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Abstract

Topological indices are numerical values related to a chemical struc-
ture that describes the correlation of chemical structure with different
physical properties and chemical reactions. Glass has wide applica-
tions in architecture, tableware, optics, and optoelectronics.
In this article, first, the mathematical relationship between M-polynomial
and Banhatti indices such as K-Banhatti, δ-Banhatti, and hyper δ-
Banhatti indices are obtained. Then using M-polynomial, Banhatti
indices are obtained.
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1. Introduction

The main application of topological indices in the chemical sciences is the
calculation of physical and chemical properties for molecular graphs. For
this reason, the theory of chemical graphs is effective in the development
of chemical sciences. Amorphous substances may be solid (Glass) or liquid
(smelting). Glass is often produced by cooling the melt under its glass
transition temperature quickly enough to prevent the formation of crystal
phases [22]. For the first time in Germany, the word ” glesum ” meaning
”transparent,” was used, from which the word ”Glass” was derived [4].
Glass is one of the oldest artificial materials, and today, it has become a
tool for decorating architecture and structures (Figure 1.1).

Figure 1.1: Chemical structure of Glass.

Glass can be produced by various methods such as melting harden-
ing [22], physical vapor deposition [2], solid-state reactions (thermochemi-
cal methods [24] and chemical mechanics [24]), liquid state reactions (sol-
gel process [1,8]), irradiation of crystalline solids (radiative amorphization
[21,23]) and under the action of high pressures (pressure amorphism [5,17]).
Glass is an amorphous non-crystalline solid and often transparent that has
wide applications in architecture, tableware, optics, and optoelectronics.
Topological indices are used to investigate physical and chemical proper-
ties in the prediction of the bioactivity of chemical molecules. To further
explore these properties, the following sources can be used [9,20].
A significant topological index introduced is the first Zagreb index [7]. In
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graph H= (V, E), the first and second Zagreb index are defined as follows:

M1(H) =
X

rs∈E(H)
[dH(r) + dH(s)], M2(H) =

X
rs∈E(H)

dH(r)dH(s),

In which the degree of vertex r is indicated by dr.

Definition 1. The first and second K-Banhatti indices in Graph H are
defined in the following way [13]:

B1(H) =
X
re

[dH(r) + dH(e)], B2(H) =
X
re

dH(r)dH(e),

Where re means that vertex r and edge e are incidents in H.

Kulli Calculated the K-Banhatti indices of various chemical networks
such as silicate networks, chain silicates, oxides, and honeycomb networks
[11]. The K-Banhatti index has also been used to find new drugs and
vaccines to prevent the treatment of Covid-19 [12]. The first and second
K-Banhatti indices and the first and second K-hyper Banhatti indices of
windmill graphs have also been studied [15].
The minimum and maximum vertex degree of graph H denotes by δ(H) and
∆(H) respectively. Recently, the conceptual d-vertex degree in chemistry
graph theory is defined by Kulli as [14]:

δr = dH(r)− δ(H) + 1.

Definition 2. The first and second δ-Banhatti indices of a graph H are
defined as follows [14]:

δB1(H) =
P

rs∈E(H)
(δr + δs),

δB2(H) =
P

rs∈E(H)
(δrδs).

Definition 3. The first and second hyper d-Banhatti indices of a graph H
are defined as follows [14]

HδB1(H) =
P

rs∈E(H)
(δr + δs)

2,

HδB2(H) =
P

rs∈E(H)
(δrδs)

2.
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Definition 4. The M-Polynomial in graph H is defined as [3]:

M(H;x, y) =
X

δ≤i≤j≤∆
mij(H)x

iyj .

Where mij(H) is the number of edges rs ∈ E(H) such that dr = i and
ds = j.

Some operators, which are used further, are defined as

DxM(H;x, y) = x × ∂M(H;x,y)
∂x , DyM(H;x, y) = y × ∂M(H;x,y)

∂y ,

Qx(α)M(H;x, y) = xαM(H;x, y), Qy(α)M(H;x, y) = yαM(H;x, y).

One of the applications of the M-Polynomial is that it is possible to calculate
topological indices with the help of mathematical relations (derivatives,
integrals, etc.) for x and y. The calculation of topological indices using
M-polynomial in the molecular graphs has also been investigated [6,19].

Definition 5. In a non-empty graph H, if each edge is considered as a
vertex and the two vertices are connected, if the corresponding edges of the
two vertices are adjacent to H, the resulting graph is denoted by L(H) and
is called the line graph of H [16].
In this article, the relationship of M-polynomials with Banhatti indices is
studied and Banhatti indices for line graph and molecular graph of Glass
are calculated using M-polynomials.

2. Main results

Figure 2.1 shows the Glass’s molecular graph.
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Figure 2.1: The molecular graph of Glass.

The molecular graph of glass is denoted by H. There are seven types of
edges in the molecular graph of Glass as follows:

E1 = {(dH(r), dH(s)) |rs ∈ E(H), dH(r) = 1, dH(s) = 3} ,
E2 = {(dH(r), dH(s)) |rs ∈ E(H), dH(r) = 1, dH(s) = 4} ,
E3 = {(dH(r), dH(s)) |rs ∈ E(H), dH(r) = 2, dH(s) = 2} ,
E4 = {(dH(r), dH(s)) |rs ∈ E(H), dH(r) = 2, dH(s) = 3} ,
E5 = {(dH(r), dH(s)) |rs ∈ E(H), dH(r) = 2, dH(s) = 4} ,
E6 = {(dH(r), dH(s)) |rs ∈ E(H), dH(r) = 3, dH(s) = 3} ,
E7 = {(dH(r), dH(s)) |rs ∈ E(H), dH(r) = 3, dH(s) = 4} .

According to Figure 2.1, we have the following table for the molecular graph
of Glass:

Edge type Number of edges dH(r) + dH(s) dH(r).dH(s)

E1 2 4 3

E2 3 5 4

E3 5 4 4

E4 4 5 6

E5 20 6 8

E6 1 6 9

E7 1 7 12

Table 2.1: The number of edges in the molecular graph of Glass.

As a result, the number of edges in the molecular graph of Glass is equal
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to:
|E(H)| = 2 + 3 + 5 + 4 + 20 + 1 + 1 = 36.

Figure 2.2 shows the line graph of Glass.

Figure 2.2: The line graph of Glass.

The line graph of glass is denoted by L(H). There are eight types of
edges in the line graph of Glass as follows:

E01 = {(dH(r), dH(s)) |rs ∈ E(L(H)), dH(r) = 2, dH(s) = 2} ,
E02 = {(dH(r), dH(s)) |rs ∈ E(L(H)), dH(r) = 2, dH(s) = 3} ,
E03 = {(dH(r), dH(s)) |rs ∈ E(L(H)), dH(r) = 2, dH(s) = 4} ,
E04 = {(dH(r), dH(s)) |rs ∈ E(L(H)), dH(r) = 3, dH(s) = 3} ,
E05 = {(dH(r), dH(s)) |rs ∈ E(L(H)), dH(r) = 3, dH(s) = 4} ,
E06 = {(dH(r), dH(s)) |rs ∈ E(L(H)), dH(r) = 3, dH(s) = 5} ,
E07 = {(dH(r), dH(s)) |rs ∈ E(L(H)), dH(r) = 4, dH(s) = 4} ,
E08 = {(dH(r), dH(s)) |rs ∈ E(L(H)), dH(r) = 4, dH(s) = 5} .

According to Figure 2.2, we have the following table for the molecular graph
of Glass:

As a result, the number of edges in the line graph of Glass is equal to:

|E(L(H))| = 3 + 4 + 4 + 2 + 12 + 1 + 32 + 4 = 62.

Marisol Martínez
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Theorem 1. Let H= (V, E) be a graph of size m. Then, the following
relationships are established between the δB1(H) and δB2(H) index and
the first and second Zagreb index:

i) δB1(H) =M1(H)− 2(δ(H) + 1)m ,

ii) δB2(H) =M1(H) +M2(H)− (δ(H)− 1)2m .

Proof.

i)δB1(H) =
P

rs∈E(H)
(δr + δs ) =

P
rs∈E(H)

((dH(r)− δ(H) + 1)+(dH(s)− δ(H) + 1))

=
P

rs∈E(H)
((dH(r) + dH(s))− 2(δ(H) + 1)) =M1(H)− 2(δ(H) + 1)m,

ii)δB2(H) =
P

rs∈E(H)
(δr.δs ) =

P
rs∈E(H)

((dH(r)− δ(H) + 1).(dH(s)− δ(H) + 1))

=
P

rs∈E(H)
((dH(r)dH(s)) + (dH(r) + dH(s)) + (δ(H)− 1)2)

=M1(H) +M2(H) + (δ(H)− 1)2m.

2

Theorem 2. Let M(H;x, y) be the M-Polynomial for the graph H. Then
the first K-Banhatti index is computed as,

KB1(H) = 2Dx + 3Dy +DxQx(−4)M (H;x, y)
¯̄̄
(x,y)=(1,1)

.

Edge type Number of edges dH(r) + dH(s) dH(r).dH(s)

E
0
1 3 4 4

E
0
2 4 5 6

E
0
3 4 6 8

E
0
4 2 6 9

E
0
5 12 7 12

E
0
6 1 8 15

E
0
7 32 8 16

E
0
8 4 9 20

Table 2.2: The number of edges in the line graph of Glass.
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Proof. According to definitions def1 and def4, the following relations
are obtained:

KB1(H) =
P
re
[dH(r) + dH(e)] =

P
rs∈E(H)

(dH(r) + dH(e)) + (dH(s) + dH(e))

=
P

rs∈E(H)
(dH(r) + dH(s) + 2dH(e))

=
P

rs∈E(H)
(dH(r) + dH(s) + 2(dH(r) + dH(s)− 2))

=
P

rs∈E(H)
(3dH(r) + 3dH(s)− 4),

(DxQx(−4))M (H;x, y) = DxQx(−4)
P

δ≤i≤j≤∆
mij(H)x

iyj

=
P

δ≤i≤j≤∆
(i− 4)mij(H)x

i−4yj ,

(2Dx)M (H;x, y) = 2Dx
P

δ≤i≤j≤∆
mij(H)x

iyj =
P

δ≤i≤j≤∆
(2i)mij(H)x

iyj ,

(3Dy)M (H;x, y) = 3Dy
P

δ≤i≤j≤∆
mij(H)x

iyj =
P

δ≤i≤j≤∆
(3j)mij(H)x

iyj ,

(2Dx + 3Dy +DxQx(−4))M (H;x, y) =
P

δ≤i≤j≤∆
(2i+ 3j + i− 4)mij(H)x

iyj ,

=
P

δ≤i≤j≤∆
(3i+ 3j − 4)mij(H)x

iyj .

(2Dx + 3Dy +DxQx(−4))M (H;x, y)
¯̄̄
(x,y)=(1,1)

=
P

δ≤i≤j≤∆
(3i+ 3j − 4)mij(H)

=
P

rs∈E(H)
(3dH(r) + 3dH(s)− 4).

Hence,

KB1(H) = (2Dx + 3Dy +DxQx(−4))M (H;x, y)
¯̄̄
(x,y)=(1,1)

=
P

rs∈E(H)
3dH(r) + 3dH(s)− 4.

2

Theorem 3. Let M(H;x, y) be the M-Polynomial for the graph H. Then,
the second K-Banhatti index is computed as,

KB2(H) = (Dx
2 +Dy

2 + 2DxDy − 2(Dx +Dy))M (H;x, y)
¯̄̄
(x,y)=(1,1)

.

According to definitions def1 and def4, the following relations are ob-
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tained:

KB2(H) =
P
re
[dH(u).dH(e)] =

P
rs∈E(H)

(dH(r).dH(e)) + (dH(s).dH(e))

=
P

rs∈E(H)
dG(e)(dH(r) + dH(s))

=
P

rs∈E(H)
(dH(r) + dH(s)− 2)(dH(r) + dH(s))

=
P

rs∈E(H)
dH(r)

2 + dH(s)
2
+ 2(dH(r).dH(s))− 2(dH(r) + dH(s)),

(Dx
2)M (H;x, y) = Dx

2
X

δ≤i≤j≤∆
mij(H)x

iyj =
X

δ≤i≤j≤∆
(i2)mij(H)x

iyj ,

(Dy
2)M (H;x, y) = Dy

2
X

δ≤i≤j≤∆
mij(H)x

iyj =
X

δ≤i≤j≤∆
(j2)mij(H)x

iyj ,

2(DxDy)M (H;x, y) = 2(DxDy)
X

δ≤i≤j≤∆
mij(H)x

iyj =
X

δ≤i≤j≤∆
(2ij)mij(H)x

iyj ,

2(DxDy)M (H;x, y) = 2(DxDy)
X

δ≤i≤j≤∆
mij(H)x

iyj =
X

δ≤i≤j≤∆
(2ij)mij(H)x

iyj ,

(Dx
2 +Dy

2 + 2DxDy − 2(Dx +Dy))M (H;x, y)
¯̄̄
(x,y)=(1,1)

=
P

δ≤i≤j≤∆
(i2 + j2 + 2ij − 2(i+ j)mij(H)

=
P

rs∈E(H)
dH(r)

2 + dH(s)
2
+ 2(dH(r).dH(s))− 2(dH(r) + dH(s)),

Hence:

KB2(H) = (Dx
2 +Dy

2 + 2DxDy − 2(Dx +Dy))M (H;x, y)
¯̄̄
(x,y)=(1,1)

=
P

rs∈E(H)
dH(r)

2 + dH(s)
2
+ 2(dH(r).dH(s))− 2(dH(r) + dH(s)).

Theorem 4. Let M(H;x, y) be the M-Polynomial for the graph H. Then,
the first δ −Banhatti index is computed as,

δB1(H) = (Dx +Dy)
³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y)

¯̄̄
(x,y)=(1,1)

.
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Proof. According to definitions def2 and def4, the following relations
are obtained:³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y) =

³
Qx(−δ+1)Qy(−δ+1)

´ P
δ≤i≤j≤∆

mij(H)x
iyj

=
P

δ≤i≤j≤∆
mij(H)x

i−δ+1yj−δ+1,

(Dx +Dy)
³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y)

= (Dx +Dy)
³
Qx(−δ+1)Qy(−δ+1)

´ P
δ≤i≤j≤∆

mij(H)x
iyj

=
P

δ≤i≤j≤∆
[(i− δ + 1) + (j − δ + 1)]mij(H)x

i−δ+1yj−δ+1,

(Dx +Dy)
³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y)

¯̄̄
(x,y)=(1,1)

=
P

δ≤i≤j≤∆
(i− δ + 1) + (j − δ + 1)mij(H)

=
P

rs∈E(H)
(dH(r)− δ + 1) + (dH(s)− δ + 1).

Hence:

δB1(H) = (Dx +Dy)
³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y)

¯̄̄
x=y)=1

=
X

rs∈E(H)
δr + δs.

2

Theorem 5. Let M(H;x, y) be the M-Polynomial for the graph H. Then,
the second δ −Banhatti index is computed as,

δB2(H) = (DxDy)
³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y)

¯̄̄
(x,y)=(1,1)

.

Proof. According to definitions def2 and def4, the following relations
are obtained:³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y) =

³
Qx(−δ+1)Qy(−δ+1)

´ P
δ≤i≤j≤∆

mij(H)x
iyj

=
P

δ≤i≤j≤∆
mij(H)x

i−δ+1yj−δ+1,
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(DxDy)
³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y)

= (DxDy)
³
Qx(−δ+1)Qy(−δ+1)

´ P
δ≤i≤j≤∆

mij(H)x
iyj

=
P

δ≤i≤j≤∆
[(i− δ + 1)(j − δ + 1)]mij(H)x

i−δ+1yj−δ+1,

(DxDy)
³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y)

¯̄̄
(x,y)=(1,1)

=
P

δ≤i≤j≤∆
(i− δ + 1)(j − δ + 1)mij(H)

=
P

rs∈E(H)
(dH(r)− δ + 1)(dH(s)− δ + 1).

Hence:

δB2(H) = (DxDy)
³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y)

¯̄̄
(x,y)=(1,1)

=
X

rs∈E(H)
δrδs.

2

Theorem 6. Let M(H;x, y) be the M-Polynomial for the graph H. Then,
the first hyper δ −Banhatti index is computed as,

HδB1(H) = (Dx
2 +Dy

2 + 2DxDy)
³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y)

¯̄̄
(x,y)=(1,1)

.

Proof. According to definitions def3 and def4, the following relations
are obtained:³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y) =

³
Qx(−δ+1)Qy(−δ+1)

´ P
δ≤i≤j≤∆

mij(H)x
iyj

=
P

δ≤i≤j≤∆
mij(H)x

i−δ+1yj−δ+1,

(Dx
2 +Dy

2 + 2DxDy)
³
Qx(−δ+1)Qy(−δ+1)

´ P
δ≤i≤j≤∆

mij(H)x
iyj

=
P

δ≤i≤j≤∆
(i− δ + 1)2mij(H)x

i−δ+1yj−δ+1

+
P

δ≤i≤j≤∆
(j − δ + 1)2mij(H)x

i−δ+1yj−δ+1,

+
P

δ≤i≤j≤∆
2(i− δ + 1)(i− δ + 1)mij(H)x

i−δ+1yj−δ+1

(Dx
2 +Dy

2 + 2DxDy)
³
Qx(−δ+1)Qy(−δ+1)

´ P
δ≤i≤j≤∆

mij(H)x
iyj

¯̄̄̄
¯
(x,y)=(1,1)

=
P

δ≤i≤j≤∆
[(i− δ + 1)2 + (j − δ + 1)2 + 2(i− δ + 1)(j − δ + 1)]mij(H)

=
P

rs∈E(H)
(i− δ + 1)2 + (j − δ + 1)2 + 2(i− δ + 1)(j − δ + 1)

=
P

rs∈E(H)
((i− δ + 1) + (j − δ + 1))2,
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Hence:

H δB1(H) = (Dx
2 +Dy

2 + 2DxDy)
³
Qx(−δ+1)Qy(−δ+1)

´ P
δ≤i≤j≤∆

mij(H)x
iyj

¯̄̄̄
¯
(x,y)=(1,1)

=
P

rs∈E(H)
(δr + δs)

2.

2

Theorem 7. Let M(H;x, y) be the M-Polynomial for the graph H. Then,
the second hyper δ −Banhatti index is computed as,

HδB2(H) = (Dx
2Dy

2)
³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y)

¯̄̄
(x,y)=(1,1)

.

Proof. According to definitions def3 and def4, the following relations
are obtained:³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y) =

³
Qx(−δ+1)Qy(−δ+1)

´ P
δ≤i≤j≤∆

mij(H)x
iyj

=
P

δ≤i≤j≤∆
mij(H)x

i−δ+1yj−δ+1,

(Dx
2Dy

2)
³
Qx(−δ+1)Qy(−δ+1)

´ P
δ≤i≤j≤∆

mij(H)x
iyj

=
P

δ≤i≤j≤∆
(i− δ + 1)2(j − δ + 1)2mij(H)x

i−δ+1yj−δ+1,

(Dx
2Dy

2)
³
Qx(−δ+1)Qy(−δ+1)

´ P
δ≤i≤j≤∆

mij(H)x
iyj

¯̄̄̄
¯
(x,y)=(1,1)

=
P

δ≤i≤j≤∆
(i− δ + 1)2(j − δ + 1)2mij(H) =

P
rs∈E(H)

(i− δ + 1)2(j − δ + 1)2,

Hence:

H δB2(H) = (Dx
2Dy

2)
³
Qx(−δ+1)Qy(−δ+1)

´ P
δ≤i≤j≤∆

mij(H)x
iyj

¯̄̄̄
¯
(x,y)=(1,1)

=
P

rs∈E(H)
δr
2δs

2 =
P

rs∈E(H)
(δrδs)

2.

2

Theorem 8. Let H be the molecular graph of Glass. Then the M-Polynomial
of H is as follows,

M(H; x, y) = 2x1y3 + 3x1y4 + 5x2y2 + 4x2y3 + 20x2y4 + 1x3y3 + 1x3y4.
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Proof. According to definitions def4 and Table t1, the following rela-
tionships are obtained:

M (H;x, y) =
P

δ≤i≤j≤∆
mij(H)x

iyj =
P

rs∈E1
mij(H)x

iyj +
P

rs∈E2
mij(H)x

iyj

+
P

rs∈E3
mij(H)x

iyj

+
P

rs∈E4
mij(H)x

iyj +
P

rs∈E5
mij(H)x

iyj

+
P

rs∈E6
mij(H)x

iyj +
P

rs∈E7
mij(H)x

iyj

= 2x1y3 + 2x1y4 + 6x2y2 + 2x2y3 + 18x2y4 + 2x3y3 + 4x3y4.

2

Figure 2.3: M-polynomial of the molecular graph of Glass.

The behavior of M-polynomial in the molecular graph of Glass (Figure
2.3) shows that this M-polynomial is always positive for different values of
x and y.
According to the results of the above theorems, table tab2.3 is obtained to
calculate Banhatti indices using M-polynomial.
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Topological
Index formula Derivation from M(H; x, y)
First

K-Banhatti
P
re

[dH (r) + dH (e)] 2Dx + 3Dy +DxQx(−4)M (H;x, y)
¯̄
x=y=1

Second

K-Banhatti
P
re

[dH (r).dH (e)] (Dx
2 +Dy

2 + 2DxDy − 2(Dx +Dy))M (H;x, y)

¯̄
x=y=1

First

δ-Banhatti
P

rs∈E(H)
δr + δs (Dx +Dy)

¡
Qx(−δ+1)Qy(−δ+1)

¢
M (H;x, y)

¯̄
x=y=1

Second

δ-Banhatti
P

rs∈E(H)
δr.δs (DxDy)

¡
Qx(−δ+1)Qy(−δ+1)

¢
M (H;x, y)

¯̄
x=y=1

First
hyper

δ-Banhatti

P
rs∈E(H)

(δr + δs)
2

(Dx
2 +Dy

2 + 2DxDy)
¡
Qx(−δ+1)Qy(−δ+1)

¢
M (H;x, y)

¯̄
x=y=1

Second
hyper

δ-Banhatti

P
rs∈E(H)

(δr.δs)
2

(Dx
2Dy

2)
¡
Qx(−δ+1)Qy(−δ+1)

¢
M (H;x, y)

¯̄
x=y=1

Table 2.3: Derivation of Banhatti indices from M-polynomial.

Theorem 9. Let H
0
be the line graph of Glass. Then the M-Polynomial

of H
0
is as follows,

M(H 0; x, y) = 3x2y2+4x2y3+4x2y4+2x3y3+12x3y4+1x3y5+32x4y4+4x4y5.

Proof. According to definitions def4 and Table tab22, the following
relationships are obtained:

M (H 0;x, y) =
P

δ≤i≤j≤∆
mij(H

0)xiyj

=
P

rs∈E1
mij(H

0)xiyj +
P

rs∈E2
mij(H

0)xiyj

+
P

rs∈E3
mij(H

0)xiyj +
P

rs∈E4
mij(H

0)xiyj

+
P

rs∈E5
mij(H

0)xiyj +
P

rs∈E6
mij(H

0)xiyj

+
P

rs∈E7
mij(H

0)xiyj +
P

rs∈E8
mij(H

0)xiyj

= 3x2y2 + 4x2y3 + 4x2y4 + 2x3y3 + 12x3y4 + x3y5 + 32x4y4 + 4x4y5.

2
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Figure 2.4: M-polynomial of the molecular graph of Glass.

The behavior of M-polynomial in the line graph of Glass (figure 2.4)
shows that this M-polynomial is not always positive for different values of
x and y, and can be negative for negative values of y.

Theorem 10. Let H be the molecular graph of Glass. Then the Banhatti
indices of H are as follows,

1. KB1(H) = 444,
2. KB2(H) = 700,
3. δB1(H) = 196,
4. δB2(H) = 243,
5. HδB1(H) = 1092,
6.HδB2(H) = 1795.

Proof. According to Theorem thm2.8, M-polynomial of H is as follows:

M(H; x, y) = 2x1y3 + 3x1y4 + 5x2y2 + 4x2y3 + 20x2y4 + 1x3y3 + 1x3y4.

2

We know in the molecular graph of Glass δ(H) = 1 and
−δ + 1 = −1 + 1 = 0.Then

Dx(M(H;x, y)) = 2x
1y3+3x1y4+10x2y2+8x2y3+40x2y4+3x3y3+3x3y4,

Dy(M(H;x, y)) = 6x
1y3+12x1y4+10x2y2+12x2y3+80x2y4+3x3y3+4x3y4,

DxDy(M(H;x, y)) = 6x1y3+12x1y4+20x2y2+24x2y3+160x2y4+9x3y3+12x3y4,

Marisol Martínez
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(Dx+Dy)(M(H;x, y)) = 8x
1y3+15x1y4+20x2y2+20x2y3+120x2y4+6x3y3+7x3y4,

Qx(−δ+1)Qy(−δ+1)M (H;x, y) = Qx(0)Qy(0)M (H;x, y)
= 2x1y3 + 3x1y4 + 5x2y2 + 4x2y3 + 20x2y4 + 1x3y3 + x3y4,

DxQx(−4)M (H;x, y) = −6x−3y3 − 9x−3y4 − 10x−2y2 − 8x−2y3 − 40x−2y4
−x−1y3 − x−1y4,

D2
x(M(H;x, y)) = 2x

1y3+3x1y4+20x2y2+16x2y3+80x2y4+9x3y3+9x3y4,

Dy
2(M(H;x, y)) = 18x1y3+48x1y4+20x2y2+36x2y3+320x2y4+9x3y3+16x3y4,

Dx
2Dy

2(M(H;x, y)) = 18x1y3 + 48x1y4 + 80x2y2 + 144x2y3 + 1280x2y4

+81x3y3 + 144x3y4,

Now we have:

1.KB1(H) = 2Dx + 3Dy +DxQx(−4)M (H;x, y)
¯̄̄
(x,y)=(1,1)

= 2(2 + 3 + 10 + 8 + 40 + 3 + 3) + 3(6 + 12 + 10 + 12 + 80 + 3 + 4)
+(−6− 9− 10− 8− 40− 1− 1)
= 138 + 381− 75 = 444,

2. KB2(H) = (Dx
2 +Dy

2 + 2DxDy − 2(Dx +Dy))M (H;x, y)
¯̄̄
(x,y)=(1,1)

= (2 + 3 + 20 + 16 + 80 + 9 + 9) + (18 + 48 + 20 + 36 + 320 + 9 + 16)
−2(8 + 15 + 20 + 20 + 120 + 6 + 7) + 2(6 + 12 + 20 + 24 + 160 + 9 + 12)
= 139 + 467 + 486− 392 = 700,

3. δB1(H) = (Dx + Dy)
³
Qx(0)Qy(0)

´
M (H;x, y)

¯̄̄
(x,y)=(1,1)

= 8 + 15 + 20 + 20 + 120 + 6 + 7 = 196,

4. δB2(H) = (DxDy)
³
Qx(0)Qy(0)

´
M (H;x, y)

¯̄̄
(x,y)=(1,1)

= 6 + 12 + 20 + 24 + 160 + 9 + 12 = 243,

5. HδB1(H) = (Dx
2 +Dy

2 + 2DxDy)
³
Qx(0)Qy(0)

´
M (H;x, y)

¯̄̄
(x,y)=(1,1)

= (2 + 3 + 20 + 16 + 80 + 9 + 9) + (18 + 48 + 20 + 36 + 320 + 9 + 16)
+2(6 + 12 + 20 + 24 + 160 + 9 + 12),
= 139 + 467 + 486 = 1092,

6.HδB2(H) = (Dx
2Dy

2)
³
Qx(−δ+1)Qy(−δ+1)

´
M (H;x, y)

¯̄̄
(x,y)=(1,1)

= (Dx
2Dy

2)
³
Qx(0)Qy(0)

´
M (H;x, y)

¯̄̄
(x,y)=(1,1)

= (Dx
2Dy

2)M (H;x, y)
¯̄̄
(x,y)=(1,1)

= 18 + 48 + 80 + 144 + 1280 + 81 + 144 = 1795.

2
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Theorem 11. Let H
0
be the line graph of Glass. Then the Banhatti in-

dices of H
0
are as follows,

1. KB1(H
0) = 1108,

2. KB2(H
0) = 2484,

3. δB1(H
0) = 576,

4. δB2(H
0) = 1351,

5. HB1(H
0) = 5444,

6.HB2(H
0) = 31207.

Proof. According to Theorem thm2.9, M-polynomial of H
0
is as follows:

M(H 0; x, y) = 3x2y2+4x2y3+4x2y4+2x3y3+12x3y4+1x3y5+32x4y4+4x4y5.

We know in the line graph of Glass δ(H
0
) = 2 and −δ + 1 = −2 + 1 = −1.

Then

Dx(M(H
0;x, y)) = 6x2y2+8x2y3+8x2y4+6x3y3+36x3y4+3x3y5+128x4y4+16x4y5,

Dy(M(H
0;x, y)) = 6x2y2+12x2y3+16x2y4+6x3y3+48x3y4+5x3y5+128x4y4+20x4y5,

DxDy(M(H 0;x, y)) = 12x2y2 + 24x2y3 + 32x2y4 + 18x3y3 + 144x3y4 + 15x3y5

+512x4y4 + 80x4y5,

(Dx +Dy)(M(H
0 ;x, y)) = 12x2y2 + 20x2y3 + 24x2y4 + 12x3y3 + 84x3y4 + 8x3y5

+256x4y4 + 36x4y5,

Qx(−δ+1)Qy(−δ+1)M (H 0;x, y) = Qx(1)Qy(1)M (H 0;x, y)
= 3x3y3 + 4x3y4 + 4x3y5 + 2x4y4 + 12x4y5 + 1x4y6 + 32x5y5 + 4x5y6,

DxQx(−4)M
¡
H 0;x, y

¢
= −6x−2y2−8x−2y3−8x−2y4−2x−1y3−12x−1y4−1x−1y5,

D2
x(M(H

0;x, y)) = 12x2y2 + 16x2y3 + 16x2y4 + 18x3y3 + 108x3y4 + 9x3y5

+512x4y4 + 64x4y5,
D2
y(M(H

0;x, y)) = 12x2y2 + 36x2y3 + 64x2y4 + 18x3y3 + 192x3y4 + 25x3y5

+512x4y4 + 100x4y5,
D2
xD

2
y(M(H 0;x, y)) = 48x2y2 + 144x2y3 + 256x2y4 + 162x3y3 + 1728x3y4

+225x3y5 + 8192x4y4 + 1600x4y5,

Now we have:

1.KB1(H
0) = 2Dx + 3Dy +DxQx(−4)M (H 0;x, y)

¯̄̄
(x,y)=(1,1)

= 2 (6 + 8 + 8 + 6 + 36 + 3 + 128 + 16) + 3(6 + 12 + 16 + 6 + 48 + 5 + 128 + 20)
−(6 + 8 + 8 + 2 + 12 + 1) = 422 + 723− 37 = 1108,
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2. KB2(H
0) = (Dx

2 +Dy
2 + 2DxDy − 2(Dx +Dy))M (H 0;x, y)

¯̄̄
(x,y)=(1,1)

= (12 + 16 + 16 + 18 + 108 + 9 + 512 + 64)
+(12 + 36 + 64 + 18 + 192 + 25 + 512 + 100)
+2(12 + 24 + 32 + 18 + 144 + 15 + 512 + 80)
−2(12 + 20 + 24 + 12 + 84 + 8 + 256 + 36) = 755 + 959 + 1674− 904 = 2484,

3. δB1(H
0) = (Dx +Dy)

³
Qx(1)Qy(1)

´
M (H 0;x, y)

¯̄̄
(x,y)=(1,1)

= 18 + 28 + 32 + 16 + 108 + 10 + 320 + 44 = 576,

4. δB2(H
0) = (DxDy)

³
Qx(1)Qy(1)

´
M (H 0;x, y)

¯̄̄
(x,y)=(1,1)

= 27 + 48 + 60 + 32 + 240 + 24 + 800 + 120 = 1351,

5. HδB1(H
0) = (Dx

2 +Dy
2 + 2DxDy)

³
Qx(1)Qy(1)

´
M (H 0;x, y)

¯̄̄
(x,y)=(1,1)

= (27 + 36 + 36 + 32 + 192 + 16 + 800 + 100)
+(27 + 64 + 100 + 32 + 300 + 36 + 800 + 144)
+2(27 + 48 + 60 + 32 + 240 + 24 + 800 + 120) = 1239 + 1503 + 2702 = 5444,

6.HδB2(H
0) = (Dx

2Dy
2)
³
Qx(1)Qy(1)

´
M (H 0;x, y)

¯̄̄
(x,y)=(1,1)

= 243 + 576 + 900 + 512 + 4800 + 576 + 20000 + 3600 = 31207.

2

3. Conclusion

In this article, Banhatti indices of the molecular graph and the line graph
of Glass were obtained by mathematical operations on M-polynomial.
The results of calculating the topological indices of Banhatti indices in the
molecular graph and the line graph show that these topological indices
have smaller values in the molecular graph than in the line graph of Glass.
Considering the wide applications of Glass, the calculations of this article
can be used in the production of higher quality Glass.
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