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Abstract

In this article, generalized Saasakian space forms are discussed
and invariant submanifolds of these space forms are examined. The
curvature tensor chosen is of great importance when eramining the
characterization of a manifold. In this article, invariant submani-
folds of generalized Sasakian space forms are characterized according
to the Wg§—curvature tensor and pseudoparallel submanifolds are in-
vestigated for these space forms.
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1. Introduction

Let N be a (2n+ 1)-dimensional, differentiable manifold of class C. If the
structural group of its tangent bundle reduces to U (n) x 1, N is said to have
an almost contact structure by J.W.Gray in [10]. Later, equivalently, S.
Sasaki and S. Hatakeyama showed that an almost contact structure is given
by a triple (¢, &, n) satisfying certain conditions in [15],[16]. Many different
almost contact structures have been defined such as cosymplectic, Sasakian,
almost cosymplectic, quasi Sasakian, normal, a—Kenmotsu, a—Sasakian,
trans-Sasakian in [8] ,[9],[11],[14]. These types of structures bear sufficient
resemblance to cosymplectic and Sasakian structures so that it is possible
to generalize a portion of cosymplectie and Sasakian geometry to each type.

Let N (¢,€,m,g) be the almost contact metric manifold. If there are
functions Y1, To, T3 on N such that

R (B1,B2) Bs = Y1[g (B2, B3) Br — g (B1, B3) Ba]
+Y2 [g (B, #B3) ¢f2 — g (B2, 933) dP
(1.1) +29 (81, 9B2) B3] + T3 [n (B1) 1 (B3) B2
=1 (B2) 1 (B3) Br + g (B, B3) n (B2) €
—g (B2, B3)n (B) €],

N=N (¢,€,m,g) is defined a generalized Sasakian space form and such
a manifold is shown by N2"t1 (T Ty, T3). For brevity, the generalized
Sasakian space forms will now be represented as GS-space forms. Such
manifolds were introduced by P. Alegre et al [1]. P. Alegre et al calculated
the Riemann curvature tensor of a GS-space forms. In [17], GS-space forms
are studied under some conditions related to projective curvature. In this
work, U.C. De and A. Sarkar studied GS-space forms that provided PS =0
and PR = 0. Again, in [3], the same authors studied quasi conformal
flat, Ricci symmetric and Ricci semi-symmetric generalized Sasakian space
forms. In [2], the curvatures of para-Sasakian manifolds are studied and in
this study authors studied the curvatures of para-Sasakian manifolds. M.
Atcgeken studied and classified generalized Sasakian space forms for some
curvature conditions related to concircular, Riemann, Ricci and projective
curvature tensors in [7]. Again, many authors have worked on generalized
Sasakian space forms ([4],[12],[13],[5],[6],[19]).
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In this article, invariant submanifolds of GS-space forms are discussed.
First, the parallel second fundamental form case of the GS-space form has
examined. Then, pseudoparallel submanifolds of GS-space forms on the
W —curvature tensor have investigated. GS-space forms have been char-
acterized for W — pseudoparallel, W 2— pseudoparallel, Wy —Ricci gener-
alized pseudoparallel and Wi 2—Ricci generalized pseudoparallel subman-
ifolds.

2. Preliminary

Let’s take an (2n + 1) —dimensional differentiable N manifold. If it admits
a tensor field ¢ of type (1,1), a vector field £ and a 1-form 7 satisfying the
following conditions;

¢*B1 = —B1+n(B1) € and n(¢) = 1,

then this (¢, &, n) is called an almost contact structure, and the (N, ¢, &, n)
is called an almost contact manifold. If there is a g metric that satisfies the
condition

9(dB1, 9B2) = g(B1, B2) — n(B1)n(B2) and g (B1,€) = n(B1),
for all 51,02 € x (V) and £ € x (N); (4,&,7n,9) is called almost contact

metric structure and (N, ¢, £, 7, g) is called almost contact metric manifold.
On the (2n + 1) dimensional N manifold,

g (b1, B2) = —g (B1, $B2)

for all 81, B2 € x (IV), that is, ¢ is an anti-symmetric tensor field according
to the g metric. The ® transformation defined as

o (/617 52) =9 (/617 QSﬁQ)

for all 81,82 € x (IV), is called the fundamental 2-form of the (¢,£,n,g)
almost contact metric structure, where

nA®" #£0.

Sasakian space forms are very important for contact metric geometry. The
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curvature tensor for the Sasakian space form is defined as

R (B1,2) s = (552) [ (B2, ) B — 9 (51, Bs) o]

+ (%) 9 (B1, 9B3) ¢B2 — g (B2, 9F3) b1

+2g (81, #B2) ¢B3 + 1 (B1) 1 (B3) B2
—n (B2)n (B3) b1+ g (b1, 83)n(B2) &
—9(B2,83)n (B1) €],

If we choose T = %3, To = T3 = %1 in Sasakian space forms, then

we get GS-space forms. Therefore such manifolds are a generalization of
Saskian space forms.

For a (2n + 1) —dimensional GS-space form N27t1 (T1, Ty, T3) the fol-
lowing equations are provided [17].

(2.1) V& =—(T1—T3)¢p1,

(2.2) R(&, B2) B3 = (Y1 — T3) [g (B2, B3) € — n (Bs) o] ,
(2.3) R(B1,82) € = (Y1 = T3) [n(B2) B — 0 (B) Bl

(2.4) S (B1:€) =2n (Y1 = T3)n (B),

(2.5) Q¢ = 2n (11— T3)&,

(26) (V5:0) B2 = (Y1 = T3) g (81, B2) € = (B2) Bu]

for all B1, B2, B3 € x (IV), where @,S are the Ricci operator, Ricci tensor of
manifold N2"1 (Y, Ty, T3), respectively.

Let N be the immersed submanifold of the (2n+ 1)—dimensional gener-
alized Sasakian space form N2 (Y1, Yo, T3). Let the tangent and normal

subspaces of N in N2"t1 (T, Ty, T3) be I'(T'N) and T (TJ-N), respec-
tively. Gauss and Weingarten formulas for I' (T'N) and T’ (TLN ) are
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(2.7) VB2 =V B2+ (B, B2),

(2.8) Vs, B = —Ap,B1 + V5, B,

respectively, for all 51,82 € T'(TN) and B4 € T (TLN ), where 7 and

v+ are the connections on N and T (TLN ), respectively, o and A are the
second fundamental form and the shape operator of N. There is a relation

g (Ap,B1,B2) = g (o (B1,52),54)

between the second basic form and shape operator defined as above. The
covariant derivative of the second fundamental form o is defined as

(2.9) (V5,0) (Ba: Bs) = 74,0 (B2, B3) — 7 (75, B2 Bs) — 7 (B2, V5, Bs)

Specifically, if 7o = 0, N is said to be is parallel second fundamental
form.

Let R be the Riemann curvature tensor of N. In this case, the Gauss
equation can be expressed as

R (B1,B2) Bs = R (B1, B2) B3 + Au(p1,65) 52 — Ao )51

+ (6510) (B2, B3) — (@510) (B1,33) -

Let N be a Riemannian manifold, 7" is (0, k) —type tensor field and A is
(0,2) —type tensor field. In this case, Tachibana tensor field @ (A, T) is
defined as

Q(A,T) (X1, ... Xp—15 51, 82) = =T ((B1 Na B2) X1, ..., Xi)
(2.10)

—ee = T (X1, ey Xpo1, (B1 A2 B2) Xi),

where,

(2.11) (B1 Aa B2) B3 = A(B2,B3) 1 — A (B, B3) P,
k > 17X17X27 "'7Xk761762 S P(TN)
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3. Invariant Pseudoparalel Submanifolds of Generalized Sasakian
Space Forms

Let N be the immersed submanifold of a (2n + 1)—dimensional GS-space

form N2t (Y1, Y9, Y3). If ¢ (T5,N) C T N in every i point, the N

manifold is called invariant submanifold. From this section of the article,

we will assume that the manifold N is the invariant submanifold of the
GS-space form N2"*1 (11, Y2, T3). So, it is clear that

(31) J(qi)ﬁlaﬁ?) :U(Blad)B?) = QZ/)O' (51762)7

(3.2) g (ﬁl,f) = 0,

for all 51,82 € T'(T'N).
Lemma 1. Let N be the invariant submanifold of the (2n+1)—dimensional

GS-space form N2n+1 (Y1,Y2,Ts3). The second fundamental form o of N is
parallel if and only if N is the total geodesic submanifold provided T # Y3.

Proof.  Let’s assume that N is parallel second fundamental form. So,
we can write

(@510) (B2, B3) = V5,0 (B2, B3) — 0 (V, B2, B3) — 0 (B2, V3, B3) = 0.
If we choose B3 = £ in the last equation and use (2) and (4), we obtain

(Y1 —T3) do (B2, £1) = 0.

From here it is clear that N is the total geodesic provided T; # T3. a

M. Tripathi and P. Gunam described a T'—curvature tensor of the (1, 3)
type in an n-dimensional (N, g) semi-Riemann manifold [19]. This curva-
ture tensor is defined as

T (51, 52) B3 = aoR (b1, B2) B3 + a1S (B2, B3) B1 + a2S (B1, B3) B2
(3.3) +a3S (81, B2) B3 + aag (B2, B3) QB1 + asg (81, B3) QP2
+aeg (81, B2) QB3 + arr[g (B2, B3) b1 — g (b1, 83) B2 »
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where R, S, , and r are Riemann curvature tensor, Ricci curvature tensor,
Ricci operator, and scalar curvature of manifold NV, respectively. According
to the choosing of smooth functions ag, a1, ..., a7 the curvature tensor 7T is
reduced to some special curvature tensors as follows.

Definition 1. If ag = 1,a1 = —a5 = —%,ag =ag3=a4 = ag = a7y = 0 are
chosen in (15), the Wi —curvature tensor is defined as

1
32n

(34WG (B, B2) Bs = R (B1,52) B 1S (B2, 83) B1 — g (b1, B3) Q2] .

For the (2n + 1) —dimensional generalized Saskian space form, if we
choose 1 =&, By = &, P3 = £ respectively in (16), then we get

(1 —-2n)Y3—3Ys
2n

(3.5) W5 (§,B2)Bs = [9 (B2, B3) & — 0 (B3) Ba] ,
(3.6) We (81,€) B3 =0,

(2n—1) Y3+ 37,
2n

(3.7) Wy (B1,52) € = [ (B1) B2 = n (B1) 1 (B2) €]
Let us now examine the pseudoparallel submanifolds of (2n + 1) —dimensional
GS-space forms N?2"*1 (T, T, T3) on the W —curvature tensor.

Definition 2. Let N be the invariant submanifold of the (2n+1)—dimensional
GS-space form N2t (Y1, Ty, Y3). If W§ - 0 and Q (g,0) are linearly de-
pendent, N is called W —pseudoparallel submanifold.

Equivalent to this definition, it can be said that there is a function k;
on the set My = {x € N|o (z) # g (x)} such that

Wy -0=kQ(g,0).

If k1 = 0 specifically, NV is called a Wy —semiparallel submanifold.
Let N be the invariant submanifold of the (2n + 1)—dimensional GS-

space form N2t! (T1,Y2,Y3). If N is Wj—pseudoparallel submanifold,
(2n—1)T3+3T2

then N is either a total geodesic or k1 = o
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Proof.  Let’s assume that N is a Wy —pseudoparallel submanifold. So,
we can write

(Wo (B1,82) - o) (Bs, Ba) = k1Q (g, 0) (Bs, Ba; b1, B2) ,
for all 31,82, 85,84 € T (T'N). From, it is clear that

Rt (81, B2) 0 (Bs, Ba) — o (Wg (B1, B2) Bs, Ba)
—0 (Bs5, W (81, B2) Ba) = —ki {o ((61 Ny B2) Bs, Ba)
+0 (85, (81 Ng B2) Ba)} -

If we use (12) in the last equation, we can write

RJ— (Bla /62) g (557 /64) -0 (W(i,lk (ﬁla 52) 557 54)
—0 (B5, W§ (81, B2) Ba) = —k1{g (B2, B5) o (B1, Ba)
—9 (81, B5) o (B2, Ba) + g (B2, Ba) o (B5, B1)

—9(B1,84) 0 (B5, 2)} -
If we choose B4 = € in (20) and make use of (14),(19), we get

M#n(ﬁl)a(ﬁ&ﬁﬁ =

ki {n(B2) o (B5, B2) — 1 (Br) o (Bs, B2) }
IIf we choose 81 = ¢ in (21) and make use of (14), we obtain

(3.9)

(2n— 1) Y34 375 o

1 k1 — =0.
(3.10) 1 o (Bs,B2) =0
It is clear from equation (22) that

g (555 /82) =0
or

(2n — 1) T3+ 37,

k1 = .
2n

This completes the proof. O

Corollary 1. Let N be the invariant submanifold of the (2n+1)—dimensional
GS-space form N2"+1 (Y1,Y2,Y3). If N is W —semiparallel submanifold,
then N is either a total geodesic or a real space form with constant section
curvature c = 1.
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Proof. Let’s assume that N is a Wj—semiparallel submanifold. In this
case, there is a function k3 = 0 on the set M; = {x € N|o (z) #¢g(x)}
such that

W[Sk t0 = ]{le(‘g,(j) :
Then, as it is easily seen from the proof of Theorem-1, we obtain

(2n — 1) T3+ 3T20_
2n

(Bs, B2) = 0.

It is clear from last equation that

g (555 /82) =0
or
(2n — 1) T3+ 3Y, =0.
This completes the proof of the corollary. a

Definition 3. Let N be the invariant submanifold of the (2n+1)—dimensional
GS-space form N2l (Y1,Yo, Y3). If Wi - @a and Q) (g, @a) are linearly
dependent, then N is called Wi 2— pseudoparallel submanifold.

In this case, it can be said that there is a function k9 on the set
My = {a: € N|vo (z) # g(a:)} such that

Wi -0 =kQ (9,v0).

If ko = 0 specifically, N is called a W{j 2— semiparallel submanifold.

Let N be the invariant submanifold of the (2n + 1)—dimensional GS-
space form N2+l (Y1, Y2, Y3). If N is W 2— pseudoparallel submanifold,
(1 — QTL) Tg — 3T2 + QTZ

then N is either a total geodesic or ko = 1
n

Proof. Let’s assume that N is a W 2— pseudoparallel submanifold.
So, we can write

(W3 (81, B2) - Vo) (Bs. B, B3) = kaQ (9,7 ) (B, Ba, s B, Ba)
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for all 31, B2, Bs, B4, f3 € T (T'N) . Easily from here, we can write
R (B1,82) (@550) (Ba, B3) — (VW “(81,82)85 0 ) (B4, 53)

- (@550) (W5 (B1, B2) Ba, B3) — (%&U) (B4, W§ (B1, B2) B3)
(3.11)

= —k {(V(gl/\ggQ 1850 ) (B4, B3) + (%550) ((B1 Ag B2) Ba, B3)

+ (@,350) (B4, (B1 Ng B2) ﬁ3)} :

If we choose 1 = 33 = € in (23), we can write

RE (€, B) (@,350) (B4,&) — (VW *(¢,82)85 7 ) (B4, €)

— (V5,0) (W5 (&, B2) B1,€) — (V,0) (B, Wi (€, B2) ©)
B k2 { (V(eny ) (B, &) + (V5,7) (€ Ag B2) 81, )
+(V5,0) (Ba: (€ g B2) €}
Let’s calculate all the expressions in (24). So, we can write
RY(€,82) (V4,0) (81, €) = Wi (&, 82) { V4,0 (Ba.€)
(313)  —0(VsB1,6) — 0 (1, V5,6)}
= (Y1 = T3) R* (&, B2) 60 (Ba, B5) ,

(VWi es:) (B €) = Vi e s, @ (B €)
(3.14) —0 (Vg 8218551 €) = 7 (Bas Vwis (6,556

= =0 (Bs, = (Y1 = T3)5 (&, B2) Bs)

= — O (Y1 = Y3) 1 (B5) 60 (B, B2)
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(V30) (W (&, B2) B1,€) = V0 (W5 (€, B2) B, €)
(315) —0 (V&W(T (ga BQ) 647 £) -0 (VV[S|< (5? 62) 647 V655)
= —o (W22 [g (B3, B) € = (Ba) B, — (X1 = T3) 6%

= (2T (1, — Ty (B4) 6o (6, B5),

(V5,0) (Ba, Wi (&,82)€) = (V,0) (Bam (B2) € = B2)
(3.16) = (@,%U) (Ba,m (B2) §) — (@,@;U) (B4, B2)
= 0 (B1, Bsm (B2) € + 1 (B2) Vg, €) = (V5,0 (B, o)

= (Y1 = T3) 1 (B2) 60 (B1, B5) — (V5,0 ) (Bas B2),

(ﬁ(ngﬁz)ﬁsa) (B1,6) = Vé/\952)550 (84,6)
(3.17) I (V@Agffz)ﬁs@h 5) - (54, V(&Agﬁz)ﬁ5f)

= —0 (54a Vg(ﬂzﬂs)f—g(fﬁf))@g)

=— (Y1 —"3)n(Bs) ¢po (Bs, 32) ,

(V3) (€ Mg B2) B1,€) = V0 (€ Ag B2) Ba, )

318) o (U (€A B2) B1,€) — 0 (€ Ay B2) Ba, Vsd)
= —0 (92, B1) € — 9 (€ B1) o, — (T1 = T3) 855)
= — (Y1 = T3) 1 (Ba) 6 (B2, Bs) .
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(V30) (Bas (€ g 52)€) = (V3,0) (Basm (B2) € = a)

g (V87) Gun (0 - (Vo) (B o)

= —0 (B, B5 (B2) € + 71 (B2) Vi5,€) — (V) (Bas o)

= (Y1 = T3) 1 (B2) 60 (B1, B5) — (V5,7 ) (B B2) -

If we substitute (25), (26), (27),(28),(29), (30), (31) in (24) , we obtain

R (€, 82) (Y1 = Y3) 60 (B, fs)
+U2 IR () — T3) ) (85) b0 (Ba, o)
+ U2 8T8 (Y — Ya) (Ba) 60 (B, Bs)
(3:20) — (Y1 = T3)n(B2) 60 (Ba. B5) + (Vp,0) (Ba, B2)
= —ka {= (Y1 = T3)n(5s) ¢ (B, B2)
— (Y1 = Y3) 0 (1) 60 (B2, B5) + (Y1 = Y3) (B2) b0 (Ba. Bs)
—(Vp,) (81 B2) } -

If we choose 4 = € in (32), we get

U208 5T (1, Y3) o (B, ) + (V0 € )
(3.21)

= ks {= (T1 = T3) 60 (B2, B5) — (V,0) (€.52)}

On the other hand, it is clear that

(3.22) (@550) (&, P2) = (Y1 = T3) ¢o (B2, B5) -
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If (34) is written instead of (33), we obtain

{ U202 () — ) + (X1 — Ys)
(3.23)

—2(Y1 —Y3) k2} ¢o (B2, B5) = 0.

It is clear from equation (35) that

g (/827 /35) - 07
or
(1-2n)Y3—3Yy+2n
ko = .
in
This completes of the proof. |

Corollary 2. Let N be the invariant submanifold of the (2n+1)—dimensional
GS-space form N?"+1 (Y1, Yo, Y3). If N is W 2—semiparallel submanifold,

then N is either a total geodesic or a real space form with constant section
on+1

n+1"

curvature c =

Proof. Let’s assume that NV is a W 2—semiparallel submanifold. In this
case, there is a function ky = 0 on the set My = {a: eN|vo(z)#yg (a:)}
such that . .

Wi - Vo = kQ (9,v0) .

Then, as it is easily seen from the proof of Theorem-2, we obtain
[(1 = 2n) T3 =3T3 +2n] (T1 — T3) g0 (Bs, 62) = 0.

It is clear from last equation that

g (657 /32) =0
or
(2n— 1)T3+3T2—2n:().
This completes the proof of the corollary. |

Definition 4. Let N be the invariant submanifold of the (2n+1)—dimensional
GS-space form N2t (Y1, Yy, Y3). If W§ -0 and Q (S, o) are linearly de-
pendent, N is called W —Ricci generalized pseudoparallel submanifold.
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In this case, there is a function k3 on the set Mz = {x € N|o (z) # S (z)}
such that
Wi -o=ksQ(S,0).

If k3 = 0 specifically, N is called a W{ Ricci generalized semiparallel sub-
manifold.

Let N be the invariant submanifold of the (2n 4+ 1)—dimensional GS-
space form N2+l (Y1,YT2, Y3). If N is Wi —Ricci generalized pseudoparal-
(1—2n)Ts — 37,

4’[’L2 (Tl - Tg)

lel submanifold, then [V is either a total geodesic or k3 =

provided Y7 # T3.

Proof.  Let’s assume that N is a Wj—Ricci generalized pseudoparallel
submanifold. So, we can write

(WE)‘( (ﬁlv /82) : U) (ﬁ57 64) = k3Q (Sa U) (657 ﬁ4a 617 /82) 5
that is
R: (81, B2) o (Bs, Ba) — o (Wg (B, B2) Bs, Ba)

—o (85, W (81, B2) Bs) = —k3{S (B2, B5) o (51, Ba)
(3.24)

=S (b1, B5) 0 (B2, Ba) + S (B2, Ba) o (Bs, B1)
=S (B1,B4) o (B5,P2)} -
for all 31,82, 85,84 € T (T'N) . If we choose 81 = 84 = & in (36), we get

(3.25) — 0 (85, Wg (& 52) §) = k35 (§,€) 0 (Bs, B2) -
If we make use of (5) and (17) in (37), we obtain

(1 - Zn) Tg - 3T2
2n

(3.26) —2n (Tl — Tg) k‘g g (55, 52) =0

It is clear from in (38) that either

o (Bs,52) =0,

or
1-— 2n) T3 - 3T2
4n2 (Tl - Tg)

This completes the proof. O

iy =
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Corollary 3. Let N be the invariant submanifold of the (2n+1)—dimensional
GS-space form N2+l (Y1,Y9,Ts3). If N is W Ricci generalized semipar-
allel submanifold, then N is either a total geodesic or a real space form
with constant section curvature ¢ = 1.

Proof. Let’s assume that N is a Wj Ricci generalized semiparallel
submanifold. In this case, there is a function k3 = 0 on the set M3 =
{z € N|o(z) # S (x)} such that

Wy -0 =FkQ(S,0).
Then, as it is easily seen from the proof of Theorem-3, we obtain

[(1 - 277,) Tg - STQ] g (55, ,32) =0.

It is clear from last equation that

o (Bs,62) =0
or
(1 - 272,) Tg - 3T2 =0.
This completes the proof of the corollary. a

Definition 5. Let N be the invariant submanifold of the (2n+1)—dimensional
GS-space form N2n+1 (Y1,Y2,Y3). IFW§ - Vo and Q (S, @a) are linearly
dependent, N is called Wi —2 Ricci generalized pseudoparallel submanifold.

Then, there is a function k4 on the set My = {x € N|vo(z)#S (a:)}
such that

We - o = kiQ (S, @a) .

If k4 = O specifically, N is called a W 2—Ricci generalized semiparallel
submanifold.

Let N be the invariant submanifold of the (2n + 1)—dimensional GS-
space form N2+1 (Y1, Y2, Y3). If N is Wi 2—Ricci generalized pseudopar-
(1 — 2n) T3 - 3T2

4712 (Tl — Tg)

allel submanifold, then NV is either a total geodesic or ky =

provided Y7 # Ys.
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Proof. Let’s assume that NV is a W{j 2—Ricci generalized pseudoparallel
submanifold. So, we can write

(W (81, B2) - Vo) (s, B, B5) = kaQ (S, 70) (Bs. B, Bs; B, Ba)

for all 31, B2, B5, B4, 3 € T (T'N) . Easily from here, we can write

Rt (B, B2) (@550> (B4, B3) — (VW “(81,82)85C ) (B, B3)

— (850) (W5 (B, B) B, B3) = (V3,0) (81, W (B, o) o)
(3.27)

= —ka {(V(girsp2)5:7) (Bas B8) + (V5,0) ((B1 As Ba) B, s)

+ (@550> (B1, (B1 As B2) 53)} :
If we choose 1 = 84 = € in (39), we can write

RE(6,82) (V3,0) (6 85) = (Vg e.50)807) (65 B5)

— (V5,0) (W5 (&, 82) € Bs) — (V3,0 (&, W5 (€. B2) B)
(3.28)

= —k4 {(v(f/\sﬁz 857 ) (f ,33) (%550) ((5 Ag 52)57/33)

+(V5,0) (& (E As B2) B) } -
Let’s calculate all the expressions in (40). Firstly, we can write

RE(€,82) (V3,0) (€, 8) = Wi (&, 82) { V3,0 (&, B3)
(3.29) —0(VpsB3,6) — 0 (B3, V&) }
= RY (&, 62) (Y1 — Y3) ¢po (B3, B5) ,
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(VW *(€,62)850 ) (&, 53) = Vv (¢,6.)8,7 (€5 53)

(3.30) —0 (VWg(sﬂz)ﬂsf : 53) —0 (5 : VWS(Eﬂz)B553>
= (Y1 —T3) o (W5 (£, B2) B5, B3)
U=2m)Ts —3%2 0y — Y3) 1 (B5) $0 (Ba, Bs)

= 2n

(Vo) (W5 (6,82 €, Bs) = (Vp,0) (V2202202 [0 (B2) € — Ba] , Bs)

_ (1-2n)T3-3To
2n

(3.31) (V6:0) (1(82) €. B3) = (V) (B2 B3) }

6
{

(1 2n Tg 3T2{ o ﬁ577 62 £+77(/82)v/35£ ﬂg) (VBSO') (ﬁ2763)}
{on

( —2n Tg 3T

n(B2) ¢o (Bs, B3) — (V55U> (52,53)}>

(V) (€ W5 (€, B2) Ba) = V4,0 (&, W (&, B2) Bs)

-0 (v,35€7 W[Sk (5’ 62) /83) —0 (ga V&W(T (ga BQ) ﬁ3)

(3.32)
= —0 (= (Y1 —T3) ¢85, W (&, B2) B3)
= 2L 5Te vy T3) 0 (Bs) do (B, Ba)
(@(msm)ﬁsa) (€:83) = V{engp)s7 (€: B3)
(3.33) o (V(ﬁ/\sﬁz)/ﬁsfaf33) -0 (57 V(5A552)5553)

—0 (S (B2, B5) Ve€ — S (€, B5) V€, B3)
= —2n (Y1 — T3)’n(Bs) ¢ (B2, B3)
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(V5s0) (€ As B2) € Bs) = (75,0) (S (B2,€) € = S (€,€) B2, Bs)

= (@ﬁsa) (2n (T1—"T3)n(B2) € —2n (Y1 — T3) 2, £3)
(334~ 20 (01 = T0) {Tho (1(82) €. B) = 7 (Tan ()€, )
~0 (1(52) & V5, 8) — (V5,0 (B2, 5) }

= —2n (Y] — Y3) (@550> (B2, B3)

+2n (Tl - T3)2 n (52) gbO' (B5a 53) )

(V3s0) (& (€ As B2) Bs) = (Vs ) (€5 (B Bs) € = S (&, B5) Bo)

(3.35)_ (V557) (€S (B2, 83) €) = 2n (Y1 = T3) (75,0 ) (&, (B5) o)

= —2n(T1 — T3)*1(B3) g7 (Bs, Ba) -
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If we substitute (41), (42), (43), (44), (45), (46) , (47) in (40) , we obtain
R (€, 82) (T1 — Y3) 6o (B3, B5)

+ U203 (p) gy (8) dor (Ba Bs)

2n

— Q=203 (7 Y3) 1 (82) o (85, Bs)

02T =302 vy Ya) 1 (B3) ¢o (Bs, o)

1—271)T3—3T2

(3.36) + U0 (G 0) (Ba, Bs)
= —ka { =20 (1 = Y3)* 1 (B5) 60 (52, B3)
+2n (Y1 = Y3)* 1 (B2) do (65, Bs)
—2n (Y1 = T3)* 1 (83) ¢o (55, 5a)

—2n (T — T3) (@550) (52753)}-
If we choose 5 = ¢ in (48), we get

U202 (G 5,0) (B2, €) 4+ U202 (T = T3) b0 (5. o)
(3.37)

—ky {-271 (T1—7T3) (@ﬂsa) (82,6)

On the other hand, it is clear that

(V30) (& 82) = (T1 = T5) 65 (B, Bs) .
If the last equation is written instead of (49), we obtain
{(1—2@53—31(2 (T1 = T3) 6
(3.38)
—dn (T = 3)? <Z5k4] o (B2, B5) = 0.
It is clear from the last equality

(1—2n)Ts — 37,

g (/82755) =0or k4 = An2 (Tl _ Tg)
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This completes the proof. O

Corollary 4. Let N be the invariant submanifold of the (2n+1)—dimensional
GS-space form N2+l (Y1,Y2,Y3). If N is W 2—Ricci generalized semi-
parallel submanifold, then N is either a total geodesic or a real space form
with constant section curvature ¢ = 1.

Proof.  Let’s assume that N is a W 2—Ricci generalized semiparallel
submanifold. In this case, there is a function k4 = 0 on the set My =
{a: € N|vo (z) # S(:E)} such that

Wg - o = kiQ (S, @a) .
Then, as it is easily seen from the proof of Theorem-4, we obtain

(1 - 2n) Tg - 3T2
n

(Y1 —T3) ¢ (Bs,62) =0

It is clear from last equation that

g (657 /32) =0
or
(1 - 2n) Tg - 3T2 =0.
This completes the proof of the corollary. a

Let us now give an example that satisfies the theorems we have given
above. In [18], A. Sarkar and N. Biswas took a 5—dimensional GS-space
forms and obtained its 3—dimensional submanifold. Let us show that the
same manifold satisfies the conditions of the theorems we proved above.

Example 1. Let us consider the five-dimensional manifold

N° = {(B1, B2, B3, B5, B1) € R®| B3 # 0}, where (b1, B2, 83, B35, 5a) are the

standard coordinates of R®. We choose the vector fields

9 50 PN R 0
0B am T 0m T "ok T 95 4%’5 984"

which are linearly independent at each point of N°. we define g such that

€1 =

gler,er) =3.g(e2e2) =1,
g (es,eq) Zi g(es,e5) = i
9(63763) = 1,g(ez,ej) :O>
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for the remaining i, j;i,5 = 1,2,3,4,5. We consider a 1—form n defined by

n(B1) =g (Br,es), P € x (N5) :
So, we choose e = £. We define the (1, 1) tensor field ¢ by
¢ (e1) = —e2,0(e2) = e1,9(e3) = 0,0 (es) = —e5, ¢ (€5) = €4
The linearity property of g and ¢ shows that
1(es) = 1,67 (B1) = —B1 +1(B1) e,

g (6B1,062) = g (B1, B2) — 1 (B1)n (B2),

for any vector field 31, B2. So N° (¢,&,1m,g) defines am almost contact man-
ifold with es = £. Moreover, let V be the Levi-Civita connection with
respect to metric g. Then we have

[e1, e2] = [eq, 5] = —%63, lei,e;] = 0, otherswise.
By Kozsul’s formula, we obtain the following
66361 = €2, 66162 - _%637 66163 = €2,
66261 = i63, @@63 = —€1, 66362 = —e1,
Vees =e5,  Vees=—%e3,  Vees = es,
Veses = tes,  Veseg=—eq, Veesa=es
66365 = —e4.

For the remaining cases V,e; = 0.
Now, from the definition of curvatue tensor, we obtain its non-vanishing
components as follows;

R(ei,ex)er = 2es, Rer,es)er =—%,  R(er,en)es =—3,
R(ez,e3)ea = —fe3, Rer,e3)e3 = e, R (e2,e3) e3 = e,
R(€4,65) €4 = %657 R(64763) €4 = _ie?ﬂ R(e4765) €5 = _%615

_1

R(es,e3)es = —ze3,  R(es,e3)es3 = ey, R (es,e3) e3 = es.
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Thus N°® is a GS-space form with T1 =0,Ty = —1, T3 = —1.
Let N be a subset of N°® and consider the isometric immersion

[N — N° f(B1,B2,B5) = (B1,B2,53,0,0) .

It is easy to prove that N = { (81,52, 53) € R?| B3 # 0} is a submanifold
of N°, where (81, 32, 33) are the standart coordinates of R3.
We choose the vector fields

_ 0 50 0 g0
a1 PopsT Tt apy T Tops

€1

which are linearly independent at each point of N. We use the restrictions
of ¢,£,m and g to denote the structures on the submanifold. We take g

such that . )

g (61,61) - 179(62762) - 179 (63763) = 17
and g (e;, e;) = 0 for the remaining i, j; i, j = 1, 2,3. We take the 1—form n
defined by

n(B1) =g (Br,e3),p1 € x(N).

So, we choose ez = &. We consider ¢ by using

¢ (e1) = —e2, ¢ (e2) = e1,¢ (e3) = 0.

The linearity property of g and ¢ shows that
n(es) =1,¢°81 = —B1+1(B1)es,

9 (9B1,9062) = g (B1,B2) — 1 (B1)n(B2),

for any vector field 1,82 of N. So N (¢,&,7,g) defines an almost contact
manifold with es = £. It seen that N is invariant. Moreover, let V be the
Levi-Civita connection with respect to metric g of the submanifold. Then
we have

le1,e2] = —3¢3 lei, e;] = 0, otherswise.

By using Kozsul’s formula, we obtain

_1

1
v€162 - 4637 v€163 = €2, V6261 = Ze?ﬂ

Ve,e3 = —e1, Veer =e2, Veer = —ey.
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Let any vector field 35, 84 € x (N), then there exist some scalars \; and p;
such that
Bs = A1e1 + Azea + Azes

and
Ba = p1e1 + poea + pses.

Then, since o is linear, we get

o (Bs,P4) = 0.

This tell us that N is a totally geodesic submanifold. Since it is a totally
geodesic submanifold, the conditions given in the theorems and Lemma 1
satisfied. For Example, in Lemma 1, since T1 — Y3 # 0, it implies that
submanifold is totally geodesic. In same way, since the totally geodesic
submanifolds are the simplest manifolds, all the conditions given in the
theorems are satisfied. Thus the submanifold is totally geodesic. Also this
tell us that N is Wy —pseudoparallel, W§ — 2 pseudoparallel, Wj— Ricci
generalized pseudoparallel and W — 2 Ricci generalized pseudoparallel.
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