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Abstract

In this study, a general model of interacting species consisting of
two competing prey and a predator under the presence of pollution is
formed. Criteria for the existence of equilibria and their (local and
global) stability are derived. The conditions for persistence and bifur-
cation have also been derived. With the help of numerical simulation,
it is shown how the change in the pollution level results in species
extinction.
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1. Introduction

The species in the ecosystem are interdependent for their survival. They in-
teract with each other for different reasons, like food and shelter. The type
of interaction depends upon their biological needs and surrounding condi-
tions. The interacting species in a particular ecosystem form food chains
or food webs. The last several decades have seen tremendous growth in
industrialisation and urbanisation. The extensive use of non-biodegradable
products has caused a damaging impact on our environment. The excess
exploitation of nature has severely disturbed the ecological balance. It has
forced the species, including humans, to be exposed to anthropogenic sub-
stances through different sources, including air, water and food. All these
have resulted in the extinction of many species from the earth. The inter-
national union for the conservation of nature published a list of 160 species
going extinct from 2010-2019 [15]. Keeping environment pollution free is
one of the most challenging problems today. The pollutant moving upward
through food chains becomes more hazardous for the species at the higher
trophic level. For example, the DDT from prey breaks down into DDE in
predators [17].

Mathematical models can help analyse the present situation and predict
the future so that anyone can take necessary measures to control pollution
levels. Some of the mathematical models formed to analyse the dynamics
of two or more species are of the following types:

Freedman andWaltman [7] studied the system of two predators compet-
ing with each other, feeding on a single prey and a single predator feeding
on two competing prey species.

Kar and Batabyal [13] proposed a mathematical model to analyse the
dynamics of a system having two prey and one predator in the presence of
a time delay due to gestation.

Ali and Chakravarthy [2] analysed a model with the intra-specific com-
petition among predator populations consists of two competing prey and
one predator.

Daga et. al. [6] proposed a predator-prey model with Holling type III
functional response and analysed the dynamics of a two prey, one predator
system.
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The problem of approximating the effect of a toxicant on a population by
mathematical models began in the early 1980s. Ma and Hallam [16]
and Hauping and Ma [9] obtained a survival threshold for single and
two species, respectively, under the effect of pollution. Chauhan and
Mishra [3] studied a single species model under the combined impact
of toxicant and infection. Sinha et.al. [18] studied the predator-prey
model under the influence of toxicants. Chauhan et. al. [4] studied
the predatorprey model under the effect of infection for prey and predator
species, respectively. Huang et.al. [10] formulated a toxin-dependent
aquatic population model and connected the model to the experimental
data via model parameterisation. Huang et al. [11] developed a toxin-
dependent Predator-prey model for two species and discussed the effect
of pollution on species. Lawaniya et.al. [14] developed a generalised
model for two species under the effect of pollution and obtained conditions
regarding stability and persistence.

In this study dynamics of three species consisting of two competing
prey and one predator is carried out under the effect of pollution. In next
three sections the model has been formulated and has been shown to be
viable. Criteria for the existence of equilibria are derived in section 5, and
criteria for local and global stability have been carried out in section 6. The
conditions for persistence and bifurcation have been discussed in sections
7 and 8, respectively. In section 9, the results regarding the existence
of equilibria and bifurcation have been validated through the numerical
examples In section 10, the results are discussed.

2. Model formation

We have Gause type model for three species consisting of two competing
prey species and one predator of the form;

x01 = x1τ1g1(x1)− q1x1x2 − yp1(x1)
x02 = x2τ2g2(x2)− q2x1x2 − yp2(x2)
y0 = y(−s(y) + c1p1(x1) + c2p2(x2))

where xi for i = 1, 2 are density of prey species population, y denotes
the predator population, s(y) is the death rate of the predator, gi(xi) for
i = 1, 2 are growth rates of prey species, τi for i = 1, 2 are growth rate
coefficients, pi(xi) for i = 1, 2 are predation functions, constants qi for
i = 1, 2 are interspecies competition coefficients and ci are the coefficients
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for conversion of prey biomass into predator biomass.
Under the effect of environmental pollution the model is of the form;

x01 = x1τ1g1(x1)− q1x1x2 − yp1(x1)− r1Ox1
x02 = x2τ2g2(x2)− q2x1x2 − yp2(x2)− r2Ox2
y0 = y(−s(y) + c1p1(x1) + c2p2(x2)− r3O)
E0 = −Eh(E) +QE

O0 = −d1O + p(E)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.1)

where E(t) is the concentration of toxicant in environment, O(t) is the con-
centration of the toxicant in the organism, ri for i = 1, 2, 3 are the rates of
loss of biomass for three species x1, x2, y respectively due to environmental
pollution, h(E) is the loss rate function of environmental pollution, QE is
the input rate of pollutant in the environment, d1 is the coefficient of depu-
ration of organismal pollution and p(E) denotes the conversion function of
environmental pollution into organismal pollution.

Assumptions: All the functions gi, pi, s, h(E), p(E) are smooth enough so
that the solutions of the system exist, are unique and continuous for all
t > 0 Ahmad and Rao [1] and QE > 0, d1 > 0.

G1
´
Growth rate functions gi(xi) : It is assumed that gi(0) > 0,

dgi
dxi

< 0

and ∃ a Ki > 0 for which gi(Ki) = 0 and 0 < τi for i = 1, 2.

P1
´
Predation function pi(xi): It is assumed that pi(0) = 0,

dpi
dxi

> 0 for
i = 1, 2.

S1
´
Death rate function s(y): It is assumed that s(0) > 0, and s0(y) > 0.

These conditions interpreted that the death rate always remains positive
and is density dependent.

Q1
´
Competition coefficients qi: The coefficients q1, q2 represent com-

petition between the prey species x1, x2 respectively, qi > 0 for i = 1, 2.

H1
´
Environmental Pollution loss rate: h(0) > 0 and h0(E) ≥ 0.

P2
´
Conversion function from environmental pollution E to or-

ganismal pollution O: p(0) > 0 and p0(E) ≥ 0.

As lim
E→∞

Eh(E) > QE, ∃ E∗ such that −E∗h(E∗) +QE = 0.
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3. Invariant Region [14]

The solutions of (2.1) with non-negative initial conditions stay non-negative
for all time t > 0 and the region,
S = {(x1, x2, y, E,O) | 0 ≤ x1 ≤ x̂1+ , 0 ≤ x2 ≤ x̂2+ , 0 ≤ c1x1+c2x2+y ≤
T
s(0) + , 0 ≤ E ≤ QE

h(0) + , 0 ≤ O ≤ O∗ + }
is a positively invariant and attracting region for system (2.1)
where > 0, x̂i= carrying capacity of i

th prey under the effect of pollution,
O∗ = p(E∗)

d1
and T = c1(x̂1 + )(g1(0) + s(0)) + c2(x̂2 + )(g2(0) + s(0)).

4. Possible Equilibria

There are seven possible equilibria for the system

(i) E0(0, 0, 0, E
∗, O∗)

(ii) E1(x̂1, 0, 0, E
∗, O∗)

(iii) E2(0, x̂2, 0, E
∗, O∗)

(iv) E3(l1, l2, 0, E
∗, O∗)

(v) E4(x4, 0, y4, E
∗, O∗)

(vi) E5(0, x5, y5, E
∗, O∗)

(vii) E6(x
∗
1, x

∗
2, y

∗, E∗, O∗)

5. Existence of Equilibria

The equilibriumE0(0, 0, 0, E
∗, O∗) always exists and equilibria E1(x̂1, 0, 0, E∗, O∗)

exists if τ1g1(0)−r1O∗ > 0 and E2(0, x̂2, 0, E∗, O∗) exists if τ2g2(0)−r2O∗ >
0.

Further throughout our analysis we assume that E1 and E2 exist. The
conditions for existence of other equilibria are as follows;

(i) E3(l1, l2, 0, E
∗, O∗) exists if

x̂1 <
(τ2g2(0)−r2O∗)

q2
and x̂2 <

(τ1g1(0)−r1O∗)
q1

or x̂1 >
(τ2g2(0)−r2O∗)

q2
and x̂2 >

(τ1g1(0)−r1O∗)
q1

⎫⎬⎭(5.1)
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(ii) E4(x4, 0, y4, E
∗, O∗) exists if 0 < x6 < x̂1.

(iii) E5(0, x5, y5, E
∗, O∗) exists if 0 < x7 < x̂2 such that s2(0)+c2p2(x7)−

r3O
∗ = 0.

(iv) E6(x
∗
1, x

∗
2, y

∗, E∗, O∗) exists if our system is uniformly persistent. Con-
ditions for uniform persistence are given in section 7.

6. Stability

6.1. Local Stability

With the help of jacobian matrix we determine the local stability of the
system corresponding to equilibria Ahmad and Rao [1].
The jacobian matrix corresponding to the system (2.1) is

J =

⎡⎢⎢⎢⎢⎢⎣
j11 −q1x1 −p1(x1) 0 −r1x1
−q2x2 j22 −p2(x2) 0 −r2x2

c1yp
0
1(x1) c2yp

0
2(x2) j33 0 −r3y

0 0 0 −Eh0(E)− h(E) 0
0 0 0 p0(E) −d1

⎤⎥⎥⎥⎥⎥⎦
where, j11 = x1τ1g

0
1(x1)+τ1g1(x1)−yp01(x1)−q1x2−r1O, j22 = x2τ2g

0
2(x2)+

τ2g2(x2) − yp02(x2) − q2x1 − r2O and j33 = −s(y) − ys0(y) + c1p1(x1) +
c2p2(x2)− r3O.

(i) The equilibrium E0 is unstable.

(ii) E1(x̂1, 0, 0, E
∗, O∗) is stable if (τ2g2(0)−x̂1q2−r2O∗) < 0 and (−s(0)+

c1p1(x̂1)− r3O
∗) < 0.

(iii) E2(0, x̂2, 0, E
∗, O∗) is stable if (τ1g1(0)−x̂2q1−r1O∗) < 0 and (−s(0)+

c2p2(x̂2)− r3O
∗) < 0.

(iv) E3(l1, l2, 0, E
∗, O∗) is stable if τ1τ2g01(l1)g

0
2(l2)− q1q2 > 0 and −s(0)+

c1p1(l1) + c2p2(l2)− r3O
∗ < 0.

(v) E4(x4, 0, y4, E
∗, O∗) is stable if j22(4) < 0, j11(4) + j33(4) < 0 and

j11(4).j33(4) + p1(x4)(c1y4p
0
1(x4)) > 0,

where j22(4) = τ2g2(0)− y4p
0
2(0)− q2x4− r2O

∗, j11(4) = x4τ1g
0
1(x4)+

τ1g1(x4)− y4p
0
1(x4)− r1O

∗ and j33(4) = −y4s0(y4).
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(vi) E5 is stable if j11(5) < 0, j22(5) + j33(5) < 0 and j22(5).j33(5) +
p2(x5).c2y5p

0
2(x5) > 0,

where, j11(5) = τ1g1(0)−q1x5−r1O∗, j22(5) = x5τ2g
0
2(x5)+τ2g2(x5)−

y5p
0
2(x5)− r2O

∗ and j33(5) = −y5s0(y5).

Theorem 6.1.1. The equilibrium E6(x
∗
1, x

∗
2, y

∗, E∗, O∗) is asymptotically
stable inR+(x1,x2,y,E,O) if a11, a22 < 0, a12a21 < min{a11a22,−a13a31,−a23a32},
a21a32 > max{a31a22,−a12a23} and a11a32 − a12a31 < 0, where
a11 = x∗1τ1g

0
1(x

∗
1) + τ1g1(x

∗
1) − y∗p01(x

∗
1) − q1x

∗
2 − r1O

∗, a12 = −q1x∗1, a13 =
−p1(x∗1), a21 = −q2x∗2, a22 = x∗2τ2g

0
2(x

∗
2) + τ2g2(x

∗
2) − y∗p02(x

∗
2) − q2x

∗
1 −

r2O
∗, a23 = −p2(x∗2), a31 = c1y

∗p01(x
∗
1), a32 = c2y

∗p02(x
∗
2) and a33 = −y∗s0(y∗).

Proof: The jacobian corresponding to E6 is given by:

J(6) =

⎡⎢⎢⎢⎢⎢⎣
j11(6) −q1x∗1 −p1(x∗1) 0 −r1x∗1
−q2x∗2 j22(6) −p2(x∗2) 0 −r2x∗2

c1y
∗p01(x

∗
1) c2y

∗p02(x
∗
2) −y∗s0(y∗) 0 −r3y∗

0 0 0 −E∗h0(E∗)− h(E∗) 0
0 0 0 p0(E∗) −d1

⎤⎥⎥⎥⎥⎥⎦
where, j11(6) = x∗1τ1g

0
1(x

∗
1) + τ1g1(x

∗
1) − y∗p01(x

∗
1) − q1x

∗
2 − r1O

∗, j22(6) =
x∗2τ2g

0
2(x

∗
2) + τ2g2(x∗2)− y∗p02(x

∗
2)− q1x

∗
1 − r2O

∗.

j(6) can be reduced to

"
A C
0 B

#
.

In E,O directions the eigen values are negative.

Let A =

⎡⎢⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎥⎦,
where a11 = x∗1τ1g

0
1(x

∗
1) + τ1g1(x

∗
1)− y∗p01(x

∗
1)− q1x

∗
2 − r1O

∗, a12 = −q1x∗1,
a13 = −p1(x∗1), a21 = −q2x∗2, a22 = x∗2τ2g

0
2(x

∗
2) + τ2g2(x

∗
2) − y∗p02(x

∗
2) −

q2x
∗
1 − r2O

∗, a23 = −p2(x∗2), a31 = c1y
∗p01(x

∗
1), a32 = c2y

∗p02(x
∗
2) and a33 =

−y∗s0(y∗).

The characteristic equation of j6 is λ
3 + λ2A1 + λA2 +A3 = 0,

where A1 = −(a11 + a22 + a33), A2 = a22a33 + a11a22 + a11a33 − a12a21 −
a23a32 − a13a31 and A3 = a12a21a33 + a11a23a32 + a13a31a22 − a11a22a33 −
a12a31a23 − a13a21a32.
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According to Routh-Hurwitz CriteriaAhmad and Rao [1] the equilibrium
E6(x

∗
1, x

∗
2, y

∗, E∗, O∗) is locally asymptotically stable when A1 > 0, A3 > 0
and A1A2 > A3.
Hence E6(x

∗
1, x

∗
2, y

∗, E∗, O∗) is locally asymptotically stable.

6.2. Global Stability

E0(0, 0, 0, E
∗, O∗) is globally stable in R+0,0,y,E,O.

Theorem 6.2.1. Let ξ1 = (τ1g1(0) − x̂2q1 − r1O
∗) and ξ2 = (τ2g2(0) −

x̂1q2 − r2O
∗). Then

Case I: If ξ1 < 0, ξ2 < 0 then E3 exists and is a saddle in R+x1,x2,0,E,O.

Case II: If ξ1 > 0, ξ2 > 0 thenE3 exists and is globally stable inR
+
x1,x2,0,E,O

.

Case III: If ξ1 > 0, ξ2 < 0 then E1 is globally stable in R+x1,x2,0,E,O.

Case IV: If ξ1 < 0, ξ2 > 0 then E2 is globally stable in R+x1,x2,0,E,O.

Proof: Two competing prey, system is:

x01 = x1τ1g1(x1)− q1x1x2 − r1O
∗x1

x02 = x2τ2g2(x2)− q2x1x2 − r2O
∗x2

and jacobian matrix is as follows:

M(x1, x2) =

"
m11 −q1x1
−q2x2 m22

#

where m11 = τ1g1(x1)− q1x2− r1O
∗+x1τ1g

0
1(x1), m22 = τ2g2(x2)− q2x1−

r2O
∗ + x2τ2g

0
2(x2)

M(x̂1, 0) =

"
x̂1τ1g

0
1(x̂1) −q1x̂1

0 τ2g2(0)− q2x̂1 − r2O
∗

#
,

M(0, x̂2) =

"
τ1g1(0)− q1x̂2 − r1O

∗ 0
−q2x̂2 x̂2τ2g

0
2(x̂2)

#

and M(l1, l2) =

"
l1τ1g

0
1(l1) −q1l1

−q2l2 l2τ2g
0
2(l2)

#
.
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Here tr(M(l1, l2)) < 0 and det(M(l1, l2)) = l1l2τ1g
0
1(l1)τ2g

0
2(l2)−q1l1q2l2.

Now for E3 we have

τ1g1(x1)− q1x2 − r1O
∗ = 0(6.1)

τ2g2(x2)− q2x1 − r2O
∗ = 0(6.2)

When we draw isoclines for these two equations, (6.1) intersects pos-

itive x1-axis at (x̂1, 0) and positive x2-axis at (0,
τ1g1(0)−r1O∗

q1
) while (6.2)

intersects positive x2-axis at (0, x̂2) and positive x1-axis at (
τ2g2(0)−r2O∗

q2
, 0).

Case I: When τ2g2(0)−r2O∗
q2

< x̂1 and
τ1g1(0)−r1O∗

q1
< x̂2 E1 and E2 are lo-

cally stable hence E3 cannot be globally stable in place of E3 is unstable.

We have phase plane as follows:

Figure 1: τ2g2(0)−r2O∗
q2

< x̂1 and
τ1g1(0)−r1O∗

q1
< x̂2, E3 (interior

equilibrium) is unstable, black curve with arrow is separatrix.

pc
1
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Case II: When τ2g2(0)−r2O∗
q2

> x̂1 and
τ1g1(0)−r1O∗

q1
> x̂2 from phase plane

analysis we have E3 is globally stable.

Figure 2: τ2g2(0)−r2O∗
q2

> x̂1 and
τ1g1(0)−r1O∗

q1
> x̂2, E3 (interior

equilibrium) globally stable in R+x1,x2,0,E,O.

Case III: When τ2g2(0)−r2O∗
q2

< x̂1 and
τ1g1(0)−r1O∗

q1
> x̂2

Figure 3: τ2g2(0)−r2O∗
q2

< x̂1 and
τ1g1(0)−r1O∗

q1
> x̂2, E1 is globally stable

and E3 does not exist.

pc
2


pc
3
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In this case there is no interior equilibrium and we have E1 globally
stable.

Case IV: When τ2g2(0)−r2O∗
q2

> x̂1 and
τ1g1(0)−r1O∗

q1
< x̂2

Figure 4: τ2g2(0)−r2O∗
q2

> x̂1 and
τ1g1(0)−r1O∗

q1
< x̂2, E2 is globally stable

In this case we also get nonexistence of interior equilibrium while E2 is
globally stable.

Theorem 6.2.2. If E4 is locally asymptotically stable with

(i) c1p
0
1(x1)x1 − s0(y)y > 0 ∀ x1 > 0, y > 0

(ii) −s(0) + c1p1(x̂1)− r3O
∗ > 0 and E1(x̂1, 0, 0) exists

then E4 is globally asymptotically stable in R+x1,0,y,E,O.

Proof: We have system (1) in absence of x2

x01 = x1τ1g1(x1)− yp1(x1)− r1O
∗x1

y0 = y(−s(y) + c1p1(x1)− r3O
∗)

Then by Theorem 3 in Cheng et.al.[5] E4 is globally stable when
(i) and (ii) holds.
Similarly we can find criterion for global stability of E5.

Theorem 6.2.3. If E5 is locally asymptotically stable with

pc
4
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(i) c2p
0
2(x2)x2 − s0(y)y > 0 ∀ x2 > 0, y > 0

(ii) −s(0) + c2p2(x̂2)− r3O
∗ > 0 and E2(0, x̂2, 0) exists

then E5 is globally asymptotically stable in R+0,x2,y,E,O.

Proof: Similar to previous theorem.
Now we derive results for the global stability of interior equilibrium E6

with the help of Lyapunov function.

In view of Sinha et.al. [18] instead of the system (1) we consider
system of the following form:

x01 = x1τ1g1(x1)− q1x1x2 − yp1(x1)− r1O
∗x1

x02 = x2τ2g2(x2)− q2x1x2 − yp2(x2)− r2O
∗x2

y0 = y(−s(y) + c1p1(x1) + c2p2(x2)− r3O
∗)

⎫⎪⎬⎪⎭(6.3)

Theorem 6.2.4. Suppose Ā is positive definite matrix in the interior of S

where Ā = −A, A =

⎡⎢⎣ v̄11 v̄12 v̄13
v̄21 v̄22 v̄23
v̄31 v̄32 v̄33

⎤⎥⎦, v̄ii = vii and v̄ij = v̄ji = (
vij+vji
2 )

for j 6= i

v11 =
−c1(p1(x1)−p1(x∗1))(x1τ1g1(x1)−q1x1x∗2−y∗p1(x1)−r1O∗x1)

p1(x1)(x1−x∗1)2
,

v12 =
q1x1c1(p1(x1)−p1(x∗1))

p1(x1)(x1−x∗1)
,

v13 =
c1(p1(x1)−p1(x∗1))

x1−x∗1
, v21 = −q2, v22 = x2τ2g2(x2)−q2x2x∗1−y∗p2(x2)−r2O∗x2

(x2−x∗2)x2
,

v23 = −p2(x2)
x2

, v31 = c1(
p1(x1)−p1(x∗1)

x1−x∗1
), v32 = c2(

p2(x2)−p2(x∗2)
x2−x∗2

) and v33 =

−s(y)−s(y∗
y−y∗ then E6 is globally stable in R+x1,x2,y,E,O.

Proof: Let V (x1, x2, y) = Vx1 + Vx2 + Vy is the Lyapunov function.

Where, Vx1 =
R x1
x∗1

−s(y∗)+c1p1(ξ)+c2p2(x∗2)−r3O∗
p1(ξ)

dξ, Vx2
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= x2 − x∗2 − x∗2 lnx2/x
∗
2 and Vy = y − y∗ − y∗ ln y/y∗.

dV
dt =

−s(y∗)+c1p1(x1)+c2p2(x∗2)−r3O∗
p1(x1)

dx1
dt +

(x2−x∗2)
x2

dx2
dt +

(y−y∗)
y

dy
dt

dV
dt =

c1(p1(x1)−p1(x∗1))
p1(x1)

(x1τ1g1(x1)− q1x1x2 − yp1(x1)− r1O
∗x1)

+
(x2−x∗2)

x2
(x2τ2g2(x2)− q2x1x2 − yp2(x2)− r2O

∗x2)

+(y − y∗)(−s(y) + c1p1(x1) + c2p2(x2)− r3O
∗)

dV [1]
dt =

−c1(p1(x1)−p1(x∗1))
p1(x1)

(x1τ1g1(x1) − q1x1x
∗
2 − y∗p1(x1) − r1O

∗x1) −
c1(p1(x1)−p1(x∗1))

p1(x1)

(q1x1x
∗
2 − q1x1x2)− c1(p1(x1)−p1(x∗1))

p1(x1)
(y∗p1(x1)− yp1(x1)).

Let dV [1]
dt = (x1−x∗1)

2v11+(x1−x∗1)(x2−x∗2)v12+(x1−x∗1)(y− y∗)v13.

Similarly let dV [2]
dt = (x2−x∗2)2v22+(x2−x∗2)(x1−x∗1)v21+(x2−x∗2)(y−

y∗)v23 and
dV [3]
dt = (y−y∗)2v33+(y−y∗)(x1−x∗1)v31+(y−y∗)(x2−x∗2)v32

where vij for i, j = 1, 2 and 3 are defined as above

Let XT =

⎡⎢⎣ (x1 − x∗1)
(x2 − x∗2)
(y − y∗)

⎤⎥⎦ and A =

⎡⎢⎣ v̄11 v̄12 v̄13
v̄21 v̄22 v̄23
v̄31 v̄32 v̄33

⎤⎥⎦
where v̄ii = vii and v̄ij = vji = (

vij+vji
2 ) for j 6= i.

We have dV
dt = XAXT = −XĀXT (A = −Ā is a symmetric matrix).
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If the matrix Ā is positive definite in S then dV
dt ≤ 0 in S and the

equilibrium E6(x
∗
1, x

∗
2, y

∗) is globally stable in

R+x1,x2,y

Wolkowicz and Lu [13].

As E(t) and O(t) tends to E∗ and O∗ respectively, E6(x∗, y∗, E∗, O∗) is
globally stable in R+x1,x2,y,E,O.

7. Persistence

Here we obtain a result for the uniform persistence of the system (2.1).
Freedman and Waltman [7] obtain conditions for persistence of a Kol-
mogorov system of two prey and one predator.
Recall a system x0 = f(x), x = (x1, x2., xn)

T is said to be persist uniformly
if ∃ δ > 0 such that for
xi(0) > 0, lim inft→∞xi(t) > δ ∀ i = 1, 2, . . . , n.

Theorem 7.1. Let equilibria E3, E4, E5 exist and be globally stable in
their respective domains with

− s(0) + c1p1(l1) + c2p2(l2)− r3O
∗ > 0(7.1)

then system (1) will persist uniformly.

Proof: We will prove our results with the help of the Average Lyapunov
function Huston [12].

Let v = xα1x
β
2y

γ where α, β, γ are assumed to be positive.
Now 1

v
dv
dt =

α
x1

dx1
dt +

β
x2

dx2
dt +

γ
y
dy
dt .

Along solutions of system (4)
1
v
dv
dt = α(τ1g1(x1)− q1x2 − yp1(x1)

x1
− r1O

∗) + β(τ2g2(x2)− q2x1 − yp2(x2)
x2

−
r2O

∗) + γ(−s(y) + c1p1(x1) + c2p2(x2)− r3O
∗)

Let ω = 1
v
dv
dt

Now we have to show that ω > 0 for all boundary equilibria. Here we
have six boundary equilibria E0, E1, E2, E3, E4 and E5. Thus ω > 0 has to
satisfy the following conditions corresponding to E0, E1, E2, E3, E4 and E5.
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(i) At E0 : ω = α(τ1g1(0)−r1O∗)+β(τ2g2(0)−r2O∗)+α(−s(0)−r3O∗) >
0.

(ii) At E1 : ω = β(τ2g2(0)−q2x̂1−r2O∗)+γ(−s(0)+c1p1(x̂1)−r3O∗) > 0.

(iii) At E2 : ω = α(τ1g1(0)−q1x̂2−r1O∗)+γ(−s(0)+c2p2(x̂2)−r3O∗) > 0.

(iv) At E3 : ω = γ(−s(0) + c1p1(l1) + c2p2(l2)− r3O
∗) > 0.

(v) At E4 : ω = α(τ1g1(x4)− y4p1(x4)
x4

−r1O∗)+β(τ2g2(0)−q2x4−r2O∗)+
γ(−s(y4) + c1p1(x4)− r3O

∗) =⇒ ω = β(τ2g2(0)− q2x4 − r2O
∗) > 0.

(vi) At E5 : ω = α(τ1g1(0)−q1x5−r1O∗)+β(τ2g2(x5)− y5p2(x5)
x5

−r2O∗)+
γ(−s(y5) + c2p2(x5)− r3O

∗) =⇒ ω = α(τ1g1(0)− q1x5 − r1O
∗) > 0.

If we choose α, β sufficiently large with (−s(0) + c1p1(l1) + c2p2(l2) −
r3O

∗) > 0 then conditions (i)-(vi) are satisfied and by Lawaniya et.al.
[14] using the fact that for large t,O(t) ≤ O∗+ and standard comparison
theorem we conclude that system (1) is uniformly persistent.

8. Bifurcation

As E and O tend to E∗ and O∗ respectively by Lawaniya et.al. [14], we
consider two and three species submodel of system (1) for studying Hopf
Bifurcation.

Theorem 8.1. Suppose E4(x4, 0, y4, E
∗, O∗) exists in an open interval con-

taining τ1hf > 0, then in the absence of prey x2 system (1) experiences Hopf
Bifurcation and periodic orbit is formed around its boundary equilibrium
E4 as τ1 passes through τ1hf , whenever y4(s

0(y4))2 < c1p1(x4)p
0
1(x4) and

d
dτ1
(j11(4) + j33(4)) 6= 0 at τ1 = τ1hf ,

where, j11(4) = x4τ1g
0
1(x4) + τ1g1(x4) − y4p

0
1(x4) − r1O

∗ and j33(4) =
−y4s0(y4).

Proof: For jacobian we have submatrix

A =

"
j11(4) −p1(x4)
c1y4p

0
1(x4) j33(4)

#

The characteristic equation for A is Q(λ) ≡ λ2 + a1λ+ a2 = 0,
where a1 = −(j11(4) + j33(4)) and a2 = j11(4).j33(4) + c1p1(x4)y4p

0
1(x4)



504 Pinky Lawaniya, Soumya Sinha and Ravinder Kumar

at τ1 = τ1hf if A possesses purely imaginary eigen values then we have
j11(4) + j33(4) = 0 and j11(4).j33(4) + c1p1(x4)y4p

0
1(x4) > 0.

⇔ a1 = 0 and a2 = −(j33(4))2 + c1p1(x4)y4p
0
1(x4)

⇒ y4(s
0(y4))2 < c1p1(x4)p

0
1(x4).

Let two eigenvalues be λ1,2 = χ± iψ
Putting λ = χ + iψ in characteristic equation of A and differentiating it
with respect to τ1
(2χ+a1)

dχ
dτ1
+(−2ψ) dψdτ1 = −χ

da1
dτ1
− da2

dτ1
and (2χ+a1)

dψ
dτ1
+2ψ dχ

dτ1
= −ψ da1

dτ1
.

At τ1 = τ1hf , ψ
2 = a2 and a1 = 0.

After simplifying we get
dχ
dτ1

¯̄̄
τ1hf

= −12(
da1
dτ1
)
¯̄̄
τ1hf

= 1
2(

d
dτ1
(j11(4) + j33(4))).

If d
dτ1
(j11(4) + j33(4))

¯̄̄
τ1hf

6= 0 (transversality condition) hence this pro-

vides our result, system experienced Hopf Bifurcation and periodic orbits
are formed by Hassard et.al. [8].

Theorem 8.2. Assume thatE5 exists in an open interval containing τ2hf >
0, then in the absence of prey x1, the system (1) experiences Hopf Bi-
furcation and periodic orbit is formed around its boundary equilibrium
E5 as τ2 passes through τ2hf whenever y5(s

0(y5))2 < c2p2(x5)p
0
2(x5) and

d
dτ2
(j22(5) + j33(5)) 6= 0 at τ2 = τ2hf ,

where, j22(5) = x5τ2g
0
2(x5) + τ2g2(x5) − y5p

0
2(x5) − r2O

∗ and j33(5) =
−y5s0(y5).

Proof: Proceed as Theorem 8.1.

For interior Equilibrium
Assume that in an open interval containing τ2 = τ2HF > 0 interior equilib-
rium exists.

Theorem 8.3. Suppose there exists τ2 = τ2HF > 0 such that ni(τ2HF ) >

0, 1 ≤ i ≤ 3,∆2(τ2HF ) = 0 and (
dn3
dτ2
− (n2 dn1dτ2

+ n1
dn2
dτ2
))
¯̄̄
τ2HF

6= 0

where, ∆2 = det

"
n1 1
n3 n2

#
and ni for all i = 1, 2, 3 are defined as above

and evaluated at E6
Then system experiences Hopf Bifurcation and periodic orbits are formed.
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Proof: The jacobian for system is as follows:

J =

⎡⎢⎣ j11 −q1x1 −p1(x1)
−q2x2 j22 −p2(x2)

c1yp
0
1(x1) c2yp

0
2(x2) j33

⎤⎥⎦
The characteristic polynomial is

P (λ) = λ3 + n1λ
2 + n2λ+ n3(8.1)

where, n1 = −(j11 + j22 + j33), n2 = j11j22 + j11j33 + j22j33 − q1q2x1x2 +
c2yp

0
2(x2)p2(x2) + c1yp

0
1(x1)p1(x1), n3 = −j11j22j33 − j11c2yp

0
2(x2)p2(x2) +

q1q2x1x2j33−q1x1c1yp01(x1)p2(x2)−q2x2c2yp02(x2)p1(x1)−j22c1yp01(x1)p1(x1), j11 =
x1τ1g

0
1(x1)+τ1g1(x1)−yp01(x1)−q1x2−r1O∗, j22 = x2τ2g

0
2(x2)+τ2g2(x2)−

yp02(x2)− q2x1 − r2O
∗, j33 = −s(y)− ys0(y) + c1p1(x1) + c2p2(x2)− r3O

∗,
and ni’s are evaluated at E6 and are functions of τ2.
We claim that ∆2(τ2HF ) = 0 if and only if P (λ) has a pair of purely imag-
inary roots. First let ∆2(τ2HF ) = 0, then by Orlando formula P (λ) has a
pair of roots with opposite signs.
Suppose the eigen values are real, λ1 and −λ1 then by characteristic equa-
tion

P (λ1) ≡ λ31 + n1λ
2
1 + n2λ1 + n3 = 0

and P (−λ1) ≡ −λ31 + n1λ
2
1 − n2λ1 + n3 = 0

⇒ n1λ
2
1 + n3 = 0

But this contradicts the fact since ni > 0.
Hence there will be pair of purely imaginary roots of P (λ) = 0 at τ2HF .
Conversely let P (λ) has imaginary roots iλ1 and −iλ1 (λ1 ∈ R) for τ2 =
τ2HF .

Then P (iλ1) = 0,
i.e. −iλ31 − n1λ

2
1 + in2λ1 + n3 = 0

or λ31 − n2λ1 = 0 and n1λ
2
1 − n3 = 0⇒ λ21 = n2

thus n1n2 − n3 = 0 i.e. ∆2(τ2HF ) = 0
Also the third root is negative.
Let the one complex root be λ1 = α+ iβ

then we are to prove that Re(dλ1dτ2
)
¯̄̄
τ2HF

6= 0.
Setting λ = α+ iβ in (6) and differentiating with respect to τ2,

dα

dτ2
(3(α2−β2)+2αn1+n2)+

dβ

dτ2
(−6αβ−2βn1) =

dn1
dτ2

(β2−α2)−αdn2
dτ2
−dn3
dτ2

(8.2)
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and
dα

dτ2
(6αβ + 2βn1) +

dβ

dτ2
(3(α2 − β2) + 2αn1 + n2) = −2αβ

dn1
dτ2
− β

dn2
dτ2

(8.3)

From (8.2) and (8.3) we get
dα
dτ2
(3(α2 − β2) + 2αn1 + n2)

2 + (6αβ + 2βn1)
2 = (dn1dτ2

(β2 − α2) − αdn2
dτ2
−

dn3
dτ2
)(3(α2 − β2) + 2αn1 + n2)− (6αβ + 2βn1)(2αβ dn1

dτ2
+ β dn2

dτ2
)

At τ2 = τ2HF , β
2 = n2 and α = 0⇒ dα

dτ2

¯̄̄
τ2HF

=
[
dn3
dτ2
−(n2 dn1dτ2

+n1
dn2
dτ2

)]

2(n2+n21)
.

Hence if (dn3dτ2
− (n2 dn1dτ2

+ n1
dn2
dτ2
))
¯̄̄
τ2HF

6= 0 then by Hassard et.al.[8] sys-
tem experiences Hopf Bifurcation and periodic orbits are formed.

9. Numerical Simulation

The numerical simulation has been carried out with MATLAB 2010a.

x01 = x1τ1g1(x1)− q1x1x2 − yp1(x1)− r1Ox1(9.1)

x02 = x2τ2g2(x2)− q2x1x2 − yp2(x2)− r2Ox2(9.2)

y0 = y(−s(y) + c1p1(x1) + c2p2(x2)− r3O)(9.3)

E0 = −Eh(E) +QE(9.4)

O0 = −d1O + p(E)(9.5)

Taking following set of functions:
gi(xi) = (1− (xi/Ki)

3), pi(xi) =
xi

xi+mi
∀i = 1, 2, s(y) = c(d+ y

w ), h(E) = a
and p(E) = l +mE,
and the following values of parameters: τ1 = τ2 = 0.5,K1 = 900,K2 =
950,m1 = 800,m2 = 750, q1 = 0.00002, q2 = 0.00001, c = 0.003, d =
75, w = 75, r1 = 0.004, r2 = 0.005, r3 = 0.006, c1 = 0.6, c2 = 0.7
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Stage I: Pollution parameters QE = 0.4, a = 1, d1 = 0.5, l = 0.0234,m =
0.04

Figure 5: System at very low level of Pollution

We get τ1g1(0) − r1O
∗ > 0, τ2g2(0) − r2O

∗ > 0, 0 < x∗1 < x4 < l1 <
x̂1, 0 < x∗2 < x5 < l2 < x̂2. Here all conditions needed for existence of
equilibria are satisfied.

Stage II: Pollution parameters, QE = 10, a = 0.35, d1 = 0.5, l = 0.6,m =
0.5

Figure 6: System after a little increase in Pollution level
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We also get τ1g1(0)− r1O
∗ > 0, τ2g2(0)− r2O

∗ > 0, 0 < x∗1 < x4 < l1 <
x̂1, 0 < x∗2 < x5 < l2 < x̂2, hence all equilibria exist.

Stage III: Pollution parameters, QE = 30, a = 0.35, d1 = 0.5, l = 0.6,m =
0.5

Figure 7: System after a little increase in Pollution level

We also get τ1g1(0)− r1O
∗ > 0, τ2g2(0)− r2O

∗ > 0, 0 < x∗1 < x4 = l1 <
x̂1, 0 < x∗2 < x5 = l2 < x̂2, hence E1, E2, E3 exist but E4, E5, E6 do not
exist.

Stage IV: Pollution parameters, QE = 35, a = 0.35, d1 = 0.5, l = 0.7,m =
0.5

Figure 8: System at very large increase in level of Pollution
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Here we also get τ1g1(0)− r1O
∗ > 0, τ2g2(0)− r2O

∗ > 0, 0 < x∗1 < x4 =
l1 < x̂1, 0 < x∗2 < x5 = l2 < x̂2, hence E1, E2, E3 exist but E4, E5, E6 do
not exist.

Stage V: Pollution parameters, QE = 45, c = 0.35, d1 = 0.5, l = 0.7,m =
0.5

Figure 9: System at hazardous level of Pollution

Here none of the conditions for existence of equilibria is satisfied, hence
no equilibrium except E0 exists.

For Bifurcation: (i) In absence of Prey 2
Taking τ1 as Bifurcation parameter and keeping other as follows
K1 = 1000,m1 = 700, q1 = 0.00002, c = 0.003, d = 70, w = 50, r1 =
0.05, r3 = 0.08, c1 = 0.64, a = 0.4, b = 1, d1 = 0.5, l = 0.0234,m = 0.04.

We get the graphical structure as follows:

Figure 10: The Predator and Prey 1 population with τ1 = 0.7
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Figure 11: The Predator and Prey 1 system with τ1 = 0.7

Here we have E4 = (472.3877, 0, 731.2307, 0.04, 0.05) and eigenvalues of
jacobian matrix are −0.0070+ i0.3077,−0.0070− i0.3077 and E4 is stable.

At τ1 = 0.5 we get E4 = (431.1909, 0, 499.2866) and eigenvalues of ja-
cobian matrix are 0.0850 + i0.2311, 0.0850− i0.2311 and E4 is unstable.

When τ1 = 0.640625, the behavior of system is followed by Fig. 12 and
Fig. 13.

Figure 12: Predator and Prey 1 population system at τ1 = 0.640625
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Figure 13: Predator and Prey 1 system at τ1 = 0.640625

Here the periodic orbit arises and we get eigenvalues of jacobian matrix
are 0.0001+i8.2083, 0.0001−i8.2083 with d

dτ1
(j11(4)+j33(4)) = 0.006084 6=

0 and y4(s
0(y4))2 < c1p1(x4)p

0
1(x4).

Hence τ1hf ≈ 0.640625 and when τ1 > τ1hf the system shows a stable equi-
librium point and below the critical value equilibrium point it is unstable.

(ii) In absence of Prey 1
Now taking τ2 as bifurcation parameter and values of other parameters as
follows:
K2 = 950,m2 = 750, q2 = 0.00001, c = 0.003, d = 70, w = 50, r2 =
0.06, r3 = 0.08, c2 = 0.7, a = 0.4, b = 1, d1 = 0.5, l = 0.0234,m = 0.04,
At τ2 = 0.65

pc
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Figure 14: Predator and Prey 2 population at τ2 = 0.65

Figure 15: Predator and Prey 2 system at τ2 = 0.65
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We get equilibrium is E5 = (0, 431.2260, 692.4423, 0.04, 0.05) and eigen-
values of jacobian matrix are −0.0060 + i0.3063,−0.0060− i0.3063. Hence
E5 is stable.
At τ2 = 0.5 we get E5 = (0, 405.7851, 529.3887, 0.04, 0.05) and eigenvalues
of jacobian matrix are 0.0061 + i0.2676, 0.0061− i0.2676. Hence E5 is un-
stable.
At τ2 = 0.59375, behavior of system is followed by Fig 16 and Fig 17.

Figure 16: Predator and Prey 2 system at τ2 = 0.59375
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Figure 17: Predator and Prey 2 system at τ2 = 0.59375

Here we get eigenvalues of jacobian matrix are 0.00002 + i7.5642 and
0.00002 − i7.5642 also we have d

dτ2
(j22(5) + j33(5)) = 0.006505 6= 0 and

y5(s
0(y5))2 < c2p2(x5)p

0
2(x5).

Hence τ2hf ≈ 0.59375. Hence as τ2 > τ2hf the system shows a stable equi-
librium point and at the threshold value it has a periodic orbit enclosing
an equilibrium point.

(iii) For interior equilibrium:
Taking τ2 as Bifurcation parameter and keeping others fixed and following
set of parameters;
τ1 = 0.5,K1 = 1000,K2 = 950,m1 = 800,m2 = 750, q1 = 0.0000015, q2 =
0.0000025, c = 0.0035, d = 30, w = 50, r1 = 0.04, r2 = 0.06, r3 = 0.08, c1 =
0.3, c2 = 0.2 and O∗ = 0.05.
We get at τ2 = 0.6 interior equilibrium isE6 = (163.9249, 621.3034, 466.1853)
and eigenvalues of jacobian matrix are
−0.0141+0.1359i,−0.0141−0.1359i,−0.3083 which shows that E6 is stable
as we can see in fig. 18.
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Figure 18: Predator, Prey 1 and Prey 2 system at τ2 = 0.6

At τ2 = 0.9 interior equilibrium is E6 = (118.2906, 776.8789, 450.2551)
and the eigenvalues of jacobian matrix are 0.0298+i0.1246, 0.0298−i0.1246,−1.0957.
Hence E6 is unstable.
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Here with τ2 = 0.7935,

Figure 19: Predator, Prey 1 and Prey 2 system at τ2 = 0.7935

We get interior equilibrium is E6 = (126.8799, 744.7612, 453.0900) and
eigenvalues of jacobian matrix are −0.000011 + i0.122911,−0.000011 −
i0.122911,−0.805206 with

n1 = 0.805228, n2 = 0.0151, n3 = 0.0122, (n1.n2 − n3) = −0.000041 ≈ 0

and (dn3dτ2
− (n2 dn1dτ2

+ n1
dn2
dτ2
))
¯̄̄
τ2HF

= 0.0016.

Hence τ2HF ≈ 0.7935.
Here we conclude from Theorem 8.3 that when τ2 crosses its critical value
the system has periodic solution. This illustrated in Fig 19.

Persistence:
From the previous example we have l1 = 996.5735, l2 = 947.0973, x4 =
672.5703, y4 = 400.2809, x5 = 938.6522, y5 = 31.0251 and inequality (5)
holds as

−s(0) + c1p1(l1) + c2p2(l2)− r3O
∗ = 0.1690 > 0

hence the system persists uniformly.
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19
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10. Results and Conclusion

In this study mathematical criteria are developed for the stability and per-
sistence of a system of three species (two competing prey and one predator)
in the presence of pollution. With the help of numerical example it is shown
how the sustainability of the system gets affected as the pollution level in-
creases. It was observed that when the pollution is very low all the species
can survive in a stable equilibrium, but as the level of pollution increases,
initially the value of predator equilibrium decreases and later on it results
in the extinction of species one by one from top to bottom in trophic level:

Stage QE Input rate
of
pollutant in the
environment

a Loss rate
of environmen-
tal pollution

p(E) = l+mE Conversion
function of environmental
pollution into organismal
pollution.

Surviving
species

l m
Stage I 0.4 1 0.0234 0.04 All three species

surviving
Stage II 10 0.35 0.6 0.5 All three surviv-

ing and equilib-
rium
value of predator
has decreased.

Stage
III

30 0.35 0.6 0.5 Both prey survive
and predator goes
for extinction.

Stage
IV

35 0.35 0.7 0.5 Second prey and
preda-
tor go for extinc-
tion and only first
prey survives.

Stage V 45 0.35 0.7 0.5 All three species
go for extinction

In the following three cases, conditions are derived under which system
experiences Bifurcation.
The pollution level is assumed to be low.

(i) In the absence of second prey

(ii) In the absence of first prey

(iii) With all three species.

In each of the above cases as the bifurcation parameter crosses the
threshold value, the system moving towards stable equilibrium point shows
change in behavior and moves towards a periodic orbit.
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