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Abstract

In this paper, we study the influence of derivations on semirings
with involution which resembles with commutativity preserving map-
pings. The action of derivations on Lie ideals and some differential
identities regarding Lie ideals are also investigated. It is proved that
for any two derivations d1, d2 of a prime semiring S with involution
such that atleast one of d1, d2 is nonzero and char(S) 6= 2, hence

if the identity [d1(a), d1(a )] + d2(a ◦ a ) = 0, for all a ∈ L, then
[L,S] = (0), where L is a Lie ideal of S.

Key words: Semirings; inverse semirings; Lie ideals; derivations.

MSC 2020: 16Y60, 16W10.

10.22199/issn.0717-6279-5627



384 Madhu Dadhwal and Geeta Devi

1. Introduction and Preliminaries

There has been a considerable interest on the behaviour of derivations and
commutativity of rings during the last few decades ( see [1],[6],[9],[13]).
The notion of rings with involution was first introduced by Herstein [9] and
thereafter the algebraic structure rings with involution carried much impor-
tance in ring theory (see [3],[11],[12]). In 1998, Beidar and Martindale [5]
examined some functional identities in prime rings with involution. In 2020,
Ali et al. proved some results concerning derivation and discussed certain
differential identities of these semirings to analyse the commutativity of
MA-semirings (see [4], [14],[15]). They assert an open question in [4] that
is “How to control conditions of semirings which enable to induce the com-
mutativity through Lie and other certain ideals of semirings?” This study
motivated us to examine these identities for the case of Lie ideals of addi-
tively inverse semirings with involution and we settle the aforementioned
question in the framework of Lie ideals.

By a semiring we mean a nonempty set S equipped with two binary
operations + and · (called addition and multiplication) such that (S,+) is
a commutative monoid with identity element 0, (S, ·) is a semigroup with
0s = 0 = s0, for all s ∈ S and multiplication distributes over addition
from either side. Recall from [10] that a semiring S is an additively inverse
semiring, if for each a ∈ S there exists a unique element a0 ∈ S such that
a + a0 + a = a and a0 + a + a0 = a0, where a0 is called the pseudo inverse
of a. A semiring S is prime, if aSb = (0) implies that either a = 0 or
b = 0. If L ⊆ S, then [L,S] = {ls + s0l|l ∈ L, s ∈ S}. Also, an additive
submonoid L of a semiring S is called a Lie ideal, if [L,S] ⊆ L and it is a
2- Lie ideal, if 2ab ∈ L, for all a, b ∈ L. For any a, b ∈ S, [a, b] (resp. a ◦ b)
symbolizes the commutator (resp. the Jordan product) ab+ b0a = ab+ ba0

(resp. ab+ ba) and these play a vital role in the study of additively inverse
semirings. Futher, an additive mapping d : S → S is called a derivation,
if d(ab) = d(a)b + ad(b), for all a, b ∈ S. Moreover, an involution is an
additive mapping : S → S satisfying (a ) = a and (ab) = b a . An
element a ∈ S is hermitian (resp. skew hermitian) if s = s (resp. s = s0).
The set of hermitian elements of S is denoted by H and skew hermitian
elements is denoted by S1. In addition, an involution is of second kind if
Z(S)H. According to Ali et al. [15], S1 ∩ Z(S) 6= (0) and H ∩ Z(S) 6= (0)
for semiprime additively inverse semiring with second kind involution and
an ideal I of S is a -ideal, if I = I .

In this paper, we generalize some results of [4] and [15], for the case of
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Lie ideals of additively inverse semirings. Throughout this paper, S is a
prime additively inverse semiring with A2− condition [2] i.e., for all a ∈ S,
a + a0 ∈ Z(S), where Z(S) is the center of S. Note that, an additively
inverse semiring with A2− condition is also known as a MA-semiring.

We collect some examples of additively inverse semiring with involution
alongwith some key results which are frequently used in the sequel and we
begin with

Example 1.1. Let S = {0, a, b, c, d, 1}, where 0 < a < b < c < d < 1.
Then (S,max,min) is an additively inverse semiring with A2− condition.

Example 1.2. Let S1 = {Z+ ∪ (∞),⊕,⊗}, where Z+ denotes the set of
all positive integers and the binary operations are defined as

a⊕ b =

(
(a, b), if a, b ∈ Z+
∞, if a =∞ or b =∞

and

a⊗ b =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
gcd(a, b), if a, b ∈ Z+
a, if b =∞
b, if a =∞
∞, if a =∞, b =∞.

Let R1 =

("
a b
c d

#
: a, b, c, d ∈ Z

)
be a non-commutative ring. Take

S = R1 × S1, where
Ã"

a b
c d

#
, s

!0
=

(Ã"
−a −b
−c −d

#
, s

!
. Define map

: S → S by

Ã"
a b
c d

#
, s

!
=

Ã"
a c
b d

#
, s

!
. Clearly, S is a non-

commutative additively inverse semiring with A2-condition and is an in-
volution of S = R1 × S1.

Example 1.3. Let S be an additively inverse semiring as considered in Ex-

ample 1.1 and S1 =
("

a b
c d

#
: a, b, c, d ∈ S

)
. Then, S1 is an additively

inverse semiring under the usual addition and multiplication of matrices.

Define map : S1 → S1 by
Ã"

a b
c d

#!
=

"
d b0

c0 a

#
. Now,

Ã"
a b
c d

#
+"

e f
g h

#!
=

Ã"
a+ e b+ f
c+ g d+ h

#!
=

"
d+ h b0 + f 0

c0 + g0 a+ e

#
=

"
d b0

c0 a

#
+"

h f 0

g0 e

#
=

Ã"
a b
c d

#!
+

Ã"
e f
g h

#!
, i.e. is an additive mapping
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of S1 and
Ã"

a b
c d

# !
=

Ã"
d b0

c0 a

#!
=

"
a b
c d

#
. Also,Ã"

a b
c d

# "
e f
g h

#!
=

Ã"
ae+ bg af + bh
ce+ dg cf + dh

#!

=

"
cf + dh a0f + b0h
c0e+ d0g ae+ bg

#
=

"
h f 0

g0 e

# "
d b0

c0 a

#

=

Ã "
e f
g h

#! Ã"
a b
c d

#!
. Therefore, is an involution of S1.

Example 1.4. If S is a additively inverse semiring as considered in Ex-

ample 1.1, then S1 =
("

a b
0 c

#
: a, b, c ∈ S

)
is also an additively

inverse semiring under the usual addition and multiplication of matri-

ces. Define maps , d : S1 → S1 by
Ã"

a b
0 c

#!
=

"
c b0

0 a

#
and

d

Ã"
a b
0 c

!
=

"
0 b
0 0

. Further,

Ã"
a b
0 c

#
+

"
d e
0 f

#!

=

Ã"
a+ d b+ e
0 c+ f

#!
=

"
c+ f b0 + e0

0 a+ d

#
=

"
c b0

0 a

#
+

"
f e0

0 d

#
=Ã"

a b
0 c

#!
+

Ã"
d e
0 f

#!
,

Ã"
a b
0 c

# !
=

Ã"
c b0

0 a

#!
=

"
a b
0 c

#

and

Ã"
a b
0 c

# "
d e
0 f

#!
=

Ã"
ad ae+ bf
0 cf

#!
=

"
cf a0e+ b0f
0 ad

#

=

"
f e0

0 d

# "
c b0

0 a

#
=

Ã"
d e
0 f

#! Ã"
a b
0 c

#!
. Therefore, is an

involution of S1. Also, d
Ã"

a b
0 c

# "
d e
0 f

!
= d

Ã"
ad ae+ bf
0 cf

#!

=

"
0 ae+ bf
0 0

#
=

"
0 b
0 0

# "
d e
0 f

#
+

"
a b
0 c

# "
0 e
0 0

#

=

"
d

Ã"
a b
0 c

#!"
d e
0 f

# "
+

"
a b
0 c

#
d

Ã"
d e
0 f

#!
. Hence d is a deriva-

tion of S1.
Lemma 1.5. [10] If S is an additively inverse semiring, then the following
statements hold:
(i) (a0)0 = a; (ii) a0b0 = (a0b)0 = (ab0)0 = ((ab)0)0 = ab; (iii) (ab)0 = a0b = ab0;
(iv) (a+ b)0 = a0 + b0, for all a, b ∈ S.
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The proof of the upcoming lemma is quite easy, so we omit the proof.

Lemma 1.6. If S is an additively inverse semiring and a, b ∈ S, then
a+ b = 0 implies a = b0.

Lemma 1.7. [7] If S is an additively inverse semiring and a, b, c ∈ S, then
the following statements hold:
(i) [a, bc] = b[a, c]+[a, b]c; (ii) [ab, c] = a[b, c]+[a, c]b; (iii) [a, b+c] = [a, b]+
[a, c]; (iv) [a+ b, c] = [a, c] + [b, c]; (v) [ab, a] = a[b, a]; (vi) [a, ab] = a[a, b];
(vii) [a, ba] = [a, b]a; (viii) [ba, a] = [b, a]a; (ix) a◦ (bc) = (a◦b)c+b0[a, c] =
b(a ◦ c) + [a, b]c; (x) (ab) ◦ c = a(b ◦ c) + [a, c]0b = (a ◦ c)b + a[b, c]; (ix)
f(a0) = f(a)0, for any additive mapping f : S → S.

Lemma 1.8. [8, Lemma 4.6] Let S be a prime additively inverse semiring
with char(S) 6= 2, L be a nonzero Lie ideal of S and a, b ∈ S such that
aLb = 0, then a = 0 or b = 0 or [L,S] = (0).

Lemma 1.9. [8, Proposition 3.3] If char(S) 6= 2 and L is a Lie ideal of S
such that [L,L] = (0), then [L,S] = (0).

Remark 1.10. Let L be a 2-Lie ideal of S i.e., 2ab ∈ L, for all a, b ∈ L.
Then, we have 2s[a, b] = 2sab + 2sb0a = 2sab + 2as0b + 2asb + 2sb0a =
2[a, s0]b+2[a, sb] for all a, b ∈ L, s ∈ S. Since L is a 2-Lie ideal, this implies
that 2S[L,L] ⊆ L. Similarly, 2[L,L]S ⊆ L.

Lemma 1.11. Let L be a nonzero 2-Lie ideal and d be a derivation of S
with char(S) 6= 2 such that d(L) = (0). Then either d = 0 or [L,S] = (0).

Proof. By hypothesis, we have d(a) = 0 for all a ∈ L. Since L is a 2 -
Lie ideal, therefore replacing a by 2s[a, b], we conclude that

d(s)[a, b] = (0), for all a, b ∈ L, s ∈ S.

Now, replace s by ts, we have d(t)S[a, b] = (0), for all a, b ∈ L, t ∈ S. By
using the primeness of S and Lemma 1.9, we conclude that either d = 0 or
[L,S] = (0). 2

Lemma 1.12. [8, Theorem 4.2] If L is a nonzero 2 - Lie ideal of S with
char(S) 6= 2, then either [L,S] = (0) or L contains a nonzero ideal of the
form I = 2S[L,L]S of S.
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Lemma 1.13. [8, Theorem 5.8] If L is a nonzero 2 - Lie ideal of S with
char(S) 6= 2 such that d2(L) = (0), then either [L,S] = (0) or d = 0.

Lemma 1.14. If d is a derivation of S and a ∈ S such that [a,S] = (0),
then [d(a),S] = (0).

Proof. By given hypothesis, we have [a, s] = as+ s0a = 0, for all s ∈ S.
By taking derivation of [a, s] = 0, we conclude that 0 = d(a)s + ad(s) +
d(s)0a + s0d(a) = [d(a), s] + [a, d(s)] = [d(a), s], for all s ∈ S. Hence,
[d(a),S] = (0). 2

It is easy to conclude the following result from [7, Lemma 2.11].

Lemma 1.15. Let d be a nonzero derivation of S with char(S) 6= 2 and I
be a nonzero ideal of S such that [d(I), d(I)] = (0), then [I,S] = (0).

Proposition 1.16. If L is a 2-Lie ideal of S and d is a nonzero derivation
of S with char (S) 6= 2 such that [d(L), L] = (0), then [L,S] = (0).

Proof. Suppose that L is a 2-Lie ideal of S and d is a nonzero derivation
of S with char(S) 6= 2 such that [d(a), b] = 0, for all a, b ∈ L. Now replacing
a by 2ac, we have

d(a)[c, b] + [a, b]d(c) = 0, for all a, b, c ∈ L.(1.1)

Further, taking c = 2cb, we get (d(a)[c, b] + [a, b]d(c))b+ [a, b]cd(b) = 0
and by (1.1), [a, b]Ld(b) = (0), for all a, b ∈ L. Moreover, by Lemma 1.8, we
have [L,S] = (0) or [L, b] = (0) or d(b) = 0, for each b ∈ L. If [L,S] = (0),
then we are done. Suppose that [L,S] 6= (0). Then we are left with the
condition: For each b ∈ L, either [L, b] = (0) or d(b) = 0. If d(L) = 0, then
in view of Lemma 1.11, d = 0. But d is nonzero, so there is an element
a ∈ L such that d(a) 6= 0, then [L, a] = (0). Now, it remain to show that
[L, b] = (0), for all b ∈ L. If possible, suppose that there exists an element
t ∈ L such that [L, t] 6= (0) and d(t) = 0. Further,

d(a+ t) = d(a) + d(t) = d(a) 6= 0

and [l, t+ a] = [l, t] + [l, a] = [l, t], for all l ∈ L. Since [L, t] 6= (0), therefore
the last equation infers that [L, t+a] 6= (0), which is a contradiction. Thus,
[L,L] = (0). Moreover, by Lemma 1.9, we conclude that [L,S] = (0), which
is a contradiction to our supposition. Hence [L,S] = (0). 2

An immediate consequence of the above proposition is
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Corollary 1.17. If L is a 2-Lie ideal of S and d is a nonzero derivation of
S with char (S) 6= 2 such that [d(L),S] = (0), then [L,S] = (0).

2. Lie Ideals and Derivations of Additively Inverse Semirings
with Involution

This section deals with the behaviour of derivations on Lie ideals of ad-
ditively inverse semirings with involution. Also, it is discussed that how
derivations effect the commutativity of additivity inverse semirings with in-
volution and some results of [4], [15] are also generalized. In this section, L
is a nonzero as well as 2-Lie ideal, S is a prime additively inverse semiring
with involution and char(S) 6= 2.

Lemma 2.1. If a ∈ S such that [a, [a, l ]] = 0, for all l ∈ L, then either
[a,S] = (0) or [L,S] = (0).

Proof. The hypothesis gives that [a, [a, l ]] = 0, for all l ∈ L. As L is
a -Lie ideal, so we have [a, [a, L]] = (0). Moreover, by [8, Theorem 4.9],
either [a,S] = (0) or [L,S] = (0). 2

Lemma 2.2. [15, Lemma 2.3] Let S be a semiprime inverse semiring with
second kind involution . Then S1∩Z(S) 6= (0) and hence H∩Z(S) 6= (0).

Proof. As involution is of second kind, therefore Z(S)H. Let z ∈
Z(S)\H. Then zs = sz, for all s ∈ S which gives that (zs) = (sz) . That
is s z = z s , for all s ∈ S. Further, by taking s = s , we get sz = z s,
for all s ∈ S, i.e. z ∈ Z(S). Since z, z0 ∈ Z(S), therefore z0 + z ∈ Z(S).
Clearly, z0 + z ∈ S1. This infers that z0 + z ∈ S1 ∩ Z(S). Assume that
S1 ∩ Z(S) = (0). Thus, z0 + z = 0. Moreover, by Lemma 1.6 z = z,
i.e. z ∈ H, which is a contradiction. Therefore, S1 ∩ Z(S) 6= (0). Now,
let 0 6= s ∈ S1 ∩ Z(S). Then s2 ∈ H and s2 ∈ Z(S). If s2 = 0, then
sSs = (0) and by the semiprimeness of S, s = 0, which is not possible. So
0 6= s2 ∈ H ∩ Z(S). Hence H ∩ Z(S) 6= (0). 2

The upcoming result is a generalization of [15, Lemma 2.4].

Proposition 2.3. If S is with second kind involution and [a, a ] = 0, for
all a ∈ L, then [L,S] = (0).
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Proof. By hypothesis, we have

[a, a ] = 0, for all a ∈ L.(2.1)

Linearization of (2.1) gives that

[a, b ] + [b, a ] = 0, for all a ∈ L.(2.2)

On putting a = [a, st], for all t ∈ S, s ∈ S1 ∩ Z\{0}, we have

[[a, st], b ] + [b, ([a, st]) ] = 0.(2.3)

As s ∈ S1 ∩ Z(S)\{0}, so equation (2.3) infers that
[[a, t], b ]s+[b, ([a, t]) ]s0 = 0. Therefore, ([[a, t], b ]+ [b, ([a, t]) ]0)s = 0 and

([[a, t], b ] + [b, ([a, t]) ]0)Ss = (0).

The primeness of S implies that [[a, t], b ] + [b, ([a, t]) ]0 = 0 and by
Lemma 1.6,

[[a, t], b ] = [b, ([a, t]) ], for all a, b ∈ L, t ∈ S.(2.4)

On replacing a by [a, t] in (2.2) and using (2.4), we get 2[[a, t], b ] = 0,
for all a, b ∈ L, t ∈ S. Since char(S) 6= 2, therefore [[a, t], b ] = 0 and
putting t = ta, we get [a, t][a, b ] = 0, for all a, b ∈ L, t ∈ S. Now, as L is a
- Lie ideal, so we have [a, t][a, l] = 0, for all a, l ∈ L, t ∈ S. Taking t = lt

in the previous equation, we conclude that

[a, l]S[a, l] = (0), for all a, l ∈ L.

Furthermore, the primeness of S gives that [L,L] = (0) and Lemma 1.9
follows that [L,S] = (0). 2

The next result is an extension to [15, Lemma 2.5].

Theorem 2.4. Let S with second kind involution . If d is a nonzero
derivation of S such that d[a, a ] = 0, for all a ∈ L, then [L,S] = (0).

Proof. By hypothesis, we have

d[a, a ] = 0, for all a ∈ L.(2.5)

On linearizing (2.5), we obtain that
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d[a, b ] + d[b, a ] = 0, for all a, b ∈ L.(2.6)

By putting b = [b, rt], r ∈ S, t ∈ H ∩ Z(S)\{0}, (2.6) leads to,

0 = d[a, [b, rt] ] + d[[b, rt], a ]

= d([a, [b, r] ]t) + d([[b, r], a ]t)

= (d[a, [b, r] ] + d[[b, r], a ])t+ ([a, [b, r] ] + [[b, r], a ])d(t).

On using (2.6), the above equation infers that

([a, [b, r] ] + [[b, r], a ])d(t) = 0,(2.7)

for all a, b ∈ L, r ∈ S, t ∈ H ∩ Z(S)\{0}. Replacing r by rs with
s ∈ S1 ∩ Z(S)\{0}, we are left with

([a, [b, r] ]0 + [[b, r], a ])d(t)s = 0.

This gives that ([a, [b, r] ]0 + [[b, r], a ])d(t)Ss = (0), for all a, b ∈ L, r ∈
S, t ∈ H∩Z(S)\{0}, s ∈ S1 ∩Z(S)\{0}. The primeness of S deduces that
([a, [b, r] ]0 + [[b, r], a ])d(t) = 0 and by Lemma 1.6, we conclude that

[a, [b, r] ]d(t) = [[b, r], a ]d(t), for all a, b ∈ L, r ∈ S, t ∈ H ∩ Z(S)\{0}.

On using the above equation in (2.7), we have 2[[b, r], a ]d(t) = 0, for
all a, b ∈ L, r ∈ S, t ∈ H ∩Z(S)\{0}. As char(S) 6= 2, so [[b, r], a ]d(t) = 0.
By using the fact L is - Lie ideal the previous equation concludes that
[[b, r], a])d(t) = 0, for all a, b ∈ L, r ∈ S, t ∈ H ∩ Z(S)\{0}. Now, taking
2la in place of a, we find that

[[b, r], l]Ld(t) = (0), for all b, l ∈ L, r ∈ S, t ∈ H ∩ Z(S)\{0}.(2.8)

In view of Lemma 1.8, (2.8) gives that [[b, r], L] = (0), for all b ∈ L, r ∈ S
or d(t) = (0), t ∈ H∩Z(S)\{0} or [L,S] = (0). If [L,S] = (0), then we are
done. If

[[b, r], l] = 0, for all b, l ∈ L, r ∈ S



392 Madhu Dadhwal and Geeta Devi

then taking l = b, r = a , for any a ∈ L and using Lemma 2.1, [L,S] = (0).
On the other side, if

d(t) = 0, t ∈ H ∩ Z(S)\{0}.(2.9)

Since for each s ∈ Z(S), s+ s ∈ H ∩ Z(S), therefore

d(s) + d(s ) = 0.(2.10)

As s0 + s ∈ S1 ∩ Z(S), for each s ∈ Z(S), we get from (2.9)

0 = d(s0) + d(s )

= d(s)0 + d(s ).

In view of Lemma 1.6, d(s) = d(s ) and using this in equation (2.10),
we conclude that

d(s) = 0, for all s ∈ Z(S).(2.11)

On replacing b by [b, st], s ∈ Z(S) in (2.6), we have

0 = d[a, [b, st] ] + d[[b, st], a ]

= d([a, [b, t] ])s + [a, [b, t] ]d(s ) + d([[b, t], a ])s+ [[b, t], a ]d(s).

Now, using (2.11), the above equation infers that

d([a, [b, t] ])s + d([[b, t], a ])s = 0, for all a, b ∈ L, t ∈ S, s ∈ Z(S).(2.12)

By applying Lemma 1.6, equation (2.6) deduces that d[a, [b, t] ] = d[[b, t], a ]0

and using this in (2.12), we have d([[b, t], a ])(s+ (s )0) = 0. As s+ (s )0 ∈
Z(S), so

d([[b, t], a ])S(s+ (s )0) = (0).

The primeness of S concludes that either d([[b, t], a ]) = 0, for all a, b ∈
L, t ∈ S or s+ (s )0 = 0. By Lemma 1.6, the latter case gives that s = s ,
which implies that Z(S) ⊂ H, a contradiction. Therefore

d([[b, t], a ]) = 0, for all a, b ∈ L, t ∈ S.(2.13)
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As L is a - Lie ideal, so (2.13) gives that d([[b, t], a]) = 0.

On taking a = 2al, we are left with ([[b, t], a])d(l) + d(a)[[b, t], l] = 0,
for all a, b, l ∈ L, t ∈ S. Further, putting [[b, t], a ] in place of a and using
(2.13), we get ([[b, t], [[b, t], a ]])d(l) = 0. Replacing l by 2lk and using the
fact that char (S) 6= 2, we obtain that

([[b, t], [[b, t], a ]])Ld(k) = (0), for all a, b, k ∈ L, t ∈ S.(2.14)

By Lemma 1.8, [[b, t], [[b, t], a ]] = 0 or d(L) = (0) or [L,S] = (0). If

[[b, t], [[b, t], a ]] = 0, for all a, b ∈ L, t ∈ S

by Lemma 2.1, [[b, t], s] = 0, for all b ∈ L, s, t ∈ S or [L,S] = (0). Now,
putting s = b and t = l with l ∈ L and again using Lemma 2.1, we find
that [L,S] = (0).
By Lemma 1.11, d(L) = (0) also infers that [L,S] = (0). This completes
the proof. 2

The upcoming corollaries are immediate consequences of Theorem 2.3.

Corollary 2.5. If S is with second kind involution and d is derivation a
of S such that d(t) = 0, t ∈ H∩Z(S)\{0}. Then, d(s) = 0, for all s ∈ Z(S).

Corollary 2.6. Let I be a nonzero -ideal of S with second kind involution
. If d is a nonzero derivation of S such that d[a, a ] = 0, for all a ∈ I, then
[I,S] = (0). Moreover, S is commutative.

By applying a similar technique as in the above theorem with suitable
changes, the following theorem can be proved.

Theorem 2.7. Let S with second kind involution . If d is a nonzero
derivation of S such that d(a ◦ a ) = 0, for all a ∈ L, then [L,S] = (0).

The next result is a generalization of [4, Lemma 5].

Proposition 2.8. If a, b ∈ S such that alb + bla = 0, for all l ∈ L, then
a = 0 or b = 0 or [L,S] = (0).
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Proof. Suppose that a, b ∈ S with

alb+ bla = 0, for all l ∈ L.(2.15)

As L is a 2 -Lie ideal, so replacing l by 2lbs[u, v] in (2.15), we get

2(albs[u, v]b+ blbs[u, v]a) = 0.

Since char(S) 6= 2, therefore we have

albs[u, v]b+ blbs[u, v]a = 0.

On applying Lemma 1.6 on equation (2.15), it concludes that alb = bla0

and using this in the previous equation we find that

bL(a0s[u, v]b+ bs[u, v]a) = (0), for all u, v ∈ L, s ∈ S.(2.16)

By applying Lemma 1.8 to equation (2.16), we obtain that b = 0 or
a0s[u, v]b+ bs[u, v]a = 0 or [L,S] = (0). If a0s[u, v]b+ bs[u, v]a = 0, then by
Lemma 1.6, we are left with

as[u, v]b = bs[u, v]a, for all u, v ∈ L, s ∈ S.(2.17)

Now, replacing l by 2s[u, v] in (2.15), then by the fact char(S) 6= 2 and
(2.17), we get aS[u, v]b = (0), for all u, v ∈ L. The primeness of S infers
that either a = 0 or [u, v]b = 0. By taking v = 2vl, we conclude that

[u, v]Lb = (0), for all u, v ∈ L.

In view of Lemma 1.8 and 1.9, the above equation infers that [L,S] = (0)
or b = 0. 2

Theorem 2.9. Let d be a nonzero derivation of S such that [d(L), d(L)] =
(0), then [L,S] = (0). Moreover, L ⊆ Z(S).

Proof. By hypothesis, we have

[d(a), d(b)] = 0, for all a, b ∈ L.

Then, by Lemma 1.12, the above equation gives that [d(a), d(b)] = 0,
for all a, b ∈ I = 2S[L,L]S.
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By using Lemma 1.15, we conclude that [2s[a, b]t, u] = 0, for all a, b ∈
L, t, s, u ∈ S. On using the fact that char(S) 6= 2 and then replacing t by
tv we conclude that

s[a, b]S[v, u] = (0), for all a, b, v ∈ L, u, s ∈ S.

The primeness of S concludes that [L,L] = (0) and by Lemma 1.9,
[L,S] = (0). Moreover, by Lemma 1.6, L ⊆ S. Hence the proof. 2

Corollary 2.10. Let d be a nonzero derivation of S such that [d(S), d(S)] =
(0), then [S,S] = (0). Moreover, S is commutative.

The upcoming theorem is a generalized version of [4, Theorem 1].

Theorem 2.11. If d1 and d2 are derivations of S with second kind involu-
tion such that atleast one of d1, d2 is nonzero with [d1(a), d1(a )]+d2(a◦
a ) = 0, for all a ∈ L, then [L,S] = (0).

Proof. The hypothesis implies that

[d1(a), d1(a )] + d2(a ◦ a ) = 0, for all a ∈ L(2.18)

and atleast one of d1 and d2 is nonzero. Here, we have three possible cases:
(i) d1 = 0 and d2 6= 0;
(ii) d1 6= 0 and d2 = 0;
(iii) d1 6= 0 and d2 6= 0.

Now, we will discuss the aforementioned possible cases in detail:
(i) If d1 = 0 and d2 6= 0, then (2.18) infers that d2(a◦a ) = 0, for all a ∈ L.
Further, Theorem 2.7 concludes that [L,S] = (0).

(ii) If d1 6= 0 and d2 = 0, then (2.18) leads to

[d1(a), d1(a )] = 0, for all a ∈ L.(2.19)

On linearizing (2.19), we

[d1(a), d1(b )] + [d1(b), d1(a )] = 0, for all a, b ∈ L.(2.20)

Taking a = 2r[a, st], t ∈ H ∩ Z(S)\{0} in (2.20), we have

2(([d1(r[a, s]), d1(b )] + [d1(b), d1(r[a, s]) ])t+ [r[a, s]d1(t), d1(b )] + [d1(b),
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(r[a, s]) d1(t)]) = 0

for all a, b, r ∈ L, s ∈ S. By using char(S) 6= 2 and (2.19) in the above
equation, we get

[r[a, s]d1(t), d1(b )] + [d1(b), r[a, s] d1(t)] = 0.(2.21)

Putting s = su, u ∈ S1∩Z(S)\{0}, we are left with ([r[a, s]d1(t), d1(b )]+
[d1(b), r[a, s] d1(t)]

0)u = 0. Therefore,

([r[a, s]d1(t), d1(b )] + [d1(b), r[a, s] d1(t)]
0)Su = (0)

for all a, b, r ∈ L, s ∈ S, u ∈ S1 ∩ Z(S)\{0}. The primeness of S gives
that

[r[a, s]d1(t), d1(b )] + [d1(b), r[a, s] d1(t)]
0 = 0.

Moreover, by lemma 1.6, we have

[r[a, s]d1(t), d1(b )] = [d1(b), (r[a, s]) d1(t)]

and using this in equation (2.21), we get that 2[r[a, s]d1(t), d1(b )] = 0.
This implies that

0 = [r[a, s]d1(t), d1(b )]

= r[a, s][d1(t), d1(b )] + [r[a, s], d1(b )]d1(t).

Putting r = 2rc we get that

[r, d1(b )]c[a, s]d1(t) = 0 for all a, b, c, r ∈ L, s ∈ S, t ∈ H ∩ Z(S)\{0}.

By Lemma 1.8, [r, d1(b )] = 0 or [a, s]d1(t) = 0 or [L,S] = (0). If
[r, d1(b )] = 0, for all b, r ∈ L. As L is a - Lie ideal, then we find that
[r, d1(b)] = 0 and by Proposition 1.16, [L,S] = (0). Now, consider the case
[a, s]d1(t) = 0. By replacing s by rs, we get that

[a, r]Sd1(t) = 0, for all a ∈ L, r ∈ S, t ∈ H ∩ Z(S)\{0}.

The primeness of S infers that either [L,S] = 0 and d1(t) = 0, t ∈
H ∩ Z(S)\{0}. Then, by Corollary 2.5

d1(s) = 0, for all s ∈ Z(S).
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Now, putting b = 2r[b, ts] in (2.20) and using the above equation, we
find that ([d1(a), d1((r[b, s]) )]

0 + [d1(r[b, s]), d1(a )])t = 0, for all a, b, s ∈
L, r ∈ S, t ∈ S1 ∩ Z(S)\{0}. This implies that

([d1(a), d1((r[b, s]) )]
0 + [d1(r[b, s]), d1(a )])St = (0).

The primeness of S gives that

[d1(a), d1((r[b, s]) )]
0 + [d1(r[b, s]), d1(a )] = 0.(2.22)

By Lemma 1.6, the above equation infers that

[d1(a), d1((r[b, s]) )] = [d1(r[b, s]), d1(a )]

for all a, b, s ∈ L, r ∈ S. Taking b = 2r[b, s] in (2.20), then using char
(S) 6= 2 and the above equation, we are left with

[d1(r[b, s]), d1(a )] = 0

for all a, b, s ∈ L, r ∈ S. Since L is a - Lie ideal, therefore [d1(r[b, s]), d1(a)] =
0. Further, putting r = d1(a)r, we get

0 = [d21(a)r[b, s], d1(a)] + d1(a)[d1(r[b, s]), d1(a)]

= [d21(a)r[b, s], d1(a)] = d21(a)[r[b, s], d1(a)] + [[d
2
1(a), d1(a)]r[b, s]

a, b, s ∈ L, r ∈ S. Replacing s by sb, we have

d21(a)S[b, s][b, d1(a)] = (0).

Since S is a prime, therefore the primeness of S infers that for each
a ∈ L, either d21(a) = 0 or [b, s][b, d1(a)] = 0, for all b, s ∈ L. Assume
that [L,S] 6= (0). If d21(L) = 0, then by Lemma 1.13, d1 = 0, which is not
possible since d1 6= 0. So there exists some l ∈ L such that d21(l) 6= 0, then
[b, s][b, d1(l)] = 0, for all b, s ∈ L. We claim that [b, s][b, d1(a)] = 0, for all
a, b, s ∈ L. If possible, let m(6= l) ∈ L such that [b, s][b, d1(m)] 6= 0. Then
d21(m) = 0. Now,

d21(l +m) = d21(l) + d21(m) = d21(l).

But d21(l) 6= 0, therefore

0 = [b, s][b, d1(m+ l)] = [b, s][b, d1(m)] + [b, s][b, d1(l)] = [b, s][b, d1(m)]
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which is a contradiction. So,

[b, s][b, d1(a)] = 0, for all a, b, s ∈ L.(2.23)

On taking s = 2d1(a)s[u, v], we have

0 = d1(a)[b, 2s[u, v]][b, d1(a)] + 2[b, d1(a)]s[u, v][b, d1(a)] = 0

for all a, b, s, u, v ∈ L. Since 2s[u, v] ∈ L, therefore by (2.23), the preceding
equation leads to

[b, d1(a)]s[u, v][b, d1(a)] = 0

for all a, b, s, u, v ∈ L. This gives that [u, v][b, d1(a)]L[u, v][b, d1(a)] = (0),
for all a, b, u, v ∈ L. In view of Lemma 1.8, [u, v][b, d1(a)] = 0, for all
a, b, u, v ∈ L. This infers that [u, c]v[b, d1(a)] = 0, for all a, b, c, u, v ∈ L,
by taking v = 2cv. Again, by using Lemma 1.8, we get that [L,L] = (0)
or [L, d1(L)] = (0). By Lemma 1.9, [L,L] = (0) implies that [L,S] = (0),
which is a contradiction. In view of Proposition 1.16, [L, d1(L)] = (0) gives
that [L,S] = (0), again a contradiction. In each case, we get a contradiction
to our assumption. Hence, [L,S] = (0).
(iii) Let d1 6= 0, d2 6= 0. Since L is Lie ideal, therefore replacing a by a
in (2.18), we conclude that

0 = [d1(a ), d1(a)] + d2(a ◦ a )
= [d1(a), d1(a )]

0 + d2(a ◦ a ).

By Lemma 1.6, the above equation leads to [d1(a), d1(a )] = d2(a ◦ a )
and by using this in (2.18), we get that

2d2(a ◦ a ) = 0, for all a ∈ L.

This gives that d2(a ◦ a ) = 0. Moreover, by Theorem 2.7, [L,S] = (0).
This completes the proof. 2

The upshot of the above theorem is

Corollary 2.12. If d1 and d2 are derivations of S with second kind involu-
tion such that atleast one of d1, d2 is nonzero with [d1(a), d1(a )]+d2(a◦
a ) = (0), for all a ∈ S, then S is commutative.
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