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Universidad Nacional Autónoma de México, México
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and
Adolfo Pimienta

Universidad Simón Bolivar, Colombia
Received : July 2022. Accepted : June 2023

Proyecciones Journal of Mathematics
Vol. 42, No 5, pp. 1211-1220, October 2023.
Universidad Católica del Norte
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Abstract

Let (X, τ) be a topological space, we will denote by |X|,|X|K , |X|τ
and |X|δ, the cardinalities of X; the family of compacts in X; the
family of closed in X, and the family of Gδ-closed in X, respectively.
The purpose of this work is to establish relationships between these
four numbers and conditions under which two of them coincide or
one of them is ≤ c, where c denotes, as usual, the cardinality of the
set of real numbers R. We will use the Stone-Weierstrass theorem to
prove that: Let (X, τ) be a compact Hausdorff topological space, then
|X|δ ≤ |X|ℵ0 .
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1. Introduction

Weierstrass approximation theorem states that every continuous real func-
tion f over a closed interval [a, b] can be uniformly approximated by poly-
nomials (see [15]).

The most relevant generalization of the Weierstrass theorem is that of
Stone, known as the Stone-Weierstrass theorem [13], which characterizes in
simple terms the algebras of continuous functions that are uniformly dense
on C(X), for compact X.

An important aspect in analysis is the study of the closed, compact
subsets Gδ and Gδ-closed of a topological space (X, τ). As an example, we
can mention the problem of finding the number of compact subsets of a
topological space X, this problem was worked by D. K. Burke and R. E.
Hodel in [4], their work was based on finding the cardinality |X|K in terms
of other invariant cardinals, they proved that if X is a separable Hausdorff
space, then |X|K ≤ 2ℵ0 .

Another very important result in this theory is the one given by P. Roy,
on the cardinality of the first countable spaces see [11], in this work, Roy
proves that if X is a Hausdorff space that is Lindelöf over every closed
subset L, when |L| ≤ c and if, furthermore, the first axiom of countability
holds in X, then |X| ≤ c.

The purpose of the following work is to present a new alternative solu-
tion to the problem of establishing relations regarding the cardinality of a
topological space (X, τ) and some of its subsets, from the Stone-Weierstrass
theorem. We will also prove a metrization theorem (Arhangel’skiis original,
see Theorem 3, [2]) on spaces whose family of compacts has cardinality < c.

2. Preliminaries

The terminology of [8] and [16], is used throughout.
Throughout this paper we shall assume that (X, τ) is a topological

space.

Definition 1. An topological space (X, τ) is a Lindelöf space, or has the
Lindelöf property if and only if every open cover of X has a countable
subcover. X is a hereditarily Lindelöf if and only if all open subspaces of
X have the Lindelöf property.

Apparently Theorem 2 below is well-known. We include it here for easy
reference.
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Theorem 2. Let (X, τ) be a topological space. The following conditions
are equivalent:

1. The space X is hereditarily Lindelöf.

2. Every open subspace of X is Lindelöf.

3. For every uncountable subspace Y of X, there exists a point y ∈ Y
such that every open subset of X containing y contains an uncount-
able number of points of Y .

Proof. The implications of (1) ⇒ (2) and (2) ⇒ (3) can be found in
detail in ([16], P 110).

(3)⇒ (1) Let’s proceed by contrapositive. Suppose T is not a Lindelöf
subspace of (X, τ). Let U be an open cover of T such that no countable
subcollection of U can cover T . By a transfinite inductive process, let us
choose a set of points {tα ∈ T :α < ω1} and a collection of open sets {Uα ∈
U :α < ω1} such that for each α < ω1, tα ∈ Uα and tα /∈ S{Uβ:β < α}.
The inductive process is possible since no countable subcollection of U can
cover T .

On the other hand, for each α, let Vα be an open subset of (X, τ) such
that Uα = Vα ∩ Y . We can now conclude that for any point tα of Y , there
exists an open set Vα containing tα such that Vα contains only a countable
number of points of Y . 2

Remark 3. The condition 3 indicates that every uncountable set has some
special kind of limit points. Let p ∈ X. We say that p is a limit point of
the set Y ⊂ X if every open set containing p contains a point of Y other
than p.

In some situations, it will be enough to apply the following corollary
obtained from the condition 3.

Corollary 4. If the space (X, τ) is hereditarily Lindelöf, then every un-
countable subspace Y of X contains one of its limit points.

Definition 5. A family V of open neighborhoods of a point x ∈ X is a
local basis in x if every neighborhood of x contains an element of V. (X, τ)
is first-countable if every x ∈ X has a locally countable basis.

Theorem 6. If (X, τ) is T2, Lindelöf and first-countable, then |X| ≤ c (see
[2], Corollary 2.1).
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From the previous theorem, the following corollary follows.

Corollary 7. If (X, τ) is T2, hereditarily Lindelöf and first-countable, then
|X|τ ≤ c.

Definition 8. Let (X, τ) be a topological space.

1. A subset A of a space X is a set Gδ if it is a countable (finite or
infinite) intersection of open spaces of X;

2. A subset A of a space X is a set closed-Gδ in X, if and only if, for
every point p 6∈ A there exists a set Gδ, Dp, such that p ∈ Dp and
Dp ∩A = ∅.

Definition 9. A topological space (X, τ) is normal iff whenever A and B
are disjoint closed sets in X, there are disjoint open sets U and V with
A ⊂ U and B ⊂ V . A space (X, τ) is perfectly normal iff it is normal and
each closed set in X is a Gδ-set. A set A ⊆ X is called zero set if there
exists a continuous function f :X → [0, 1] such that A = f−1(0).

The result that follows is well known in set topology.

Theorem 10. Let (X, τ) be a normal space and A ⊆ X closed. Then A
is a zero set if and only if A is Gδ-set.

A space (X, τ) is Čech-complete if it is homeomorphic to a subspace Gδ

of a Hausdorff compact.
We will have the opportunity to use the following result:

Theorem 11. (see [2], Lemma 2.) Every Čech-complete and hereditarily
Lindelöf X space is either first-countable or has cardinality c.

Proof. Suppose (X, τ) is uncountable, with at most a countable infinity
of exceptions, all points of X are condensation points of X. Therefore,
without loss of generality, we can assume that X is also self-dense. Suppose

X =
∞T
n=1

Wn, where W1,W2, . . . are open in a compact and Hausdorff space

Z. Let’s pick two distinct points a0, a1 ∈ X. Let V0, V1 be foreign open in
Z such that a0 ∈ V0 ⊆ V 0 ⊆ W1, a1 ∈ V1 ⊆ V 1 ⊆ W1 ( locks are taken at
Z). Since X is dense in itself, there are distinct points a00, a01 ∈ V0∩X and
distinct points a10, a11 ∈ V1 ∩X . Let V00, V01, V11 be mutually unrelated
open in Z such that a00 ∈ V00 ⊆ V 00 ⊆ V0∩W2; a01 ∈ V01 ⊆ V 01 ⊆ V0∩W2;
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a10 ∈ V10 ⊆ V 10 ⊆ V1 ∩W2 and a11 ∈ V11 ⊆ V 11 ⊂ V1 ∩W2. Let’s now
choose distinct points aij0, aij1 ∈ Vij ∩X (i, j = 0, 1) and let Vij0, Vij1 be
open outside in Z such that:

aij0 ∈ Vij0 ⊆ V ij0 ⊆ Vij ∩W3

aij1 ∈ Vij1 ⊆ V ij1 ⊆ Vij ∩W3, i, j = 0, 1.

This process can be continued inductively. For each (i1, i2, . . .) ∈ 2W ,
let us choose a point x(i1, i2, . . .) in Vi1 ∩ Vi1i2 ∩ Vi1i2i3 ∩ · · ·. As we can
see (i1, i2, . . .) → x(i1, i2, . . .) defines an injective function from 2W into
X. Therefore, |X| ≥ c. But by the theorem 6, |X| ≤ c (note that every
Čech-complete and hereditarily Lindelöf space X is first-countable). Thus,
|X| = c. 2

Definition 12. For each compact and Hausdorff space X, let us denote
by C(X,R) the set of all continuous functions f :X → R with the topology
induced by the metric:

d(f, g) = sup{|f(x)− g(x)|:x ∈ X}, f, g ∈ C(X,R).

Definition 13. 1. A family A ⊂ C(X), is an algebra, if for all f, g ∈ A
and for all c ∈ R, we have f + g ∈ A, fg ∈ A and cf ∈ A.

2. Given a collection D ⊂ C(X), the subalgebra A(D) generated by D,
is the smallest of the subalgebras of C(X) containing D.

The uniform closure of A is the set A of the functions in C(X) that can
be uniformly approximated by elements of A. The collection D ⊂ C(X) is
said to separate points if given any two points x 6= y in X, there exists a
function f ∈ D such that f(x) 6= f(y).

The following version of the Stone-Weierstrass Theorem is not the most
general. However, it will suffice for our purposes:

Theorem 14 (Stone-Weierstrass (see [10])). Let A ⊆ C(X,R). Sup-
pose A contains at least one non-zero constant function. If for each pair of
distinct points a, b ∈ X, there exists f ∈ A such that f(a) 6= f(b), then the
subalgebra A∗ of A ⊆ C(X,R) generated by A is dense in C(X,R).

3. Main results

Theorem 1. Let (X, τ) be a compact Hausdorff topological space. Then
|X|δ ≤ |X|ℵ0 .
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Proof. Let Kδ be the family of closed Gδ in X. By theorem 10, there
exists an injective function j:Kδ → C(X,R) such that for each H ∈ Kδ, we
can choose fH ∈ C(X,R) such that f−1H (0) = H. Let j(H) = fH . It will
then suffice to prove that |C(X,R)| ≤ |X|ℵ0 . For each pair of distinct points
a, b ∈ X, we define ga,b ∈ C(X,R) such that ga,b(a) = 0 and ga,b(b) = 1.
Let λ ∈ C(X,R) be the constant function λ ≡ 1. We can note that A∗, is
a subalgebra generated by the family A = {λ}∪{ga,b: a, b ∈ X, a 6= b}, plus
A∗ satisfies the hypotheses of the Theorem 14. Therefore, the subalgebra
A∗ generated by A is dense in C(X,R). The above allows us to state
that |A∗| ≤ ℵ0 · |A| · c ≤ max{|X|, c}. Finally, since C(X,R) is first
countable, each f ∈ C(X,R) is the limit of a sequence in A∗ and thus
|C(X,R)| ≤ |X|ℵ0 . 2

Before stating some corollaries of the previous theorem, we need some
definitions.

Definition 2. A topological space (X, τ) is σ-compact if there are com-

pacts A1, A2, . . . in X such that X =
∞S
n=1

An.

Corollary 3. Let (X, τ) be a σ-compact Hausdorff topological space, with
points Gδ. Then |X|δ ≤ c.

Proof. Let X1,X2, . . . be compact in X such that X =
∞S
n=1

Xn. Let

K,K1,K2, . . . be the families of closed Gδ in X,X1,X2, . . . , respectively.
Since each Xn is first countable (because it is compact and has points Gδ,
see ([16], 16A. 4)) , we have |Xn| ≤ c for each n = 1, 2, . . . (see Theorem 6).
Therefore, each |Kn| ≤ c (see Theorem 1). Then the correspondence K →
(K∩X1,K∩X2, · · ·) determines an injective function ofK inK1×K2×, . . ..
Like |K1 ×K2 × · · · | ≤ c, also in |K| ≤ c, or |X|δ ≤ c. 2

A function f :X → Y is perfect if f is continuous, surjective, closed and
every f−1(y) is compact.

Definition 4. A Hausdorff topological space (X, τ) is perfect pre-image of
a metric space Y (that is, X is said to be premetrizable), if there exists a
perfect function f :X → Y .

Lemma 5. Let (X, τ) be a premetrizable Lindelöf topological space, with
points Gδ and let K be the family of closed sets Gδ and σ -compacts of X
Then |K| ≤ c.
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Proof. By hypothesis, since (X, τ) is a premetrizable topological space,
there exists a metrizable space Y and a perfect function φ such that φ:X →
Y . Since X is Lindelöf, Y is too, and therefore Y has a countable base. By
the Corollary 7, |Y |τ ≤ c LetH∗ = {H ⊆ X:H = φ−1φ(H), H closed and σ−
compact} Therefore, we can say that |H∗| ≤ |Y |τ ≤ c Furthermore, every
Ki ∈ K is a closed Gδ in some element of H∗ (since Ki ⊆ φ−1φ(Ki) and
φ−1φ(Ki) ∈ H∗), for i = 1, 2, . . . By the Corollary 3 , for each H ∈ H∗ we
have |H|δ ≤ c, so |K| ≤ c · c = c. 2

Corollary 6. Let (X, τ) be a topological space, σ-compact, premetrizable,
Lindelöf hereditary and with points Gδ. Then |X|δ ≤ c.

Proof. It is obtained directly from the corollary 5. 2

The following metrization theorem is well known. The proof of it can
be found in [3], Theorem 8.1.

Theorem 7. A topological space (X, τ) is metrizable if and only if it is
premetrizable and its diagonal ∆(X) is a set Gδ in X ×X.

Corollary 8. A premetrizable space X is metrizable if there is a continu-
ous and injective function from X to a metrizable space Y .

Proof. Just note that the assumptions imply that ∆(X) is a set Gδ in
X ×X. 2

The following theorem belongs to the field of set theory. However, we
will have the opportunity to apply it in our context.

Theorem 9. Let X be a set of cardinality c and V a subfamily of 2X

of cardinality ≤ c such that V ∈ V has cardinality c. Then there exist
two alien sets A,B such that X = A ∪ B and such that for each V ∈ V,
A ∩ V 6= ∅ 6= B ∩ V .

Before obtaining some consequences of this theorem, we will give the
following definitions.

A topological space (X, τ) is totally imperfect if every compact subspace
of X is countable. A family G of subsets of X is a grill of X if everything
open in X is a union of elements of G.

Corollary 10. Every premetrizable and hereditarily Lindelöf space X is
a union of two totally imperfect subspaces.
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Proof. Suppose that X is not totally imperfect. Theorem 11 then
implies that |X| ≥ c. But according to the corollary 6 and theorem 1, also
|X| ≤ c. Therefore, |X| = c.

Let V be the family of compact subspaces of X of cardinality c. The
corollary 6 implies that |V| ≤ c. Therefore, we can apply theorem 9 and
obtain two alien sets A,B such that X = A∪B and with A∩V 6= ∅ 6= B∩V
for each V ∈ V. By theorem 11, A and B are totally imperfect. 2

Before proving the metrization theorem alluded to in the introduction
to this work, we need two simple theorems whose proof we omit:

Theorem 11. Every regular space X and hereditarily Lindelöf is perfectly
normal.

Theorem 12. If X has a countable grill, then X ×X is hereditarily Lin-
delöf.

Let us also remember the famous Urysohn metrization theorem:

Theorem 13. Every regular space X, T1, with countable base is metriz-
able.

Let us now state and prove Arhangel’skii metrization theorem see The-
orem 3, [2].

Theorem 14. Every hereditarily premetrizable space X (≡ every sub-
space is premetrizable) and hereditarily Lindelöf X is metrizable with
countable base.

Proof. By the corollary 10, X has two totally imperfect subspaces A and
B such thatX = A∪B. Let YA, YB be metrizable spaces and φA, φB perfect
functions φA:A → YA, φB:B → YB. Since the fibers or inverse points of
these functions are countable sets, A and B are countable unions of sets
each of which admits a continuous and injective function to a metrizable
space. Using the corollary 8, we deduce that X is a countable union of
metrizable spaces with countable base. Therefore, X has a countable grill
and by theorems 11 and 12, ∆(X) is a set Gδ in X ×X. Theorem 7 then
implies that X is metrizable and, being Lindelöf, X has a countable base.
2

We conclude this work with a question that, as far as we know, has not
been answered.
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Question 15. Let (X, τ) be hereditarily premetrizable and perfectly nor-
mal. Is (X, τ) metrizable?

4. Dedicatory

In memory of Adalberto García-Máynez
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Barranquilla,
Colombia
e-mail: margaritagary@mail.uniatlantico.edu.co

and

Adolfo Pimienta
Facultad de Ciencias Básicas y Biomédicas,
Universidad Simón Bolivar,
Barranquilla,
Colombia
e-mail: adolfo.pimienta@unisimonbolivar.edu.co
Corresponding author


