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Abstract

In this article we introduce new sequence spaces co'™, ™ and
loo™ of fractional order T, consisting of an operator which is a com-
position of Euler-Riesz operator and fractional difference operator.
Certain topological properties of these spaces are investigated along
with Schauder basis and a—, 83— and y—duals.
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1. Introduction

For all real number 7, the gamma function I" () is expressed as
oo

(1.1) I'(r)= / et ldt
0

which is an improper integral satisfying the following properties :

1. I'(n+1) =n!l, n € N set of natural numbers.

2. I'(n+ 1) = nI' (n) for each real number n ¢ {0, -1, -2, -3, ....}.

A paranorm on a vector space X over the real field R is a mapping
h : X — R satisfying the following conditions, for all z,y € X and a scalar

(7) h(#) = 0, where 6 = (0,0,0,....),
(1) h(z) = h(—x),
Eiil) Wz +y) < h(z) + h(y),

iv) A — X and 2" — z implies that h(A"z™) — h(A\z) as n — oo.

i.e. scalar multiplication is continuous.

Let w be the space of all real or complex sequences. Any subspace of w
is a sequence space. By cg, ¢ and [, we denote the spaces of null, convergent
and bounded sequences respectively, which are subspaces of w normed by
|| z ||co= supy |xx|- By bs and cs we mean the spaces of all bounded and
convergent series respectively.

For p = (pr) a bounded sequence of strictly positive real numbers,
Maddox [13, 12, 11] introduced the spaces co (p),c(p) and Simons [27]
introduced the space I (p) as :

o = {¢ = (@) €w: fim jope o},
c(p) = {C = (k) Ew: klim |k — I|P* = 0 for some [ € R},

loo (P) = {C = (Ck) € w : sup|Ge™* < 00}
keN

and these are complete paranormed sequence spaces with paranorm

g(x) = 5up |xk|p’“/ and where M = max{l, 5up Dk}
ke
The a— ,[3 — and y— duals of sequence space X are denoted by

Y ={u=(u), € w:ur = (upxy) €1y, for all, z = (x3) € X},
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XP = {u=(up), €w:ux = (upzy) € cs, for all, z = (z3) € X},
X7 ={u=(u), € w:uzx = (upxy) € bs, forallz = (z;) € X}

respectively.

Let A, 1 be any two sequence spaces, and let A = (a,) be an infinite
matrix of complex or real numbers, where k,n € N. Then, we say that
A defines a matrix transformation from A into u, if for every sequence
x = (z) € A, the sequence Az = (Ax),, the A-transform of x, is in pu,
where

(1.2) (Az), = Zankxk forn e N.
k

When A : X — p, we write the class of matrices as (A : p). Thus,
A € (X : p) if and only if the series in (1.2) converges for each n € N. Also,
we write A, = (a,i) for the sequence in the nth row of A.

The difference sequence space

X(A)={z=(2x) €w: (zx —xp-1) € X}

for X = {co, ¢,loc} was introduced in 1981 by Kizmaz [9], further it gener-
alized by Et and Colak [17] which then attracted the attention of several
mathematicians in different directions (see [16, 17, 20]).

Altay, Basar and Mursaleen [5] and Altay and Basar [2] have stuided
Euler sequence spaces e, ey and el for 0 < r» < 1. The Riesz sequence
spaces 74, r¢ and r{ were introduced by Malkowsky [7] then Altay and
Bagar [4] introduced the paranorm Riesz sequence spaces 14 (p), 72 (p)
and r{ (p). For further results on Riesz sequence spaces one may refer
[6, 3, 15, 10].

The Euler mean E; = (epy) of order one and Riesz mean Ry = (71)
are defined by

enk = { 0 (k> n)_ and 7, =

where ¢ = (qx) is a sequence of positive numbers and @, = > ;_ qx for
n,k € Ng. And its inverses E; ! =é,; and qul = Fpi are given by

b= DEDTE (0<k <),
" 0 (k>n),

s TR (n-1<k <),
") 0 (otherwise).

Qn

A (0<k<n),
0 (k>n),

and
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For a proper fraction 7, Baliarsingh [24], Baliarsingh & Dutta in a series
of papers ([21, 22, 23, 26, 25]) introduced the fractional difference operator
A ag

(13) I

along with its inverse

(1.4) AT =3 (-1 i!rllj—t' i) 1

Th—jq-
: )

Here the series of fractional difference operators are convergent. It
is also appropriate to express the difference operator and its inverse as
triangles in the following manner:

n— I'(r+1
: 0 (k> )

n—k I'(=—1+1
(1.6) NP ()" " epreEy (0<k<n),
" 0 (k> n).

We define the Euler Riesz matrix B = (b,;) by the composition of
matrices £ and R, as

7 Yk (o 0<k<n
1. = v i/ 2nQ;
and its inverse B! = (bny) is given by
X >ien—1 (;)(—1)%]{7%—", if0<k<n
(1'8) bnk = %ﬁ, ifk=n

0, ifk >n,
for n, k € Np.

Basar and Braha [8] introduced Euler-Cesaro difference sequence spaces

¢, €0, loo of null, convergent and bounded sequences respectively. Baliars-
ingh and Dutta [21] introduced the fractional difference operators on various
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sequence spaces. For further investigations on difference operators one may
refer [28, 29, 10] and many others.

Now our interest is to introduce the new paranormed difference sequence
spaces of fractional order which generalizes many known spaces.

We introduce the spaces ¢o(™, ¢(7) and loo(™) by using the product of the
Euler mean E; and Riesz mean R, with fractional operator A We
prove certain topological properties of these spaces and determine their
a—, f—,v— duals.

2. Main Results

Here we introduce the matrix B (A(T)) = B = 57:2 by the product of

Euler-Riesz matrix B (1.7) and fractional ordered difference operator A(7)
(1.3) as follows :

n n ny D(r+1)(=1)7—Fk ] .
(2.1) B0 =) 2=k i () ey T f0<k<n

Tbeorem 2.1. T hejnverse Qf the fractional ordered Euler-Riesz matrix
(B(T)> written as (B(*T)> = bfh;;) and is given by

n D(—7+1)(=1)""F ok j i .
<=k (nf(j)!F(f)ifn)Jrj+1) @ Zg:j—l (k)Qi7 if0<k<n

(2.2) b0 = 20, ifk=n
0, if k> n.

Proof.  This theorem can be proved using equations (1.8) and (1.6),

B R

BOBCT — DR g,

and

where I is an identity operator. a
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For a positive real number 7, we now introduce the classes of fractional
ordered Euler-Riesz difference sequence spaces ¢o(™, ¢(™ and loo(™ by

Pk:()}

PE
exzsts},

Dk
< 00 p.

T L1 n T(r+1)(=1)"F i
(a) o™ = {$ = (k) Ew: nlggo ’Zzn:o Z;‘l:k Z?:j(i) (j—(k)?LF();—j—)i-k+1) zquli

T R E n (7 —1)i—k ;T
(4) ¢ = {o= (o) w: lim |0 S5 S () E e 0

T A n n n n I'(r+1)(—1 Ji—k T
(c) loo'™) = {z = (zk) Ew: Slrllp ‘Zz:o Zj:k Zi:j (z) (j—(k)lr()T(—jlkH) zanl

These spaces can also be rewritten as :
co™ = (co ) (30) ,m = (c (P)) (5 and loo™ = (I ) (5o -

Our introduced spaces generalize the known sequence space as follows:
1. For =0 and p = (pr) = ¢,q = (qr) = e, classes (a), (b), (c) reduce to
the sequence spaces ¢, ¢, I studied by Basar and Braha 8].
2. For e, = I, classes (a), (b), (c) reduce to the sequence spaces 7§ (p, A,
rt(p, AT and r%_(p, A7) studied by Yaying [28].
3. For rp, = epx = I, classes (a), (b), (c) reduce to the sequence spaces
studied by [22].
Now with B(") - transform of 2 = (z},) we define the sequence y = (y) as
follows :

_ "2 I (n F(T—&—l)(—l)j*k q;x
n_zzz<i><j—k>!r<f—j+k+1) TR

By a straightforward calculation of (2.3) it can be obtained that

o "I D(—r4 1) (-)"F 2k L (i
24z, = (B )y)nzzz(n—;)!u—f)—(nljﬂ)q_jiz (k)Q””‘

=j—1

Lemma 2.1. The operator B(™) is linear.
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Proof. The proof is a routine verification, hence omitted. |

3. Topological structure

This section deals with some interesting topological results of the spaces
co™, (™ and Loo(™.

Theorem 3.1. The spaces o™, ™) and ZOO(T) are paranormed spaces with
the paranorm

- Pk

2 (z)=sup |((BD) z) |M

9pe () = sup |((B7) ),

P

LS (T () g |
>33 (4) T e Ha |

1=0 j=Fk i=j

(3.1) = sup

n

if and only if h = inf, pr, > 0 and M = max {1,sup, px}.

Proof.  Consider the space ¢y(7).

Assume that h > 0, then gz (f) = 0, where § = (0,0,0,....) and
95 (=) = gpem (@).
To prove the linearity of g5, (x), we consider two sequences & = (z),y =
(yr) € c(()T) and any two scalars 81, 82 € R. Since B(™) is a linear operator
consider

950 (Brz + Bay)

= sup

L () _LEE) )t g
ZZZ( )(j_k)!F(T_jJrk_H) 2nQi(51$l+B2yl)

1=0 j=k i=j \ "

P
M

< max{l, |51|}:g]% ’ ((B(T)> x)k

Pr ~
" max{1, Bal}sup ] ((B7) y)k

= maz{L, 61|} 9p¢) (x) +maz{1,[Bal} 950 (y)-
Hence the subadditivity of gz, i.e.

950 (@ +y) <950 () + 950 (¥),
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for all z,y € ¢o(™.

Now consider {u"} is a sequence of points in ¢o(™) then g 5 (U —u) —
0 and (\,) is a sequence of scalars such that A\, — A\ as n — co. By using
the subadditivity of gz, we get

90 (W) < g0 (U) + g (U —u).

Since {gp(-) (u™)} is bounded, we have
95 (Apu™ = Au)

Pk
M

= sup
m

m [m m /. L (r41)(=1)F N )
Z lzz<i>(j—k)!F(T—j+k+1) Qsz] g™ + Ayy)

1=0 |j=k i=j

2& n Bk n
<A =AM gy (u") + A ggem (W —u) — 0 asn — oo.

Hence it shows that the scalar multiplication of g5 () is continuous and
g5 (x) is a paranorm on the space co(™. Proof for other spaces can be
done using similar techniques. |

Theorem 3.2. The sequence space co(™) is a complete linear space para-
normed by gz ().

Proof. Let {xk} be a Cauchy sequence in the space ¢o(™ where 2F =

{xo(k),xl(k),xg(k), } By definition of Cauchy sequence, there exists a
positive integer ng(e) for each € > 0 such that

950 (l‘k - :El> <€, fork,l > ng(e).

For a fixed integer m € N, the sequence
{((B(T))xk>m} = {((B(T))Q:1>m, ((B(T))ac2)m : ((B(T))a:3>m, ..... }isa

Cauchy sequence in R. By completeness of R, the sequence ((B(T))a:k)

m
converges to ((E(T))x) as k — oo. For [ — oo, it is clear that
m

- (B7a),

P
M < €/2,for all, k> ng(e).

(3.2) ’((B(T))xk)

m
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Since {a:k} € ¢o(™, there exists a number M € R such that

<€/2.

_ Pk
(3.3) sup ’ ((B(T))zk) M
From inequality (3.2) and (3.3) we conclude that

e (B

M

m

< sup ) ((B(T))xk)m — ((E(T))x)m‘% + sup ‘ ((B(T)):L‘k)m o
<e€/2+¢/2=¢, forall k> ng(e).
Hence the theorem. O

Theorem 3.3. ¢o(”, ¢(™ and l,,(") are linearly isomorphic to co(p), ¢(p), loo(p)
where 0 < pp < H < o0, respectively.

Proof. Now define a mapping F : Ioo\" — lo(p) by # — y = Fu.
Clearly, F' is a linear transformation. It is obvious that x = 6 whenever

Fxz =0, and hence F' is one-one.

Let y = (yn) € loo(p), define a sequence x = (z,,) in (2.4) as

B S eI i o
=0 j=k ( n—J‘F (—r—n+ji+1)q 5 -
Then
Pk
T+1) (—1)j7k q; T M
950 () = sup
o @ =50 3331 i G
Pl
M »
Pk
= sup Z6nJ Yj = sup |yp| ™ < o0,
nEN] =0 nEN
)L ifn=j
where 6n]—{ 0. ifn .

Thus z € 1o\ and F is a linear bijection and paranorm preserving.
Hence the spaces loo'™ and I (p) are linearly isomorphic.
ie. Io\™ =i (p). The proof for other spaces can be obtained in a similar
manner. O
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4. Basis for the spaces

In this section the Schauder basis [11] for ¢(™), ¢{7) are constructed.

Theorem 4.1. For 0 < pp < H < oo, let ux (q)= ((B(T)> aj)k For

k€ Ny define 88 (q) = {6.(q)} by
n 0

n D(—m+1)(-1)"* 9k j i .
=k A 2 S (DQs if0<k<n

{09} = { 2 ifk=n

qn

(7) {bn(k)(q)} is a basis for co™ and each x € ¢\ and z has unique

representation
r=> m(@)ba" (q).
k

(44) {(B(_T)) e, bn(k)(q)} is a basis for ¢\7), and each = € ¢(7) and x has
unique representation

x=le+ Z (i, — 1) b®) | where | = klin;o L -
k

Proof. (i) By the definition of ( (T)) and b, ™ (q),

Let 2 € ¢o(™), then

2 =3 i (@)b™®) (q)
k=0

for an integer s > 0.
By applying B (™) we get

BOzl = 3" 1 (q) BVbM ()
k=0

=3 pu(g)e® = ((B)2), e®
k=0

and
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) 0, if0<r<
(4.1) B (x—x[s])r :{ ((B(T)) x)k’ z’fri;< S

where 7, s € Ng. For € > 0 there exist an integer mg s.t.

(37)2),|"

W<§forall52m0.

sup
r>s

Hence

M

((87)<),

Assume that 2 = 3, 7:(q)b*) (q). Since the linear mapping F from ¢o(7)
to ¢o (p) is continuous we have

((B)), = o) (()s1a),

=> " ni(@)e™ = nu(q)
k

95 (x — w[sl) = sup < g <€, for all s > my.

r>s

This contradicts to our assumption that ((B(T)) x)k = pi(q) for each
k € Ny. Thus the representation is unique.
(74) The proof as it is similar to previous one. O

5. a—,— and y— duals

Here we determine ao—, f— and «y— duals of co™, ¢ and loo (™).
Throughout the collection of all finite subsets of IN is denoted by x. We
consider K € k.

Lemma 5.1. [14] Let A = (ank) be an infinite matrix. Then,

1. A€ (Iso(p),l(q)) if and only if

qn

1
supz Z ankBPx | < oo, for all integers, B > land g, > 1 for all, n;

kEk n keK
(5.1)
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2. A€ (lo(p),loo(q)) if and only if

an
Bl
(5.2) sup (E |ank] Bpk> < 00, for all integers, B > 1;

3. A € (lw(p),c(q)) and ¢ = (gn) be a bounded sequence of strictly
positive real numbers if and only if

1
(5.3) sup Z lank| BPe < 00, for all, B > 1,
neN k

1 qn
there exists (17,) C R such that Jim_ (Zk |ank — Tk B%) =0,
for all, B > 1;

4. A€ (Io(p),co(q)) if and only if

qn
1
nh—{%o (2}; |ankl B’”c) =0, for all, B > 1,

Lemma 5.2. [14] Let A = (a,x) be an infinite matrix. Then,

1. A € (co(p),loo(q)) if and only if

an

;1

(5.4) sup (Z |ank] Bpk> < 00, for all, B > 1;
neN k

2. A € (co(p), c(q)) if and only if

__1
(5.5) sup Z lani| BPe < o0, for all, B > 1,
neN k

-1 -1
(5.6)there exists (1) C R such that sup Z |ank — Ti| M Pr BPe < o0,
neN k

for all integers M, B > 1;

thereexists (1) C R such that lim Z |anie — 76| = 0, for all, k € N;
n—oo &

(5.7)
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3. A€ (co(p),colq)) if and only if

-1 -1
(5.8)  thereexists (1) C R, such that sup Z |ank| M Pk BPr < o0,
neN k

for all integers M, B > 1;
(5.9) thereexists (1) C R such that lim Z |ank|™ =0, for all, k € N.
n—oo &

Lemma 5.3. [14] Let A = (anx) be an infinite matrix. Then,

1. A€ (c(p),leo(q)) if and only if equation (5.4) holds and

Z ank
k

qn

(5.10) sup < 00;

neN

2. A€ (e¢(p),c(q)) if and only if equations (5.5), (5.6), (5.7) hold:

qn

(5.11) thereexists (1) C R such that nlLrgo '; anp — 7| =0;

3. A€ (c(p),co(q)) if and only if equations (5.8), (5.9) hold and

Z Ank
k

qn

(5.12) Jim_ = 0.

Theorem 5.1. The a—, 3— and v— duals of ¢o\™, (™) and loo(™) are the
following defined sets

= 27 ()e]

M>1

D%T)(p) = ﬂ {a = (ay) : supz

a1
M Pk <oo},

DY (p) = n {a = (w): 3B (Z—k)czk M < oc, (2£Qur ) € co},
D (p) = n { = (w): 3B (Z—k)czk M < oo, {B(T)(%)Qk} c zm},
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DY (p) MU1 {02 () 7;‘25’; k;{ {B(”<%>Q ] M7 < OO},
D& (p) = Mul{“: @): |5 B0 (2| < oo},

j:k(n—j)!F( T—n+j+1)q_ k

(5.13) B(ﬂ(;”;)_i Plort1)(-)"* 2 :()k

(1. = DD ), {1} = DO ), {17} = DY),
{0} =D DT w). {7} = D) ves, {0} = D) s,
{CO(T)}a — {CO(T)}B — {CO(T)}7 _ DéT)(p).

Proof. Consider the space loo(™)
a = (a) € w, define

n—k 7 .
oz — Z Z —7+1)(-1) (2]_ Z (;) Qiany

. Now let © = (x1) as in (2.4), and

lng —]'F (—T—n+j+1)

= (Uy),, , forn € N,
where matrix U = (unk) is defined as

741 n—k 2k . i
Zn (n—j) '}( )7g n)-‘rH-l) q;j g:j—l (;)Qzam ’LfO <k<n

—qn an, ka:n
0, ifk>n.

Unk =

Therefore we conclude that az = (a,z,) € I} whenever z = (x3,) € loo(™
if and only if Uy € [1 as y = (yk) € loo(p)
that {1 }" = D{”(p).

Now

. By lemma (5.1) we conclude
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n n n n +1 1n—k 2 J .
];)akkaZak [ZZ s 'If T)—(TZ—)Fj—Fl . Z (;)szz]

lek

B SIHoN: ) k) Vi),

k=0

where matrix V' = (v, is defined as

B(T)( )Qk if0<k<n
(5.14) Upk = %an, ifk=n
0, ifk>n.

Therefore we deduce that ax = (apzy) € cs whenever x = (xy) € I
if and only if Vy € ¢ whenever y = (yx) € lo(p). By using lemma (5.1) with

q = qn = 1 we conclude that {ZOO(T)}B = Dg-) (p). Similarly by using lemma
(5.1) with ¢ = g, = 1 for all n, we conclude that {ZOO(T)}V = D:(;)(p).

Hence the theorem proved and the duals of other spaces can be obtained
in a similar manner using lemma (5.2) and lemma (5.3). O
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