Proyecciones Journal of Mathematics d 1 10.22199/issn.0717-6279-5610
Vol. 42, N° 5, pp. 1221-1239, October 2023.

Universidad Catdlica del Norte

Antofagasta - Chile

Some extensions of the Hermite-Hadamard
inequalities for quasi-convex functions via
weighted integral

Bahtiyar Bayraktar
Bursa Uludag University, Turkey
Juan E. Ndpoles Valdés
Universidad Nacional del Nordeste, Argentina
Florencia Rabossi
Universidad Nacional del Nordeste, Argentina
and

Aylen D. Samaniego
Universidad Nacional del Nordeste, Argentina
Received : August 2022. Accepted : May 2023

Abstract
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1. Introduction
Let <}, ¢3 € R with ¢f < <5 and I := [}, 3], and function ¢ : I — R.

Definition 1. IfV £, € I and k € [0, 1] inequality ¢ (k{ + (1 — K)s) <
kY(§) + (1 — k)Y(s) is true, then 1 is convex on I. In the case of the
opposite inequality, the function concave on the interval.

One of the most interesting and fruitful concepts in modern mathemat-
ics is the concept of a convex function. This notion has become widespread
in applied and computational mathematics (an interested reader can find
a fairly complete review of generalizations and extensions of the notion of
a convex function in [26]).

Definition 2. The real function v is said to be quasi-convex on I if in-
equality

(L.1) ¥ (K€ + (1 = K)s) < max{e)(£), (<)}

is fulfilled ¥V €, € I and k € [0,1].

Remark 3. Any convex function is a quasi-convex function. The converse
is not true, that is, there exist quasi-convex functions which are not convex

(see [31]).

In recent years, the attention of many researchers working on the theory
of inequalities has been drawn to the famous double Hermite-Hadamard
inequality obtained for any function ¢ convex on [¢f,<5].

(1.2) w(ci”rcé*) Sc 1 qw(ﬂ)dﬁgw(ﬁ*)W(cﬁ*)

2 5 =<1 Jor 2

The peculiarity of this inequality is that it gives an estimate of the mean
value of the function on the interval and, moreover, makes it possible to
refine Jensen’s inequality.

The study of inequality Hadamard has attracted the attention of many
researchers in recent years, mainly in the following directions:

1) Using different notions of convexity.

2) Refinement of the mesh used, including more nodes.

3) Improvement of the estimates of the left and right members of Hadamard.
4) Using new generalized and fractional integral operators.
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For more information and to get acquainted with various extensions of
Hadamard’s inequality, the reader can refer to [3, 5, 6, 7, 8, 9, 12, 14, 15,
16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 35, 38] and references in them.

To make it easier to understand the subject of research, below is the
definition of the fractional Riemann-Liouville integral (with 0 < ¢f <k <
65 < 00).

Definition 4. Let ¢ € Li[¢},<5]. Then the Riemann-Liouville fractional
integrals of order aw € C, R(«w) > 0 are defined by (right and left respec-
tively):

x

(z = R)*T(R)dr, @ >

"Lv() = 7o
B

(@)

where Euler Gamma function and I'(z) = [(° k" te ™" dr, R(z) > 0.

S2

gp(z) = (v —2)* (k) dr, o<,

/*
I

Our work is based on the definition of a weighted integral operator
presented below.

Definition 5. Let ¢ € L[}, s3] and w : [0, 1] — [0, +00), with first order
derivatives piecewise continuous on [¢f, s3], and @w(0) = 0. The right and
left, weighted fractional integrals respectively are defined by:

13 ) = [ (S5 s, o>
! st S2 —S1
P S5 —

(1.4) WJ£i1;<2]¢(x):/2 w'(’j a:*)w(/-@)dn, T <.
2 T So — 61

and

15 ) = [C = (e s o>

@1 S2 — 91

(L6) WI;&;%( )= [ (S5 e, @<

2 S|
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Remark 6. If we take w'(k) = % -k, then from (1.3) and (1.4)
we obtain the definition of the Riemann-Liouville fractional integral. If on
the contrary w'(k) = 1, then we obtain the classical Riemann Integral A
similar reasoning is valid in the case of the integrals of (1.5) and (1.6).

Of course there are other known integral operators, fractional or not,
that can be obtained as particular cases of the previous one, but we leave
it to interested readers.

In this paper, some variants of inequality (1.2) are presented using the
weighted integral operators of Definition 5 for functions with quasi-convex
first and second derivatives.

2. Some results for functions first derivative is quasi-convex

Our first result establishes a variation of the Hermite-Hadamard Inequality
given in (1.2).

Theorem 1. Let v : [¢f, 5] — R™ be a quasi-convex function on (¢§,<3).
If ¢ € L[sf, s3] and @’ > 0 then we have

§* + g* 1 w 7ls7 55 * w 153 *
w0 (52 < Lo [PrESue) += 155

2.1) < 2w(l)max{y(sr), P(s2)}-

Proof. Taking into account that ¢ is quasi-convex function, putting
k= % in (1.2), we obtain Vu,v € I

v(*57) < max {w(a).v(0)}

Then, choosing u = k¢ + (1 — k)3, ¥ = (1 — K)sf + K¢y and we add
member to member, we obtain

v (T52) < e o tmax{ulnst + (1= 0)5),0(1 = )5+ nsh))

by multiplying the above inequality by @’(x) and integrating between 0
and 1 gives us

SRR 1 o rl553] ey w lsrss] ok
o (D52 < = ma {1 () = 15}
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which allows us to obtain the first inequality of (2.1).
Now, let’s prove the right inequality of (2.1). Since 1) is a quasi convex
function for all ¢f,¢3 € I, and « € [0, 1], we have

P(rei + (1= k)sy) < max{y(sr), ()},
P(rey + (1= r)sp) < max{y(cz), P(sr)}-

Multiplying both inequalities, member by member, by @'(k), adding
and integrating between 0 and 1, we obtain
@' (R)Y (k] + (1= K)s3) + @' (k)Y (k63 + (1 = K)<])

< 2w'(k) max{y(s7), ¥ (s5)}
and
O1 w/(ﬁ)w("igf + (1 _ H)gg)dli + fol w/</£)w(li§§ + (1 — ,‘q,)gf)d:‘i
< 2w(1) max{y(s7), ¥(s3)}-

Taking into account that

max {wI§17§2]¢(<2) Ig[?lgg]w(gf)} < wI§1 §2]¢( ) ngilC;]d}(gf)’
from above the right member of (2.1) is easily obtained. This completes
the proof. |
Remark 2. If in the previous result we take @'(k) = k*~!, we completed
the Theorem 2.1 of [31], since the authors only prove the second inequality.

If we consider w'(k) = 1 then the above result is a variant of Theorem 2.2
of [13].

The following result will be used throughout this section.

Lemma 3. Let ¢ : [¢},¢5] — R and ¥ € CY(},s3). If ' € L[}, s3],
then the following equality

=O-20) (s(c}) + 9(§) + i [P P o(ep) +° 1 Hy(p)]
(2.2)
= Jo (1 — k) — @(k)] ¥ (56} + (1 — K)<3)dk.

holds.
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Proof.  Writing
= Jo [@(1 = &) = ()] ¢/ (5s] + (1 = K)s3)dr
= Jo w1 = 0¥ (s + (1 = k)s3)dr — Jy w(r)¥ (k] + (1 = K)s3)dr
=A; — As.

From the above we have, integrating by parts we get

Ay = Jyw(@—r)Y (ks +(1— fi)<§) dr
_ w(1=r)Y (ks +(1—k)s3) 1-k)Y (ks +(1—kK)s3)
= o b T s

w<0>w(q)—w<1)w(<§)+ 1 folw,(l

21

K)Y (ke + (1 = K)s3) dk

Putting z = ki + (1 — K)s3, so dz = (¢3 — <f)dk, with this change of
variables, we obtain

sy = ZOUED U)o
S =St SEU RS Rt 1
Analogously,
= EWUED)  2OUE) LT el
G- G-  G-o df

Subtracting ¢3 from ¢f and reordering, the required equality (2.2) is
obtained. a

Remark 4. Putting w(k) = k® from this result, we obtain the Lemma 2
of [36]. On the other hand, if we put w(k) = K, our result contains as a
particular case, Lemma 2.1 of [11].

On the basis of this result, we can obtain the following inequality.

Theorem 5. Let ¢ : [¢f,s5] — R and ¢ € CY(c},3). If ' € Li[sf, 3]
and |¢/| is a quasi-convex on [¢},<3], then following inequa]jty holds

=02 (4(ch) +45(3)) + ey [P (sp) += 15 )|

< 2max{y/(s}), ¥'(s3)} Jy w(k)de.
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Proof.  From equation (2.2) of Lemma 3, the quasi-convex of |4/, the
properties of modulus and w(k), we have

w(0)—w * * w ’ w ) *
|ZO=20 () + (D) + gy [P () +7 1w )|
< Jo @1 = 5) = @(R)| [¢/ (6] + (1= £)s5)| drs
< Jo @1 = 8) + @(R)| [0/ (] + (1 = £)s5)| drs
< 2max {|¢/(s7)], [V ()]} Jy (r)dr
using fol w(l — k)dk = fol w(k)dk. This completes the proof. O
Remark 6. Considering as in the previous Remark, this result covers the
Theorem 2.2 of [31]. If we put w(k) = K (see the second part of the Remark
10) we obtain Theorem 1 of [18].
Refinements of the previous result are included in the following.
Theorem 7. Let ¢ : [¢f,55] — R and v € CY(c},3). If ' € Li[sf, 3]

and [¢'|? is quasi-convex on [¢f,<}], then Vp,q > 1 and % +% = 1 the
inequality

2020 (1) +0(s3)) + e 1S () + 1P|

o= 1)

Q=

< {(f& = (1= w)de)? + (J3 wp(r»)dn)%} (max {1’ (1)1, [0/(3)|"})
(2.3)

is true.

Proof. From equation (2.2) of Lemma 3 we have

FEEE WD) + vl + g [PIE o) +7 1)
< ol (1 — ) — @ (k)| W (s + (1~ R)3) dr

< Jo w(L—8) [/ (v + (1= K))| ds + fy @ () [¢' (k] + (1 — £)e3)| dr

and using well known Holder’s integral inequality, we get
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Jo (1= k) [/ (rf + (1= k)63)| drs

Q=

< (P (1= )" (fo 10/ + (1= r)s5)| i)

Q=

< (Jd (1~ ) (e (/D)7 [0/(5) 7))
Analogously
o ) [0+ (1 )55 s

< 1 _»p d % 1 \|4 1(%\[4 %
< (Jo @P(®)dr) " (max {[¢" ()|, [ (c3)["})

The last two results allow us to obtain the requested inequality (2.3).
This completes the proof. O

Remark 8. If we take w(k) = K, this result becomes the Theorem 2.3
of [31].

Theorem 9. Let v : [¢},¢5] — R and v € C(sf,<3). If ¢’ € Li[sf, 3]

and [1'|? is quasi-convex on [}, ¢5], then for all ¢ > 1 inequality

=R ) + 96 + g [P () +7 1)
(2.4)

< (max {[¢/ (ﬁ)’q 19" (s3) |} (fo (1_’€)d’i+f0 @ () dﬁ)

is true.

Proof. Similar to the proof of the previous theorem, we can write

FET WD D) + g [“fc[?fﬂm )+ 15 ()|

< Jo w1 = K) [ (st + (1 — k)s3)| di + [y w(k) [¢ (565 + (1 — K)s3)| dr.

Using the power mean inequality for the first integral, we get
Jo (1= k) [/ (5st + (1 = K)s3)| dr

< (fpw(1- ﬁ)dﬁ)l_é (fo =1 = R) [/ (st + (1 = m))| dﬁ)é

< (Jo w1~ ) (max ([ ()|, [0/(3)|7} dr)s



Some extensions of the Hermite-Hadamard inequalities ... 1229

Similarly, for the second integral we can write

Jo w(®) [¢ (56} + (1 — K)6})| dr
= (fo1 w(’i)dﬁ)l_% (fol w(k) |V (ksf + (1 — K)s3)|? d/@)%
< (J @()) (mae {0/ ()1 [0/ (3)1} )

So we have

G—or (W(s) +9(s3)) — ﬁ [W[ ‘1 ‘2]¢( £ 4 [[<1 ’§2]¢(CT)H

1
< (max {0/ ()|, [/ ("D (Jy @ (1 = r)ds + J§ w(x)dr)
which is the inequality (2.4) sought. In this way we complete the proof. O

Remark 10. It is easy to see that Theorem 2.4 of [31] is obtained from
the previous one, putting w(k) = k%, we also obtain Theorem 2 of [18], if
we consider w(k) = k.

3. Some results for functions whose second derivative is quasi-
convex

We will use the following result throughout this section.

Lemma 1. Let v : [¢},;] — R and ¢ € C%(sf,<3). If " € L[}, 3],
then the following equality

(@(0)—w@)(¥'(s5)+¥'(s3)) (@' (O)+=' (1)) ((s5)—¥(<}))

S5 =67 (s5—<7)?

(3.1) +(§2 g) (wI§1’§2]¢( )+w I[g?&z]w(q))

= Jo [w(1 = k) —@(R)] " (k5] + (1 = K)s3)dr

is true.

Proof. Writing
= fo [w(1 = k) = w(k)] " (kef + (1 — )3 )dr

= fo @w(1 — k)" (kei + (1 — K)e3)d fo (R)Y"(kst + (1 = k)3 )dk
=B — Bg
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From the above, integrating by parts twice and making a change of

variables, we have

Jo @ (1= k)" (kef + (1 - w)) dr = = (<§Q:§<l>w ()
+W’(0)1/J )=’ (1)9(<3)
((93*)?{)(2 )
w// 1_ w *+ 1_ *
+ fOl & (qii}p A dk

Putting z = ki + (1 — K)s3, so dz = (s3 — <f)dk, with this change of
variables, we obtain

- [§*,§*] "
So — 61 (gQ—gl) (g2_§1)
Analogously
R (st + (1= w3 e — =) =0()
+w/(0)¢ o)== (De(s))
*__x\2
<(g§ (<1> (1-r)s3)
@ (k)Y (kT +(1—kK)ss
+ f01 (ggg_lq P %2 dk

Putting z = ki + (1 — K)s3, so dz = (s3 — <f)dk, with this change of
variables, we obtain

5, — P (6h) = 2O (s8) , (O (1) - ' (isi) , "I tsh)

+ +
G =< (53 —f)? (65 —s7)?

Subtracting By from Bj and reordering, the required equality (3.1) is
obtained. a

Remark 2. Putting w(k) = k(1 — k) from this result, we obtain the
Lemma 1 of [4]. On the other hand, if we put w(k) = k(k), our result
contains as a particular case, Lemma 2 of [29], where k(k) is the function
defined in this paper.

For brevity of expressions, we introduce the notation

L(HH) = OO E) & O W)(6(s)-u6)

=S (—<1)?

+(<§—1<T)2 (WIE*I 7g2]w(§5) +7 IE? ’<2]¢(§f)) )

On the basis of the Lemma 1, we can obtain the following inequality.
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Theorem 3. Let v : [¢},s5] — R and ¢ € C%(s},s3). Ifv" € List, <}
and ¢" is a quasi-convex function on [}, 5], then the following inequality
holds:

LA < 2mas{y(6),0(3)) [ )

Proof. From Lemma 1, property of the modulus and using the hypoth-
esis that 1" is quasi-convex, we have:
ILHH)| < fy @(1— k) — @ (k) [ (k5] + (1 = K)s3)| dr
< Jo @(1 = &)+ @(k) [/ (ks} + (1 — K)s3)| drs
< 2max{y”(}), 9" ()} Jy @ (r)dr.

using fol w(l — k)dk = fol w(k)dk. O

Remark 4. Considering the function w(k) = k(k) as the previous Re-
mark, we obtain the Theorem 2 of [30]. We also obtain Theorem 3 of [4] if
we put w(k) = k(1 — k).

The next result includes refinements of the previous result.

Theorem 5. Let v : [¢},s5] — R and v € C%(s},s3). If v" € List, 3]
and |¢"|? is a quasi-convex function on [s}, ¢;], then Vp,q > 1 and %—F% =1
the following inequality holds:

UTIE {( ['=a-om) ([ w”mdm)%} (e (4 DI [

(3.2)
Proof. From Lemma 1 and property of the modulus we have
D] < [ ot = 0) = (][0 (nst + (1= )] d
< [T st + (=R w [ () [0 st + (1 )]

and using well known Holder’s integral inequality and the quasi convex of
[9"]7, we get
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Jo @ (1= k) ["(ket + (1 = K)<3)| dr

1
q

< (R P(1 = r)dw)” (i WO + (1= )s5)|" )

Q=

< (&1 = )dr) ? max (DI, (I

Analogously

/O 1 w(k) |9 (ks + (1 — K)s3)| dr
1 m 1
< ([ =)’ e (sl I

The last two results allow us to obtain the requested inequality (3.2).
This completes the proof. O

Remark 6. Considering as in the previous Remark, this result covers the
Theorem 3 of [30], if we take w(k) = k(k), the Theorem 1 of [28] and
Theorem 4 of [4], if we take w(k) = k(1 — k).

The following theorem gives us another form of the previous result.
Theorem 7. Let ¢ : [¢f,¢5] — R and ¢ € C%(¢t,3). If ¥" € List, 3]

and [¢"|? is a quasi-convex function on [sf,<3], then for all ¢ > 1 the
following inequality holds:

1 1 1
|L(HH)| < (max {|¢" (s1)|?, [¢"(s3)|*}) @ </0 (1 —m)d/ﬁ—/o w(ﬂ)dm)
(3.3)
is true.
Proof. Proceeding as in the previous Theorem’s proof, we have
1 1
L) < [ (1) [0 (nc} + (1= 0)55) [ dit [ () [0 (] + (1= w)s5)]
0

and using the well known power mean inequality, we get



Some extensions of the Hermite-Hadamard inequalities ... 1233

Jo (1= k) [ (567 + (1 = £)s3)| s
< (Rt - m)dr) ™" (e - 8 [0 et + (1 w)eg)] di)
< (o w(1 — m)di) (max {1 (DI [4"(s5)|"})7 -

Similarly
Jo @(r) 9" (rst + (1 = K)s3)| drs

Q=

< (R =(0de) '™ (i ) [0 s + (1~ R)es) [ d)
< (Ji o lr)dr) (max (e ()1 [0 () 7D

So, we can write

L) < max (06D [0 ([ - s+ [ ste)ae)

which is the inequality (3.3) sought. In this way we complete the proof. O

Remark 8. It is easy to see that Theorem 2 of [28] is obtained from the
previous one, putting w(k) = k(1 — k). We also obtain Theorem 5 of [4] if
we considerig the same function.

4. Conclusions

In this article, we have obtained new integral inequalities related to the
Hermite-Hadamard inequality, using quasi-convex functions, under the weighted
operators of the Definition 5. We point out that several known results from

the literature are obtained as particular cases of those presented here. Fi-
nally, we want to point out that the working method used can be extrapo-
lated to other notions of convexity, for example, to the case of harmonically-
convex functions and can even be used in obtain new inequalities of the
Hermite-Hadamard-Fejer type.
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