Proyecciones Journal of Mathematics Vol. 42, N^o 1, pp. 219-232, February 2023. Universidad Católica del Norte Antofagasta - Chile

Study of multiplicative derivation and its additivity

Wasim Ahmed Aligarh Muslim University, India Muzibur Rahman Mozumder Aligarh Muslim University, India and Md. Arshad Madni Aligarh Muslim University, India Received : August 2022. Accepted : December 2022

Abstract

In this paper, we modify the result of M. N. Daif [1] on multiplicative derivations in rings. He showed that the multiplicative derivation is additive by imposing certain conditions on the ring \Re . Here, we have proved the above result with lesser conditions than M. N. Daif for getting multiplicative derivation to be additive.

Key words: Associative ring, derivation, Peirce decomposition.

2020 Mathematics Subject Classification: 16W25, 17C27.

1. Notations and Introduction

Many results on derivations of rings have been obtained in recent years. The derivation of ring \Re , we means an additive map $d: \Re \to \Re$ such that $\forall x, y \in \Re, d(xy) = d(x)y + xd(y)$. If d is a multiplicative derivation of \Re , it is said to be non additive derivation of \Re . In 1969, Martindale [4] gave a remarkable result. He demonstrated that under the existence of a family of idempotent object in \Re that satisfy certain conditions, every antiautomorphism and multiplicative isomorphism on \Re is additive. Martindale's work influenced Daif and he expanded his findings upon multiplicative derivation and raised the question: when is multiplicative derivation is additive? In 1991, Daif [1] answered the question raised by him by using same Martindale's condition, for details see [2, 5, 6]. Our main objective in this paper is to improve the result of M. N. Daif (when is multiplicative derivation is additive?). He imposed 3 conditions to show that multiplicative derivation is additive. In this manuscript, we used only 2 condition to proved the additivity of multiplicative derivation, the conditions are as follows:

- (1) $x\Re e = 0 \Rightarrow x = 0$ (and hence $x\Re = 0 \Rightarrow x = 0$).
- (2) $x\Re_{12} = 0 \Rightarrow x = 0.$

Let $0, 1 \neq e$ be an idempotent element of ring \Re (not necessarily having identity element). We will formally set $e = e_1$ and $1 - e = e_2$. The following is how \Re can be decomposed:

(1.1)
$$\Re = e_1 \Re e_1 \oplus e_1 \Re e_2 \oplus e_2 \Re e_1 \oplus e_2 \Re e_2$$

Above expression of \Re is known as two-sided Peirce decomposition determined by idempotent e_1 and e_2 (for details see [3]). So letting $\Re_{mn} = e_m \Re e_n$; where $m, n \in \{1, 2\}$. Then the decomposition takes the form $\Re = \Re_{11} \oplus \Re_{12} \oplus \Re_{21} \oplus \Re_{22}$, where \Re_{ij} are subring of \Re for all $i, j \in \{1, 2\}$. Moreover, an element of the subring \Re_{mn} will be denoted by x_{mn} for all $m, n \in \{1, 2\}$.

Daif [1] has defined some basic concept in his result before the main result. We will be going to use those concept which was stated by Daif [1] as follow, that d(0) = d(00) = d(0)0 + 0d(0) = 0. Moreover, we have $d(e_1) = d(e_1^2) = d(e)e + ed(e)$. So, we can write $d(e_1) = d_{11} + d_{12} + d_{21} + d_{22}$ and consequently, we have $d(e_1) = d_{12} + d_{21}$. We define g be the inner

221

derivation of \Re observed by the element $d_{12} - d_{21}$. Therefore, $g(e_1) = [e_1, d_{12} - d_{21}] = d_{12} + d_{21}$. Further, we substitute d by d - g which is also a multiplicative derivation, which is denoted as D i.e., D = d - g, without losing generality. As a result we get D(e) = 0, this simplicity is quite important for upcoming results.

2. The Results

Before, proving our main theorem we will need the following lemmas.

Lemma 2.1. Let \Re be a ring containing an idempotent *e* and *D* be a derivation of \Re which satisifies the given conditions. Then the following are true:

- (i) $D(\Re_{11}) \subset \Re_{11}$
- (*ii*) $D(\Re_{12}) \subset \Re_{12}$
- (*iii*) $D(\Re_{21}) \subset \Re_{21}$
- $(iv) D(\Re_{22}) \subset \Re_{22}.$

Proof. (i) Let
$$x_{11}$$
 be an arbitrary element of \Re_{11} , we have
 $D(x_{11}) = D(e_1x_{11}e_1) = D(e_1x_{11})e_1 + e_1x_{11}D(e_1)$
 $= D(e_1x_{11})e_1 = D(e_1)x_{11}e_1 + e_1D(x_{11})e_1$
 $= e_1D(x_{11})e_1 \in \Re_{11}.$

Since, x_{11} be an arbitrary element of \Re_{11} , so we have $D(\Re_{11}) \subset \Re_{11}$. (*ii*) Let x_{12} be an arbitrary element of \Re_{12} , we obtain

$$(2.1) D(x_{12}) = D(e_1x_{12}) = D(e_1)x_{12} + e_1D(x_{12}) = e_1D(x_{12}).$$

This implies that

(2.2)
$$D(x_{12}) = e_1 D(x_{12}).$$

By using Peirce decomposition of \Re , $D(x_{12})$ can be written as $D_{11} + D_{12} + D_{21} + D_{22}$. Putting these value in (2.2), we see that

$$(2.3) \quad D_{11} + D_{12} + D_{21} + D_{22} = e_1(D_{11} + D_{12} + D_{21} + D_{22}) = D_{11} + D_{12}$$

From (2.3), we find that

$$(2.4) D_{21} + D_{22} = 0$$

Putting the above relation in the value of $D(x_{12})$, we have

(2.5)
$$D(x_{12}) = D_{11} + D_{12}.$$

Since we know that $0 = D(0) = D(x_{12}e_1) = D(x_{12})e_1 + x_{12}D(e_1) = D(x_{12})e_1$. Using the value of D from (2.5) in previous equation, we receive $0 = (D_{11} + D_{12})e_1$ which implies that $D_{11} = 0$. Using these relation in (2.5), we get $D(x_{12}) = D_{12} \in \Re_{12}$. Since x_{12} be an arbitrary element of \Re_{12} , we have $D(\Re_{12}) \subset \Re_{12}$.

(iii) Using the similar argument as we have done in (ii), we get the result.

(*iv*) Let
$$D(x_{22}) = y_{11} + y_{12} + y_{21} + y_{22}$$
 for all $x_{22} \in \Re_{22}$, we have
(2.6) $0 = D(0) = D(e_1 x_{22}) = D(e_1) x_{22} + e_1 D(x_{22}).$

Above relation yields that

$$(2.7) 0 = e_1 D(x_{22}).$$

Using the value of $D(x_{22})$ in above relation, we get

(2.8)
$$0 = e_1(y_{11} + y_{12} + y_{21} + y_{22}) = y_{11} + y_{12}.$$

Substituting (2.8) in the value of $D(x_{22})$ then we obtain $D(x_{22}) = y_{21} + y_{22}$. Again, we have $0 = D(x_{22}e_1) = D(x_{22})e_1 + x_{22}D(e_1) = D(x_{22})e_1$. Here we use the obtained value of $D(x_{22})$, we get $0 = (y_{21} + y_{22})e_1 = y_{21}$, this implies $0 = y_{21}$. Substituting this in $D(x_{22})$, we have $D(x_{22}) = y_{22} \in \Re_{22}$. Since, x_{22} be an arbitrary element of \Re_{22} , this yields $D(\Re_{22}) \subset \Re_{22}$.

Lemma 2.2. For any $x_{11} \in \Re_{11}$, $x_{12} \in \Re_{12}$, $x_{21} \in \Re_{21}$ and $x_{22} \in \Re_{22}$, we have

- (i) $D(x_{11} + x_{12}) = D(x_{11}) + D(x_{12})$
- (*ii*) $D(x_{22} + x_{12}) = D(x_{22}) + D(x_{12})$
- (*iii*) $D(x_{11} + x_{21}) = D(x_{11}) + D(x_{21})$
- $(iv) D(x_{22} + x_{21}) = D(x_{22}) + D(x_{21}).$

Proof. (i) Consider the sum $D(x_{11}) + D(x_{12}) \in \Re$. Let $y_{1n} \in \Re_{1n}$ for n = 1, 2, we have

$$\begin{aligned} [D(x_{11}) + D(x_{12})]y_{1n} &= D(x_{11})y_{1n} + D(x_{12})y_{1n} \\ &= D(x_{11})y_{1n} \\ &= D(x_{11})y_{1n} \\ &= D(x_{11}y_{1n}) - x_{11}D(y_{1n}) \\ &= D[(x_{11} + x_{12})y_{1n}] - x_{11}D(y_{1n}) \\ &= D(x_{11} + x_{12})y_{1n} + (x_{11} + x_{12})D(y_{1n}) - x_{11}D(y_{1n}) \\ &= D(x_{11} + x_{12})y_{1n}. \end{aligned}$$

Thus, we have

(2.9)
$$[D(x_{11}) + D(x_{12}) - D(x_{11} + x_{12})]y_{1n} = 0.$$

In the similar fashion for any $y_{2n} \in \Re_{2n}$, we obtain

(2.10)
$$[D(x_{11}) + D(x_{12}) - D(x_{11} + x_{12})]y_{2n} = 0.$$

Since, y_{1n} and y_{2n} are an arbitrary element of \Re_{1n} and \Re_{2n} respectively. Therefore, from (2.9) and (2.10), we conclude that

(2.11)
$$[D(x_{11}) + D(x_{12}) - D(x_{11} + x_{12})]\Re = (0).$$

By using condition (1), we get

(2.12)
$$D(x_{11}) + D(x_{12}) - D(x_{11} + x_{12}) = 0.$$

Above relation implies that

(2.13)
$$D(x_{11} + x_{12}) = D(x_{11}) + D(x_{12}).$$

Proof of (i) is done.

(*ii*) Let x_{22} and x_{12} be an any element of \Re_{22} and \Re_{12} , we assume the sum $D(x_{22}) + D(x_{12}) \in \Re$. Now, for $y_{12} \in \Re_{12}$ we have

$$(2.14) [D(x_{22}) + D(x_{12})]y_{12} = D(x_{22})y_{12} + D(x_{12})y_{12}.$$

Using the definition of derivation in (2.14), it's yields that $[D(x_{22}) + D(x_{12})]y_{12} = D(x_{22}y_{12}) - x_{22}D(y_{12}) + D(x_{12}y_{12}) - x_{12}D(y_{12})$ $= 0 - x_{22}D(y_{12}) + 0 - x_{12}D(y_{12})$ $= D(0) - (x_{22} + x_{12})D(y_{12})$ $= D[(x_{22} + x_{12})y_{12}] - (x_{22} + x_{12})D(y_{12})$ $= D(x_{22} + x_{12})y_{12} + (x_{22} + x_{12})D(y_{12})$ $-(x_{22} + x_{12})D(y_{12}) = D(x_{22} + x_{12})y_{12}.$ Which implies that

$$(2.15) [D(x_{22}) + D(x_{12})]y_{12} = D(x_{22} + x_{12})y_{12}.$$

This implies that

$$(2.16) \qquad [D(x_{22}) + D(x_{12}) - D(x_{22} + x_{12})]y_{12} = 0.$$

Since, y_{12} be an arbitrary element of \Re_{12} , above relation yields that

(2.17)
$$[D(x_{22}) + D(x_{12}) - D(x_{22} + x_{12})]\Re_{12} = (0)$$

By using condition (2), we obtain

$$(2.18) D(x_{22} + x_{12}) = D(x_{22}) + D(x_{12}).$$

(*iii*) Let x_{11} and x_{21} be an arbitrary element of \Re_{11} and \Re_{21} , we consider the sum $D(x_{11}) + D(x_{21}) \in \Re$. Now, for $y_{12} \in \Re_{12}$ we have

$$(2.19) [D(x_{11}) + D(x_{21})]y_{12} = D(x_{11})y_{12} + D(x_{21})y_{12}.$$

Using the definition of derivation, above relation yields that

$$(2.20) \ [D(x_{11}) + D(x_{21})]y_{12} = D(x_{11}y_{12}) - x_{11}D(y_{12}) + D(x_{21}y_{12}) - x_{21}D(y_{12}).$$

Since, $x_{11} \in \Re_{11}$ and $y_{12} \in \Re_{12}$ this implies $x_{11}y_{12} \in \Re_{12}$ and similarly we obtain $x_{21}y_{12} \in \Re_{22}$. Using previous part of this Lemma, above relation can be written as

$$(2.21)[D(x_{11}) + D(x_{21})]y_{12} = D(x_{11}y_{12} + x_{21}y_{12}) - x_{11}D(y_{12}) - x_{21}D(y_{12}).$$

This implies that

$$(2.22)[D(x_{11}) + D(x_{21})]y_{12} = D((x_{11} + x_{21})y_{12}) - (x_{11} + x_{21})D(y_{12}).$$

Using the definition of derivation in (2.22), we obtain

$$[D(x_{11}) + D(x_{21})]y_{12}$$

225

$$= D(x_{11} + x_{21})y_{12} + (x_{11} + x_{21})D(y_{12}) - (x_{11} + x_{21})D(y_{12}).$$

Above equation can be rewritten as $[D(x_{11}) + D(x_{21})]y_{12} = D(x_{11} + x_{21})y_{12}$. This implies that

(2.23)
$$[D(x_{11}) + D(x_{21}) - D(x_{11} + x_{21})]y_{12} = 0.$$

Since, y_{12} be an arbitrary element of \Re_{12} , above relation yields that

(2.24)
$$[D(x_{11}) + D(x_{21}) - D(x_{11} + x_{21})]\Re_{12} = (0).$$

By using condition (2), we obtain

(2.25)
$$D(x_{11} + x_{21}) = D(x_{11}) + D(x_{21}).$$

 $\begin{aligned} (iv) \text{ Consider the sum } D(x_{22}) + D(x_{21}) \in \Re. \text{ Let } y_{1n} \in \Re_{1n} \text{ for } n = 1, 2, \\ \text{we have} \\ & [D(x_{22}) + D(x_{21})]y_{1n} = D(x_{22})y_{1n} + D(x_{21})y_{1n} \\ & = D(x_{21})y_{1n} \\ & = D(x_{21})y_{1n} \\ & = D(x_{21}y_{1n}) - x_{21}D(y_{1n}) \\ & = D[(x_{22} + x_{21})y_{1n}] - x_{21}D(y_{1n}) \\ & = D(x_{22} + x_{21})y_{1n} + (x_{22} + x_{21})D(y_{1n}) - x_{21}D(y_{1n}) \\ & = D(x_{22} + x_{21})y_{1n} + x_{21}D(y_{1n}) - x_{21}D(y_{1n}) \\ & = D(x_{22} + x_{21})y_{1n} + x_{21}D(y_{1n}) - x_{21}D(y_{1n}) \end{aligned}$

Thus, we have

$$(2.26) \qquad [D(x_{22}) + D(x_{21}) - D(x_{22} + x_{21})]y_{1n} = 0.$$

In a similar way for any $y_{2n} \in \Re_{2n}$, we obtain

$$(2.27) [D(x_{22}) + D(x_{21}) - D(x_{22} + x_{21})]y_{2n} = 0.$$

Since, y_{1n} and y_{2n} are an arbitrary element of \Re_{1n} and \Re_{2n} , respectively. Therefore, from (2.26) and (2.27), we conclude that

$$(2.28) \qquad [D(x_{22}) + D(x_{21}) - D(x_{22} + x_{21})]\Re = (0).$$

By using condition (1), we get

(2.29)
$$D(x_{22}) + D(x_{21}) - D(x_{22} + x_{21}) = 0.$$

Above relation implies that

$$(2.30) D(x_{22} + x_{21}) = D(x_{22}) + D(x_{21})$$

This complete the proof.

Lemma 2.3. D is additive on \Re_{21}

Proof. Let $x_{21}, y_{21} \in \Re_{21}$. For any $z_{12} \in \Re_{12}$ and $z_{2n} \in \Re_{2n}$ for n = 1, 2 and using the definition of derivation, we have

$$(2.31) D(x_{21} + y_{21})z_{12}z_{2n} = D((x_{21} + y_{21})z_{12}z_{2n}) - (x_{21} + y_{21})D(z_{12}z_{2n}).$$

Above equation can be written as $D(x_{21} + y_{21})z_{12}z_{2n} = D((x_{21} + y_{21})z_{12}z_{2n}) - (x_{21} + y_{21})D(z_{12}z_{2n}) = D((x_{21}z_{12} + y_{21})(z_{2n} + z_{12}z_{2n})) - (x_{21} + y_{21})D(z_{12}z_{2n}) = D(x_{21}z_{12} + y_{21})D(z_{2n} + z_{12}z_{2n}) + (x_{21}z_{12} + y_{21})D(z_{2n} + z_{12}z_{2n}) - (x_{21} + y_{21})D(z_{12}z_{2n}).$

In last relation, we use (ii), (iii) and (iv) of Lemma 2.2, this yields $D(x_{21} + y_{21})z_{12}z_{2n} = D(x_{21}z_{12})(z_{2n} + z_{12}z_{2n}) + D(y_{21})(z_{2n} + z_{12}z_{2n})$ $+(x_{21}z_{12} + y_{21})D(z_{2n}) + (x_{21}z_{12} + y_{21})D(z_{12}z_{2n})$ $-x_{21}D(z_{12}z_{2n}) - y_{21}D(z_{12}z_{2n}).$

Using Lemma 2.1 and after simplifying, we obtain

 $(2.32) \begin{array}{l} D(x_{21}+y_{21})z_{12}z_{2n} &= D(x_{21}z_{12})z_{2n} + D(y_{21})z_{12}z_{2n} + x_{21}z_{12}D(z_{2n}) \\ &+ y_{21}D(z_{12}z_{2n}) - x_{21}D(z_{12}z_{2n}) - y_{21}D(z_{12}z_{2n}). \end{array}$

Using definition of derivation in (2.32), we see that

$$D(x_{21} + y_{21})z_{12}z_{2n} = D(x_{21})z_{12}z_{2n} + x_{21}D(z_{12})z_{2n} + D(y_{21})z_{12}z_{2n} + x_{21}z_{12}D(z_{2n}) + y_{21}D(z_{12}z_{2n}) - x_{21}D(z_{12})z_{2n} - x_{21}z_{12}D(z_{2n}) - y_{21}D(z_{12}z_{2n}).$$

On simplification, this implies

$$(2.33) \qquad [D(x_{21} + y_{21}) - D(x_{21}) - D(y_{21})]z_{12}z_{2n} = 0.$$

Since, z_{12} and z_{2n} are arbitrary element of \Re_{12} and \Re_{2n} respectively, (2.33) becomes

(2.34)
$$[D(x_{21} + y_{21}) - D(x_{21}) - D(y_{21})]\Re_{12}\Re_{2n} = (0).$$

Also, it is clear that

(2.35)
$$[D(x_{21} + y_{21}) - D(x_{21}) - D(y_{21})]\Re_{12}\Re_{1n} = (0).$$

Combining (2.34) and (2.35), we get

(2.36)
$$[D(x_{21} + y_{21}) - D(x_{21}) - D(y_{21})]\Re_{12}\Re = (0).$$

First, we use condition (1) and then (2), above relation yields that

$$(2.37) D(x_{21} + y_{21}) = D(x_{21}) - D(y_{21}).$$

This completes the Lemma.

Lemma 2.4. *D* is additive on \Re_{12}

Proof. Let x_{12} , $y_{12} \in \Re_{12}$, $t_{1n} \in \Re_{1n}$ and using Lemma 2.1(ii), we have

$$(2.38) [D(x_{12}) + D(y_{12})]t_{1n} = D(x_{12})t_{1n} + D(y_{12})t_{1n} = 0.$$

We have, $[D(x_{12}) + D(y_{12})]t_{1n} = D(x_{12} + y_{12})t_{1n}$. Solving last relation, we arrives at

(2.39)
$$[D(x_{12}) + D(y_{12}) - D(x_{12} + y_{12})]t_{1n} = 0.$$

Since, t_{1n} be an arbitrary element of \Re_{1n} . Equation (2.39) can be written as

(2.40)
$$[D(x_{12}) + D(y_{12}) - D(x_{12} + y_{12})]\Re_{1n} = (0).$$

Now, for an element $t_{2n} \in \Re_{2n}$ and by using (i), (ii) and (iii) of Lemma 2.2, we have

$$D((x_{12}+y_{12})t_{2n}) = D((e_1+x_{12})(e_2t_{2n}+y_{12}t_{2n}))$$

= $D(e_1+x_{12})(e_2t_{2n}+y_{12}t_{2n}) + (e_1+x_{12})D(e_2t_{2n}+y_{12}t_{2n})$
= $D(e_1)(e_2t_{2n}) + D(e_1)(y_{12}t_{2n}) + D(x_{12})(e_2t_{2n}) + D(x_{12})(y_{12}t_{2n})$
+ $e_1D(e_2t_{2n}) + e_1D(y_{12}t_{2n}) + x_{12}D(e_2t_{2n}) + x_{12}D(y_{12}t_{2n}).$

By using (i), (ii), (iii) and (iv) part of Lemma 2.1 and $D(e_1) = 0$ in above equation and after solving, we obtain

$$(2.41)D((x_{12}+y_{12})t_{2n}) = D(x_{12})t_{2n} + D(y_{12})t_{2n} + y_{12}D(t_{2n}) + x_{12}D(t_{2n}).$$

Using the definition of derivation in left side of (2.40), we get

 $D(x_{12}+y_{12})t_{2n}+(x_{12}+y_{12})D(t_{2n}) = (D(x_{12})+D(y_{12}))t_{2n}+(y_{12}+x_{12})D(t_{2n}).$ (2.42)

On solving, we find

(2.43)
$$D(x_{12} + y_{12})t_{2n} = (D(x_{12}) + D(y_{12}))t_{2n}.$$

Which implies that

$$(2.44) [D(x_{12}) + D(y_{12}) - D(x_{12} + y_{12})]t_{2n} = 0.$$

Since, t_{2n} is an any element of \Re_{2n} , this gives

(2.45)
$$[D(x_{12}) + D(y_{12}) - D(x_{12} + y_{12})]\Re_{2n} = (0).$$

Combining (2.40) and (2.45), we get

(2.46)
$$[D(x_{12} + y_{12}) - D(x_{12}) + D(y_{12})]\Re = (0).$$

On using condition (1), we get the required result i.e., $D(x_{12} + y_{12}) = D(x_{12}) + D(y_{12})$.

Lemma 2.5. D is additive on \Re_{11}

Proof. Let x_{11} , $y_{11} \in \Re_{11}$ and $t_{12} \in \Re_{12}$, we get

$$(2.47) [D(x_{11}) + D(y_{11})]t_{12} = D(x_{11})t_{12} + D(y_{11})t_{12}$$

Using the definition of derivation in last relation, we obtain $[D(x_{11}) + D(y_{11})]t_{12} = D(x_{11}t_{12}) - x_{11}D(t_{12})$

$$+D(y_{11}t_{12}) - y_{11}D(t_{12}) - y_{11}D(t_{12}).$$

Since, $x_{11}t_{12}, y_{11}t_{12} \in \Re_{12}$ and by using Lemma 2.4 in (2.46), we find that $[D(x_{11}) + D(x_{12})]t_{12} = D(x_{12}t_{12} + y_{12}t_{12}) - (x_{11} + y_{11})D(t_{12})$

$$\begin{aligned} [D(x_{11}) + D(y_{11})]t_{12} &= D(x_{11}t_{12} + y_{11}t_{12}) - (x_{11} + y_{11})D(t_{12}) \\ &= D((x_{11} + y_{11})t_{12}) - (x_{11} + y_{11})D(t_{12}) \\ &= D(x_{11} + y_{11})t_{12} + (x_{11} + y_{11})D(t_{12}) \\ &- (x_{11} + y_{11})D(t_{12}) \\ &= D(x_{11} + y_{11})t_{12}. \end{aligned}$$

Since, t_{12} be an arbitrary element of \Re_{12} , so we have $[D(x_{11}) + D(y_{11}) - D(x_{11} + y_{11})]\Re_{12} = (0)$. So, by applying condition (2), we get the result.

Lemma 2.6. *D* is additive on $\Re_{11} + \Re_{21} = \Re e$

Proof. Let $x_{11}, y_{11} \in \Re_{11}$ and $x_{21}, y_{21} \in \Re_{21}$. Then we have

$$(2.48) \quad D((x_{11}+x_{21})+(y_{11}+y_{21}))=D((x_{11}+y_{11})+(x_{21}+y_{21})).$$

Using Lemma 2.2(iii) in (2.48), we arrives at

$$(2.49) \ D((x_{11}+x_{21})+(y_{11}+y_{21})) = D(x_{11}+y_{11}) + D(x_{21}+y_{21}).$$

By using Lemma 2.3 and Lemma 2.5, we find that $D((x_{11} + x_{21}) + (y_{11} + y_{21})) = D(x_{11}) + D(y_{11}) + D(x_{21}) + D(y_{21})$ $= D(x_{11}) + D(x_{21}) + D(y_{11}) + D(y_{21}).$

Again we use Lemma 2.2(iii) in last relation, its yields that $D((x_{11} + x_{21}) + (y_{11} + y_{21})) = D(x_{11} + x_{21}) + D(y_{11} + y_{21}).$ We are done.

Theorem 2.7. Let \Re be a ring containing an idempotent *e* and 1 - e. If *d* be a multiplicative derivation of \Re and suppose \Re satisfies the following conditions:

- (1) $x \Re e = 0 \Rightarrow x = 0$ (and hence $x \Re = 0 \Rightarrow x = 0$)
- (2) $x\Re_{12} = 0 \Rightarrow x = 0.$

Then d becomes additive.

Proof. As we mention earlier, we replace d by D. Let $u, v \in \Re$ and consider D(u) + D(v) be an element of \Re . Take an element $t \in \Re e = \Re_{11} + \Re_{21}$. Thus, ut and vt are element of $\Re e = \Re_{11} + \Re_{21}$. Now, we find that

(2.50)
$$(D(u) + D(v))t = D(u)t + D(v)t.$$

Using definition of derivation in (2.50), we have

(2.51)
$$(D(u) + D(v))t = D(ut) - uD(t) + D(vt) - vD(t).$$

Since, $ut, vt \in \Re e = \Re_{11} + \Re_{21}$, then by using Lemma 2.6 in (2.51), we obtain

$$(D(u) + D(v))t = D(ut + vt) - (u + v)D(t) = D((u + v)t) - (u + v)D(t) = D(u + v)t + (u + v)D(t) - (u + v)D(t) = D(u + v)t.$$

Thus, we have

(2.52)
$$[D(u) + D(v) - D(u+v)]t = 0$$

Since, t be an arbitrary element of $\Re e$. So, we see that

(2.53)
$$[D(u) + D(v) - D(u+v)]\Re e = (0).$$

By using condition (1), we obtain D(u+v) = D(u) + D(v). This shows that D, and also d, is additive. \Box

231

References

- M. N. Daif, "When is a multiplicative derivation additive?", *International Journal of Mathematics and Mathematical Sciences*, vol. 14, no. 3, pp. 615-618, 1991. doi: 10.1155/S0161171291000844
- [2] M. N. Daif and M. S. Tammam-El-Sayiad, Multiplicative generalized derivations which are additive", *East-West Journal of Mathematics*, vol. 9, no. 1, pp. 31-37, 1997.
- [3] N. Jacobson, *Structure of rings*. American Mathematical Society Colloquium Publications, vol. 37, 1964.
- W. S. Martindale, "When are multiplicative mappings additive?, *Proceedings of the American Mathematical Society*, vol. 21, no. 3, pp. 695-698, 1969. doi: 10.1090/S0002-9939-1969-0240129-7
- [5] E.C. Posner, "Derivations in prime rings", *Proceedings of the American Mathematical Society*, vol. 8, no. 6, pp. 1093-1100, 1957 doi: 10.2307/2032686
- [6] Y. Wang, "The additivity of multiplicative maps on rings", *Communications in Algebra*, vol. 37, no. 6, pp. 2351-2356, 2009. doi: 10.1080/00927870802623369

Wasim Ahmed

Department of Mathematics, Aligarh Muslim University, Aligarh, India e-mail: wasim10041994@gmail.com Corresponding author

Muzibur Rahman Mozumder

Department of Mathematics, Aligarh Muslim University, Aligarh, India e-mail: muzibamu81@gmail.com

and

Md. Arshad Madni

Department of Mathematics, Aligarh Muslim University, Aligarh, India e-mail: arshadmadni7613@gmail.com