Universidad Católica del Norte
Antofagasta - Chile

A note on fold thickness of graphs

Reji T.
Government College Chittur, India
Vaishnavi S.
Sree Narayana College Alathur, India
and
Francis Joseph H. Campeña
De La Salle University, Manila Philippines
Received: October 2022. Accepted: November 2022

Abstract

A 1-fold of G is the graph G^{\prime} obtained from a graph G by identifying two nonadjacent vertices in G having at least one common neighbor and reducing the resulting multiple edges to simple edges. A uniform k-folding of a graph G is a sequence of graphs $G=G_{0}, G_{1}, G_{2}, \ldots, G_{k}$, where G_{i+1} is a 1 -fold of G_{i} for $i=0,1,2, \ldots, k-1$ such that all graphs in the sequence are singular or all of them are nonsingular. The largest k for which there exists a uniform k - folding of G is called fold thickness of G and this concept was first introduced in [1]. In this paper, we determine fold thickness of corona product graph $G \odot \overline{K_{m}}, G \odot_{S} \overline{K_{m}}$ and graph join $G+\overline{K_{m}}$.

Key Words: Fold thickness, Uniform folding, Singular graphs.

2020 AMS Subject Classification: 05C50, 05C76.

1. Introduction

The concept of graph folding was first defined by Gervacio et al. [5] The motivation for it is from the situation of folding a meter stick. Let a finite number of unit bars be joined together at ends in such a way that they are free to turn. There are some meter sticks with this structure as shown in Fig. 1. The meter stick of this structure can be treated as a physical model of the path P_{n} on n vertices. After a sequence of folding, it becomes a physical model of the complete graph K_{2}.

Figure 1. Meter stick-Folded and unfolded.

Let G be a graph that is not isomorphic to a complete graph. If x and y are nonadjacent vertices of G that have atleast one common neighbor, then identify x and y and reduce any resulting multiple edges to simple edges to form a new graph, G^{\prime}. The graph G^{\prime} is called a 1-fold of G. Consider a sequence of graphs $G=G_{0}, G_{1}, G_{2}, \ldots, G_{k}$ in which G_{i+1} is a 1-fold of G_{i} for $i=0,1,2, \ldots, k-1$. This sequence is called a k - folding of $G=G_{0}$. The largest integer k for which there exists a k-folding is in the case where G_{k} is a complete graph. Let $\mathcal{A}\left(G_{i}\right)$ be the adjacency matrix corresponding to the graph G_{i}. A graph G_{i} is singular if $\mathcal{A}\left(G_{i}\right)$ is singular and nonsingular if $\mathcal{A}\left(G_{i}\right)$ is nonsingular. A graph G is said to have a uniform k-folding if there is a k - folding in which all graphs in the sequence are singular or all of them are nonsingular. The largest integer k for which there exists a uniform k - folding of G is called fold thickness of G, and is denoted by fold (G). If $G=G_{0}, G_{1}, G_{2}, \ldots, G_{k}$ is a k-folding of G, then the graph G_{k} is referred as a k-fold of G. The fold thickness of a graph was first defined by F. J. H. Campeña and S.V. Gervacio in [1] and evaluated fold thickness of some special classes of graphs such as cycle graph, wheel graph, bipartite graphs etc.

2. Preliminary results

In this paper K_{n}, P_{n} and C_{n} denotes the complete graph, path and cycle graph on n vertices respectively. W_{n} and S_{n} denotes the wheel graph and
star graph on $n+1$ vertices respectively. $V(G)$ and $E(G)$ denotes the vertex set and edge set respectively of a graph $G . \chi(G)$ denotes the vertex chromatic number of G. For any vertex x in a graph $G, N(x)$ is the set of all vertices y in G that are adjacent to x and is called the neighbor set of x. Let $C_{1}, C_{2}, \ldots, C_{n}$ be the components of G. Label the vertices of G by labelling the vertices of C_{1}, then the vertices of C_{2} and so on. The adjacency matrix of $G, \mathcal{A}(G)$ is a block diagonal matrix,

$$
\mathcal{A}(G)=\left[\begin{array}{cccc}
\mathcal{A}\left(C_{1}\right) & 0 & \cdots & 0 \\
0 & \mathcal{A}\left(C_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mathcal{A}\left(C_{n}\right)
\end{array}\right]
$$

Thus, the determinant of the adjacency matrix, $\operatorname{det} \mathcal{A}(G)=\prod_{i=1}^{n} \operatorname{det} \mathcal{A}\left(C_{i}\right)$.
The null graph $\overline{K_{n}}$ is the graph with n vertices and zero edges. The corona product [6] $G \odot H$ of two graphs G and H is defined as the graph obtained by taking one copy of G and $|V(G)|$ copies of H and joining by an edge each vertex from the $i^{\text {th }}$-copy of H with the $i^{\text {th }}$-vertex of G. The join of two vertex disjoint graphs G and H denoted by $G+H$ is the graph consisting of G and H all edges of the form $x y$, where x is a vertex of G and y is a vertex of H.

Theorem 2.1. [2] Let G be a simple connected graph. The smallest complete graph that G folds into is the complete graph with order $\chi(G)$, where $\chi(G)$ denotes the chromatic number of G.

Thus, a maximum folding of a graph G on n vertices or simply a max fold of G is defined to be a k-folding of G, where $k=n-\chi(G)$.

Theorem 2.2. [4] If x and y are vertices in a graph G such that $N(x)=$ $N(y)$, then G is singular.

Theorem 2.3. [4] For each $n \geq 1, \operatorname{det} \mathcal{A}\left(K_{n}\right)=(-1)^{n-1}(n-1)$.
Theorem 2.4. [4] Let x and y be vertices in a graph G such that $N(x) \subseteq$ $N(y)$. If G^{\prime} is the graph obtained from G by deleting all the edges of the form $y z$, where z is a neighbor of x, then $\operatorname{det} \mathcal{A}(G)=\operatorname{det} \mathcal{A}\left(G^{\prime}\right)$.

The following theorem gives an upper bound for the fold thickness of graphs.

Theorem 2.5. [1] For any connected graph G of order n,

$$
\operatorname{fold}(G) \leq \begin{cases}n-\chi(G) & \text { if } G \text { is nonsingular }, \\ n-\chi(G)-1 & \text { if } G \text { is singular }\end{cases}
$$

Remark 2.1. In view of the above theorem, if there exists a uniform k folding of a connected graph G where k is equal to the upper bound in the theorem, then k must be the fold thickness of the graph. This observation will be used to obtain the fold thickness of most of the graphs.

Theorem 2.6. [1] For each integer $n \geq 1$,

$$
\operatorname{det} \mathcal{A}\left(P_{n}\right)= \begin{cases}0 & \text { if } n \text { is odd } \\ (-1)^{n / 2} & \text { if } n \text { is even } .\end{cases}
$$

Theorem 2.7. [1] For each integer $n \geq 3$,

$$
\operatorname{det} \mathcal{A}\left(C_{n}\right)=\left\{\begin{array}{lc}
0 & \text { if } n \equiv 0(\bmod 4) \\
2 & \text { if } n \equiv 1 \operatorname{or} 3(\bmod 4) \\
-4 & \text { if } n \equiv 2(\bmod 4)
\end{array}\right.
$$

Theorem 2.8. [1] The path P_{n} has fold thickness given by,

$$
\text { fold }\left(P_{n}\right)= \begin{cases}0 & \text { if } n \text { is even } \\ \max \{0, n-3\} & \text { if } n \text { is odd. }\end{cases}
$$

Theorem 2.9. [1] The cycle C_{n}, has fold thickness given by

$$
\text { fold }\left(C_{n}\right)= \begin{cases}0 & \text { if } n \equiv 2(\bmod 4), \\ n-3 & \text { otherwise }\end{cases}
$$

3. Main Results

3.1. Fold Thickness of $G \odot \overline{K_{m}}$

In this section we evaluate the fold thickness of corona product, $G \odot \overline{K_{m}}$ of a connected graph G and a null graph $\overline{K_{m}}, m \geq 2$. The vertices of the graph $G \odot \overline{K_{m}}$ is labelled as follows : let $v_{1}, v_{2}, \ldots v_{n}$ be the vertices of G and let $u_{i 1}, u_{i 2}, \ldots u_{i m}$ be the pendant vertices adjacent to the $i^{\text {th }}$ vertex v_{i} of G for $i=1,2, \ldots n$.

Theorem 3.1. If $m \geq 2$, then the fold thickness of $G \odot \overline{K_{m}}$ is given by,

$$
\text { fold }\left(G \odot \overline{K_{m}}\right)=\left\{\begin{array}{lc}
(m+1) n-\chi(G)-1 & \text { if } \chi(G)=2, \\
(m+1) n-\chi(G)-2 & \text { otherwise } .
\end{array}\right.
$$

noindent where n is the number of vertices of G.
Proof. The graph $G \odot \overline{K_{m}}, m \geq 2$ is singular, since the vertices $u_{i j}$ and $u_{i k}$, where $i \in\{1,2, \ldots n\}, j, k \in\{1,2, \ldots m\}$ has common neighbor v_{i}. Therefore, by Theorem 2.5, fold $\left(G \odot \overline{K_{m}}\right) \leq(m+1) n-\chi\left(G \odot \overline{K_{m}}\right)-1=$ $(m+1) n-\chi(G)-1$. For $i=1,2, \ldots n-1$, first identify the pendant vertices $u_{i 1}, u_{i 2}, \ldots u_{i m}$ to a single vertex and then identify it with an eligible vertex of G. Thus, a uniform $m(n-1)$-folding $G_{0}=G, G_{1}, \ldots G_{m(n-1)}$ is obtained in which every graph in the sequence is singular and $G_{m(n-1)}$ is the graph G plus m pendant vertices $u_{n 1}, u_{n 2}, \ldots u_{n m}$ adjacent to the vertex v_{n}.

The maximum folding of G is $n-\chi(G)$. So, identifying repeatedly every pairs of eligible vertices of G, after $n-\chi(G)$ steps a complete graph with $\chi(G)$ vertices is obtained. Hence, a new graph G^{\prime} is obtained from $G_{m(n-1)}$ which is the complete graph $K_{\chi(G)}$ plus m pendant vertices $u_{n 1}, u_{n 2}, \ldots u_{n m}$ adjacent to one of its vertices v_{n}.

If $\chi(G)=2$, the graph G^{\prime} will be the star graph $K_{1, m+1}$, which is singular. Next, identify the vertices $u_{n 2}, u_{n 3}, \ldots u_{n m}$ of $K_{1, m+1}$ one by one to obtain the graph $K_{1,3}$ which can be folded to another singular graph $K_{1,2}$. If the non- adjacent vertices of $K_{1,2}$ is identified, the non-singular graph K_{2} is obtained. In this case, the sequence of graphs $G \odot \overline{K_{m}}=$ $G_{0}, G_{1}, \ldots, G_{m(n-1)}, \ldots G^{\prime}=K_{1, n+1} \ldots K_{1,3}, K_{1,2}$ is a uniform k - folding with $k=m(n-1)+n-\chi(G)+m-2+1=(m+1) n-\chi(G)-1$. So, in this case $\operatorname{fold}\left(G \odot \overline{K_{m}}\right)=(m+1) n-\chi(G)-1$.

If $\chi(G) \neq 2$, identify the vertices $u_{n 2}, u_{n 3}, \ldots u_{n m}$ of G^{\prime} one by one to obtain the graph $G^{\prime \prime}$ which is the complete graph $K_{\chi(G)}$ plus a pair of pendant vertices adjacent to one of its vertices. If $G^{\prime \prime}$ is again folded by identifying a pair of its non adjacent vertices, then we obtain a non singular graph. Hence the sequence of graphs $G \odot \overline{K_{m}}=G_{0}, G_{1}, \ldots, G_{m(n-1)}, \ldots G^{\prime} \ldots G^{\prime \prime}$ forms a uniform k-folding of G with $k=m(n-1)+n-\chi(G)+m-2=$ $(m+1) n-\chi(G)-2$. So, in this case fold $\left(G \odot \overline{K_{m}}\right)=(m+1) n-\chi(G)-2$.

Corollary 3.2. If C_{n} is a cycle graph on n vertices,

$$
\text { fold }\left(C_{n} \odot \overline{K_{m}}\right)= \begin{cases}(m+1) n-3 & \text { if } n \text { is even, } \\ (m+1) n-5 & \text { if } n \text { is odd. }\end{cases}
$$

Proof. $\quad \chi\left(C_{n}\right)=2$, if n is even and $\chi\left(C_{n}\right)=3$, if n is odd. Hence, the result follows by Theorem 3.1.

Corollary 3.3. If S_{n} is the star graph $K_{1, n}$, fold $\left(S_{n} \odot \overline{K_{m}}\right)=m(n+1)+$ $n-2$.

Proof. $\quad S_{n}=K_{1, n}$ is a bipartite graph, that is $\chi\left(S_{n}\right)=2$. So, the result follows by Theorem 3.1.

Corollary 3.4. If W_{n} is the wheel graph $C_{n-1}+K_{1}$,

$$
\text { fold }\left(W_{n} \odot \overline{K_{m}}\right)= \begin{cases}(m+1) n-5 & \text { if } n \text { is odd }, \\ (m+1) n-6 & \text { if } n \text { is even. }\end{cases}
$$

Proof. $\quad \chi\left(W_{n}\right)=3$, if n is odd and $\chi\left(W_{n}\right)=4$, if n is even. Thus the result follows by Theorem 3.1.

Definition 3.5. The corona product of a graph G and H with respect to a subset of vertices in G say $S \subset V(G)$ denoted by $G \odot_{S} H$ is defined to be the graph obtained by joining every vertex in H to the vertex v in S.

Corollary 3.6. Let $S \subset V(G)$ such that $|S|=p$, and $m \geq 2$, then the fold thickness of $G \odot_{S} \overline{K_{m}}$ is given by

$$
\text { fold }\left(G \odot_{S} \overline{K_{m}}\right)=\left\{\begin{array}{lc}
m p+n-\chi(G)-1 & \text { if } \chi(G)=2, \\
m p+n-\chi(G)-2 & \text { otherwise } .
\end{array}\right.
$$

where n is the number of vertices of G.

3.2. Fold Thickness of $G+\overline{K_{m}}$

In this section, we evaluate the fold thickness of graph join $G+\overline{K_{m}}$, where G is any connected graph and $\overline{K_{m}}$ is the null graph on m vertices.

Theorem 3.7. If $m \geq 2$, then the fold thickness of $G+\overline{K_{m}}$ is given by,

$$
\text { fold }\left(G+\overline{K_{m}}\right)=m+n-\chi(G)-2
$$

Proof. The graph $G+\overline{K_{m}}, m \geq 2$ is singular since, for any two vertices x and y in $V\left(\overline{K_{m}}\right), N(x)=N(y)=V(G)$. Note that $\chi\left(G+\overline{K_{m}}\right)=\chi(G)+1$. By Theorem 2.5, fold $\left(G+\overline{K_{m}}\right) \leq m+n-\chi\left(G+\overline{K_{m}}\right)-1=m+n-\chi(G)-2$. The maximum folding of G is $n-\chi(G)$.

Identify repeatedly every pairs of eligible vertices of $G, n-\chi(G)$ times to obtain a complete graph on $\chi(G)$ vertices. Thus, a uniform $(n-\chi(G))$ folding $G_{0}=G+\overline{K_{m}}, G_{1}, \ldots G_{n-\chi(G)}$ is obtained in which all graphs are singular. Then, fold $G_{n-\chi(G)} m-2$ times by identifying pairs of eligible vertices of $V\left(\overline{K_{m}}\right)$ to obtain the graph $K_{\chi(G)}+\overline{K_{2}}$. If the two vertices of $\overline{K_{2}}$ are identified, then we get a complete graph on $\chi(G)+1$ vertices which is nonsingular. Hence, fold $\left(G+\overline{K_{m}}\right)=n-\chi(G)+m-2=m+n-\chi(G)-2$.

References

[1] F. J. C ampeña and S. V. Gervacio, "On the fold thickness of graphs", A rabian Journal of Mathematics, vol. 9, no. 2, pp. 345-355, 2020. doi: 10.1007/s40065-020-00276-z
[2] C. R. Cook and A. B. Evans, "Graph folding", Congressus numerantium, vol 23-24, pp. 305-314, 1979.
[3] S. V. Gervacio, "Singularity of graphs in some special clases", Transactions of N ational A cademy of Sciences Technology, vol. 13, pp. 367-373, 1991
[4] S. V Gervacio, "Trees with diameter less than 5 and non-singular complement", Discrete Mathematics, vol. 151, no. 1-3, pp. 91-97, 1996. doi: 10.1016/0012-365x(94)00086-x
[5] S. V. Gervacio and R. C. Guerrero and H. M. Rara, "Folding wheels and fans", Graphs and Combinatorics, vol. 18, no. 4, pp. 731-737, 2002. doi: 10.1007/s003730200058
[6] R. Frucht and F. Harary, "On the corona of two graphs". A equationes mathematicae, vol. 4, pp. 322-325, 1970. doi: 10.1007/BF01844162

Reji T.

Department of Mathematics,
Government College Chittur, Chittur, Kerala, India-678104
India
(Affiliated to University of Calicut), e-mail: rejiaran@gmail.com

Vaishnavi S.

Department of Mathematics, Sree Narayana College Alathur, Alathur, Kerala, India-678682
India
(Affiliated to University of Calicut),
e-mail: vaishnavisvaishu@gmail.com Corresponding author
and
Francis Joseph H. Campeña
Department of Mathematics and Statistics
De La Salle University,
Manila Philippines
e-mail: francis.campena@dlsu.edu.ph

