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Abstract

In this paper, we modify the result of M. N. Daif [1] on multiplica-
tive derivations in rings. He showed that the multiplicative derivation
is additive by imposing certain conditions on the ring <. Here, we
have proved the above result with lesser conditions than M. N. Daif
for getting multiplicative derivation to be additive.
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1. Notations and Introduction

Many results on derivations of rings have been obtained in recent years.
The derivation of ring <, we means an additive map d : < → < such that
∀ x, y ∈ <, d(xy) = d(x)y + xd(y). If d is a multiplicative derivation of
<, it is said to be non additive derivation of <. In 1969, Martindale [4]
gave a remarkable result. He demonstrated that under the existence of a
family of idempotent object in < that satisfy certain conditions, every anti-
automorphism and multiplicative isomorphism on < is additive. Martin-
dale’s work influenced Daif and he expanded his findings upon multiplica-
tive derivation and raised the question: when is multiplicative derivation is
additive ? In 1991, Daif [1] answered the question raised by him by using
same Martindale’s condition, for details see [2, 5, 6]. Our main objective
in this paper is to improve the result of M. N. Daif (when is multiplicative
derivation is additive?). He imposed 3 conditions to show that multiplica-
tive derivation is additive. In this manuscript, we used only 2 condition
to proved the additivity of multiplicative derivation, the conditions are as
follows:

(1) x<e = 0⇒ x = 0 (and hence x< = 0⇒ x = 0).

(2) x<12 = 0⇒ x = 0.

Let 0, 1 6= e be an idempotent element of ring < (not necessarily having
identity element). We will formally set e = e1 and 1−e = e2. The following
is how < can be decomposed:

< = e1<e1 ⊕ e1<e2 ⊕ e2<e1 ⊕ e2<e2.(1.1)

Above expression of < is known as two-sided Peirce decomposition de-
termined by idempotent e1 and e2 (for details see [3]). So letting <mn =
em<en ; where m,n ∈ {1, 2}. Then the decomposition takes the form
< = <11 ⊕<12 ⊕<21 ⊕<22, where <ij are subring of < for all i, j ∈ {1, 2}.
Moreover, an element of the subring <mn will be denoted by xmn for all
m,n ∈ {1, 2}.

Daif [1] has defined some basic concept in his result before the main
result. We will be going to use those concept which was stated by Daif
[1] as follow, that d(0) = d(00) = d(0)0 + 0d(0) = 0. Moreover, we have
d(e1) = d(e21) = d(e)e+ed(e). So, we can write d(e1) = d11+d12+d21+d22
and consequently, we have d(e1) = d12 + d21. We define g be the inner
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derivation of < observed by the element d12 − d21. Therefore, g(e1) =
[e1, d12 − d21] = d12 + d21. Further, we substitute d by d− g which is also
a multiplicative derivation, which is denoted as D i.e., D = d− g, without
losing generality. As a result we get D(e) = 0, this simplicity is quite
important for upcoming results.

2. The Results

Before, proving our main theorem we will need the following lemmas.

Lemma 2.1. Let < be a ring containing an idempotent e and D be a
derivation of < which satisifies the given conditions. Then the following
are true:

(i) D(<11) ⊂ <11

(ii) D(<12) ⊂ <12

(iii) D(<21) ⊂ <21

(iv) D(<22) ⊂ <22.

Proof. (i) Let x11 be an arbitrary element of <11, we have
D(x11) = D(e1x11e1) = D(e1x11)e1 + e1x11D(e1)

= D(e1x11)e1 = D(e1)x11e1 + e1D(x11)e1
= e1D(x11)e1 ∈ <11.

Since, x11 be an arbitrary element of <11, so we have D(<11) ⊂ <11.
(ii) Let x12 be an arbitrary element of <12, we obtain

D(x12) = D(e1x12) = D(e1)x12 + e1D(x12) = e1D(x12).(2.1)

This implies that
D(x12) = e1D(x12).(2.2)

By using Peirce decomposition of <, D(x12) can be written as D11 +
D12 +D21 +D22. Putting these value in (2.2), we see that

D11 +D12 +D21 +D22 = e1(D11 +D12 +D21 +D22) = D11 +D12.(2.3)

From (2.3), we find that
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D21 +D22 = 0.(2.4)

Putting the above relation in the value of D(x12), we have

D(x12) = D11 +D12.(2.5)

Since we know that 0 = D(0) = D(x12e1) = D(x12)e1 + x12D(e1) =
D(x12)e1. Using the value of D from (2.5) in previous equation, we receive
0 = (D11 + D12)e1 which implies that D11 = 0. Using these relation in
(2.5), we get D(x12) = D12 ∈ <12. Since x12 be an arbitrary element of
<12, we have D(<12) ⊂ <12.

(iii) Using the similar argument as we have done in (ii), we get the
result.

(iv) Let D(x22) = y11 + y12 + y21 + y22 for all x22 ∈ <22, we have
0 = D(0) = D(e1x22) = D(e1)x22 + e1D(x22).(2.6)

Above relation yields that

0 = e1D(x22).(2.7)

Using the value of D(x22) in above relation, we get

0 = e1(y11 + y12 + y21 + y22) = y11 + y12.(2.8)

Substituting (2.8) in the value of D(x22) then we obtain D(x22) = y21+
y22. Again, we have 0 = D(x22e1) = D(x22)e1+x22D(e1) = D(x22)e1. Here
we use the obtained value of D(x22), we get 0 = (y21 + y22)e1 = y21, this
implies 0 = y21. Substituting this in D(x22), we have D(x22) = y22 ∈ <22.
Since, x22 be an arbitrary element of <22, this yields D(<22) ⊂ <22. 2

Lemma 2.2. For any x11 ∈ <11, x12 ∈ <12, x21 ∈ <21 and x22 ∈ <22, we
have

(i) D(x11 + x12) = D(x11) +D(x12)

(ii) D(x22 + x12) = D(x22) +D(x12)

(iii) D(x11 + x21) = D(x11) +D(x21)

(iv) D(x22 + x21) = D(x22) +D(x21).
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Proof. (i) Consider the sum D(x11) + D(x12) ∈ <. Let y1n ∈ <1n for
n = 1, 2, we have

[D(x11) +D(x12)]y1n = D(x11)y1n +D(x12)y1n
= D(x11)y1n
= D(x11y1n)− x11D(y1n)
= D[(x11 + x12)y1n]− x11D(y1n)
= D(x11 + x12)y1n + (x11 + x12)D(y1n)− x11D(y1n)
= D(x11 + x12)y1n.

Thus, we have

[D(x11) +D(x12)−D(x11 + x12)]y1n = 0.(2.9)

In the similar fashion for any y2n ∈ <2n, we obtain

[D(x11) +D(x12)−D(x11 + x12)]y2n = 0.(2.10)

Since, y1n and y2n are an arbitrary element of <1n and <2n respectively.
Therefore, from (2.9) and (2.10), we conclude that

[D(x11) +D(x12)−D(x11 + x12)]< = (0).(2.11)

By using condition (1), we get

D(x11) +D(x12)−D(x11 + x12) = 0.(2.12)

Above relation implies that

D(x11 + x12) = D(x11) +D(x12).(2.13)

Proof of (i) is done.
(ii) Let x22 and x12 be an any element of <22 and <12, we assume the

sum D(x22) +D(x12) ∈ <. Now, for y12 ∈ <12 we have

[D(x22) +D(x12)]y12 = D(x22)y12 +D(x12)y12.(2.14)

Using the definition of derivation in (2.14), it’s yields that
[D(x22) +D(x12)]y12 = D(x22y12)− x22D(y12) +D(x12y12)− x12D(y12)

= 0− x22D(y12) + 0− x12D(y12)
= D(0)− (x22 + x12)D(y12)
= D[(x22 + x12)y12]− (x22 + x12)D(y12)
= D(x22 + x12)y12 + (x22 + x12)D(y12)
−(x22 + x12)D(y12) = D(x22 + x12)y12.
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Which implies that

[D(x22) +D(x12)]y12 = D(x22 + x12)y12.(2.15)

This implies that

[D(x22) +D(x12)−D(x22 + x12)]y12 = 0.(2.16)

Since, y12 be an arbitrary element of <12, above relation yields that

[D(x22) +D(x12)−D(x22 + x12)]<12 = (0).(2.17)

By using condition (2), we obatin

D(x22 + x12) = D(x22) +D(x12).(2.18)

(iii) Let x11 and x21 be an arbitrary element of <11 and <21, we consider
the sum D(x11) +D(x21) ∈ <. Now, for y12 ∈ <12 we have

[D(x11) +D(x21)]y12 = D(x11)y12 +D(x21)y12.(2.19)

Using the definition of derivation, above relation yields that

[D(x11) +D(x21)]y12 = D(x11y12)− x11D(y12) +D(x21y12)− x21D(y12).(2.20)

Since, x11 ∈ <11 and y12 ∈ <12 this implies x11y12 ∈ <12 and similarly
we obtain x21y12 ∈ <22. Using previous part of this Lemma, above relation
can be written as

[D(x11) +D(x21)]y12 = D(x11y12 + x21y12)− x11D(y12)− x21D(y12).(2.21)

This implies that

[D(x11) +D(x21)]y12 = D((x11 + x21)y12)− (x11 + x21)D(y12).(2.22)

Using the definition of derivation in (2.22), we obtain

[D(x11) +D(x21)]y12
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= D(x11 + x21)y12 + (x11 + x21)D(y12)− (x11 + x21)D(y12).

Above equation can be rewritten as [D(x11) +D(x21)]y12 = D(x11 + x21)y12.

This implies that

[D(x11) +D(x21)−D(x11 + x21)]y12 = 0.(2.23)

Since, y12 be an arbitrary element of <12, above relation yields that

[D(x11) +D(x21)−D(x11 + x21)]<12 = (0).(2.24)

By using condition (2), we obatin

D(x11 + x21) = D(x11) +D(x21).(2.25)

(iv) Consider the sum D(x22)+D(x21) ∈ <. Let y1n ∈ <1n for n = 1, 2,
we have

[D(x22) +D(x21)]y1n = D(x22)y1n +D(x21)y1n
= D(x21)y1n
= D(x21y1n)− x21D(y1n)
= D[(x22 + x21)y1n]− x21D(y1n)
= D(x22 + x21)y1n + (x22 + x21)D(y1n)− x21D(y1n)
= D(x22 + x21)y1n + x21D(y1n)− x21D(y1n)
= D(x22 + x21)y1n.

Thus, we have

[D(x22) +D(x21)−D(x22 + x21)]y1n = 0.(2.26)

In a similar way for any y2n ∈ <2n, we obtain

[D(x22) +D(x21)−D(x22 + x21)]y2n = 0.(2.27)

Since, y1n and y2n are an arbitrary element of <1n and <2n, respectively.
Therefore, from (2.26) and (2.27), we conclude that

[D(x22) +D(x21)−D(x22 + x21)]< = (0).(2.28)

By using condition (1), we get

D(x22) +D(x21)−D(x22 + x21) = 0.(2.29)
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Above relation implies that

D(x22 + x21) = D(x22) +D(x21).(2.30)

This complete the proof. 2

Lemma 2.3. D is additive on <21

Proof. Let x21, y21 ∈ <21. For any z12 ∈ <12 and z2n ∈ <2n for n = 1, 2
and using the definition of derivation, we have

D(x21 + y21)z12z2n = D((x21 + y21)z12z2n)− (x21 + y21)D(z12z2n).(2.31)

Above equation can be written as
D(x21 + y21)z12z2n = D((x21 + y21)z12z2n)

−(x21 + y21)D(z12z2n)
= D((x21z12 + y21)(z2n + z12z2n))
−(x21 + y21)D(z12z2n)
= D(x21z12 + y21)(z2n + z12z2n)
+(x21z12 + y21)D(z2n + z12z2n)
−(x21 + y21)D(z12z2n).

In last relation, we use (ii), (iii) and (iv) of Lemma 2.2, this yields
D(x21 + y21)z12z2n = D(x21z12)(z2n + z12z2n) +D(y21)(z2n + z12z2n)

+(x21z12 + y21)D(z2n) + (x21z12 + y21)D(z12z2n)
−x21D(z12z2n)− y21D(z12z2n).

Using Lemma 2.1 and after simplifying, we obtain

D(x21 + y21)z12z2n = D(x21z12)z2n +D(y21)z12z2n + x21z12D(z2n)
+y21D(z12z2n)− x21D(z12z2n)− y21D(z12z2n).

(2.32)

Using definition of derivation in (2.32), we see that
D(x21 + y21)z12z2n = D(x21)z12z2n + x21D(z12)z2n +D(y21)z12z2n

+x21z12D(z2n)
+y21D(z12z2n)− x21D(z12)z2n − x21z12D(z2n)
−y21D(z12z2n).

On simplification, this implies

[D(x21 + y21)−D(x21)−D(y21)]z12z2n = 0.(2.33)
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Since, z12 and z2n are arbitrary element of <12 and <2n respectively,
(2.33) becomes

[D(x21 + y21)−D(x21)−D(y21)]<12<2n = (0).(2.34)

Also, it is clear that

[D(x21 + y21)−D(x21)−D(y21)]<12<1n = (0).(2.35)

Combining (2.34) and (2.35), we get

[D(x21 + y21)−D(x21)−D(y21)]<12< = (0).(2.36)

First, we use condition (1) and then (2), above relation yields that

D(x21 + y21) = D(x21)−D(y21).(2.37)

This completes the Lemma. 2

Lemma 2.4. D is additive on <12

Proof. Let x12, y12 ∈ <12, t1n ∈ <1n and using Lemma 2.1(ii), we have

[D(x12) +D(y12)]t1n = D(x12)t1n +D(y12)t1n = 0.(2.38)

We have, [D(x12)+D(y12)]t1n = D(x12+ y12)t1n. Solving last relation,
we arrives at

[D(x12) +D(y12)−D(x12 + y12)]t1n = 0.(2.39)

Since, t1n be an arbitrary element of <1n. Equation (2.39) can be
written as

[D(x12) +D(y12)−D(x12 + y12)]<1n = (0).(2.40)

Now, for an element t2n ∈ <2n and by using (i), (ii) and (iii) of Lemma
2.2, we have

D((x12+ y12)t2n) = D((e1 + x12)(e2t2n + y12t2n))
= D(e1 + x12)(e2t2n + y12t2n) + (e1 + x12)D(e2t2n + y12t2n)
= D(e1)(e2t2n) +D(e1)(y12t2n) +D(x12)(e2t2n) +D(x12)(y12t2n)
+e1D(e2t2n) + e1D(y12t2n) + x12D(e2t2n) + x12D(y12t2n).
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By using (i), (ii), (iii) and (iv) part of Lemma 2.1 and D(e1) = 0 in
above equation and after solving, we obtain

D((x12 + y12)t2n) = D(x12)t2n +D(y12)t2n + y12D(t2n) + x12D(t2n).(2.41)

Using the definition of derivation in left side of (2.40), we get

D(x12+y12)t2n+(x12+y12)D(t2n) = (D(x12)+D(y12))t2n+(y12+x12)D(t2n).
(2.42)

On solving, we find

D(x12 + y12)t2n = (D(x12) +D(y12))t2n.(2.43)

Which implies that

[D(x12) +D(y12)−D(x12 + y12)]t2n = 0.(2.44)

Since, t2n is an any element of <2n, this gives

[D(x12) +D(y12)−D(x12 + y12)]<2n = (0).(2.45)

Combining (2.40) and (2.45), we get

[D(x12 + y12)−D(x12) +D(y12)]< = (0).(2.46)

On using condition (1), we get the required result i.e., D(x12 + y12) =
D(x12) +D(y12). 2

Lemma 2.5. D is additive on <11
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Proof. Let x11, y11 ∈ <11 and t12 ∈ <12, we get

[D(x11) +D(y11)]t12 = D(x11)t12 +D(y11)t12.(2.47)

Using the definition of derivation in last relation, we obtain
[D(x11) +D(y11)]t12 = D(x11t12)

−x11D(t12)
+D(y11t12)− y11D(t12).

Since, x11t12, y11t12 ∈ <12 and by using Lemma 2.4 in (2.46), we find
that

[D(x11) +D(y11)]t12 = D(x11t12 + y11t12)− (x11 + y11)D(t12)
= D((x11 + y11)t12)− (x11 + y11)D(t12)
= D(x11 + y11)t12 + (x11 + y11)D(t12)
−(x11 + y11)D(t12)
= D(x11 + y11)t12.

Since, t12 be an arbitrary element of <12, so we have
[D(x11) +D(y11)−D(x11 + y11)]<12 = (0).
So, by applying condition (2), we get the result. 2

Lemma 2.6. D is additive on <11 +<21 = <e

Proof. Let x11, y11 ∈ <11 and x21, y21 ∈ <21. Then we have

D((x11 + x21) + (y11 + y21)) = D((x11 + y11) + (x21 + y21)).(2.48)

Using Lemma 2.2(iii) in (2.48), we arrives at

D((x11 + x21) + (y11 + y21)) = D(x11 + y11) +D(x21 + y21).(2.49)

By using Lemma 2.3 and Lemma 2.5, we find that
D((x11 + x21) + (y11 + y21)) = D(x11) +D(y11) +D(x21) +D(y21)

= D(x11) +D(x21) +D(y11) +D(y21).

Again we use Lemma 2.2(iii) in last relation, its yields that
D((x11 + x21) + (y11 + y21)) = D(x11 + x21) +D(y11 + y21).

We are done. 2
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Theorem 2.7. Let < be a ring containing an idempotent e and 1 − e. If
d be a multiplicative derivation of < and suppose < satisfies the following
conditions:

(1) x<e = 0⇒ x = 0 (and hence x< = 0⇒ x = 0)

(2) x<12 = 0⇒ x = 0.

Then d becomes additive.

Proof. As we mention earlier, we replace d by D. Let u, v ∈ < and
consider D(u) + D(v) be an element of <. Take an element t ∈ <e =
<11 + <21. Thus, ut and vt are element of <e = <11 + <21. Now, we find
that

(D(u) +D(v))t = D(u)t+D(v)t.(2.50)

Using definition of derivation in (2.50), we have

(D(u) +D(v))t = D(ut)− uD(t) +D(vt)− vD(t).(2.51)

Since, ut, vt ∈ <e = <11 + <21, then by using Lemma 2.6 in (2.51), we
obtain

(D(u) +D(v))t = D(ut+ vt)− (u+ v)D(t)
= D((u+ v)t)− (u+ v)D(t)
= D(u+ v)t+ (u+ v)D(t)− (u+ v)D(t)
= D(u+ v)t.

Thus, we have

[D(u) +D(v)−D(u+ v)]t = 0.(2.52)

Since, t be an arbitrary element of <e. So, we see that

[D(u) +D(v)−D(u+ v)]<e = (0).(2.53)

By using condition (1), we obtain D(u+ v) = D(u)+D(v). This shows
that D, and also d, is additive. 2
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