 2, pp. 254-266, 2007. doi: 10.1016/S0252-9602(07)60024-1
[11] I. J. M addox, Elements of Functional A nalysis, 2nd ed., Cambridge U niversity Press, Cambridge, 1988.
[12] I. J. M addox, "Paranormed sequence spaces generated by infinite matrices", Mathematical Proceedings of the Cambridge Philosophical Society, vol. 64, pp. 335-340, 1968. doi: 10.1017/S0305004100042894
[13] I. J. M addox, "Spaces of strongly summable sequences", The Quarterly Journal of M athematics, vol. 18, pp. 345-355, 1967. doi: 10.1093/qmath/18.1345
[14] K. G. Grosse-Erdmann, "M atrix transformation betw een the sequence spaces of M addox", Journal of M athematical A nalysis and A pplications, vol. 180, no. 1, pp. 223-238, 1993. doi: 10.1006/jmaa.1993.1398
[15] M. Basarir and M. Öztürk, "On the Riesz difference sequence space", Rendiconti del Circolo M atematico di Palermo, vol. 2, no. 57, pp. 377-389, 2008. doi: 10.1007/s12215-008-0027-2
[16] M. Et and M. Basarir, "On some new generalized difference sequence spaces", Periodica M athematica Hungarica, vol. 35, pp. 169-175, 1997. doi: 10.1023/A:1004597132128
[17] M. Et and R. Çolak, "On generalized difference sequence spaces", Soochow Journal of M athematics, vol. 21, pp. 377-386, 1995.
[18] M. M ursaleen and K. Noman, "On Some new sequence spaces of non-absolute type related to the spaces lp and loal", Filomat, vol. 25, no. 2, pp. 33-51, 2011 doi: 10.2298/FIL 1102033M
[19] M. Mursaleen and K. Noman, "On Some new sequence spaces of non-absolute type related to the spaces Ip and los II", Mathematical Communications, vol. 16, pp. 383-398, 2011
[20] M. M ursaleen, "Generalized spaces of difference sequences", Journal of Mathematical Analysis and Applications, vol. 203, pp. 738-745, 1996. doi: 10.1006/jmaa.1996.0409
[21] P. Baliarsingh and S. Dutta, "A unifying approach to the difference operators and their applications", Boletim da Sociedade Paranaense de M atemática, vol. 33, pp. 49-57, 2015.
[22] P. Baliarsingh and S. Dutta, "On the classes of fractional order difference sequence spaces and their matrix transformations", A pplied M athematics and Computation, vol. 250, pp. 665-674, 2015. doi: 10.1016/j.amc.2014.10.121
[23] P. Baliarsingh and S. Dutta, "On an explicit formula for inverse of triangular matrices", Journal of the Egyptian M athematical Society, vol. 23, pp. 297-302, 2015.
[24] P. Baliarsingh, "Some new difference sequence spaces of fractional order and their dual spaces", Applied Mathematics and Computation, vol. 219, pp. 9737-9742, 2013. doi: 10.1016/j.amc.2013.03.073
[25] S. Dutta and P. Baliarsingh, "A note on paranormed difference sequence spaces of fractional order and their matrix transformations", Journal of the Egyptian Mathematical Society, vol. 22, pp. 249-253, 2014. doi: 10.1016/j.joems.2013.07.001
[26] S. Dutta and P. Baliarsingh, "On some Toeplitz matrices and their inversion", Journal of the Egyptian M athematical Society, vol. 22, pp. 420-423, 2014. doi: 10.1016/j.joems.2013.10.001
[27] S. Simons, "The sequence spaces $c(p v)$ and $m(p v)$ ", Proceedings of the London M athematical Society, vol. 15, no. 3, pp. 422-436, 1965.
[28] T. Yaying, "Paranormed Riesz difference sequence spaces of fractional order", K ragujevac Journal of M athematics, vol. 46, pp. 175-191, 2022.
[29] U. Kadak and P. Baliarsingh, "On certain Euler difference sequence spaces of fractional order and related dual properties", Journal of Nonlinear Sciences and A pplications, vol. 8, pp. 997-1004, 2015. doi: 10.22436/jnsa.008.06.10

Diptimayee Jena

Department of Mathematics, Utkal University,
Vanivihar,
India
e-mail: jena.deeptimayee@gmail.com
and

Salila Dutta

Department of Mathematics, Utkal University, Vanivihar,
India
e-mail: saliladutta516@gmail.com
Corresponding author

