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Universidad Católica del Norte
Antofagasta - Chile

Abstract

In this paper, we investigate the numerical study of nonlinear Fred-
holm integro-differential equation with the fractional Caputo-Fabrizio
derivative. We use the Hermite wavelets and collocation technique
to approximate the exact solution by reducing the Fredholm integro-
differential equation to a nonlinear algebraic system. Furthermore, we
apply this numerical method on certain examples to check its accuracy
and validity.
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1. Introduction

Recently, the integro-differential equations have represented a great interest
among the different types of mathematical equations. This is due to its use
in the modeling of various problems in several fields of science: electrostat-
ics, fluid dynamics, scattering, engineering, biology and medicine such as
[7, 12, 16, 13]. Hence, there are many publications that are interested on the
analytical and numerical studies for the integro differential equations. We
find in [2, 9], the authors studied the solvability of linear Fredholm integral
equation with weakly singular kernel. The authors, in [3, 15], examined the
nonlinear Fredholm integro-differential equation when the derivative of the
unknown function is inside of the integral operator. On the other hands,
many numerical methods are applied to get an approximate solution for
such equations, Laplace decomposition method [1], Rational approxima-
tion [11], B-spline method [18, 14], Homotopy perturbation method [20],
Modified variational iteration method [10], CAS wavelet operational matrix
[6, 19].

Also, in [8], the author studied the existence and uniqueness of the fol-
lowing nonlinear Volterra integro-differential equation with Caputo deriva-
tive

u(x) = f(x) +

Z x

a
K
³
x, s, u(s),CDαu(s)

´
ds, ∀x ∈ [a, b],(1.1)

where u is the unknown function and CDα is the standard Caputo frac-
tional derivative of order 0 < α < 1. the product integration method was
applied to approximate its exact solution.

In [4], the authors used the wavelet collocation method to solve the
following fractional Fredholm integro-differential equation

CDαu(x) = c1f(x, u(x)) + c2

Z 1

0
K(x, t)g(u(t))dt, x ∈ [0, 1],

u(0) = u0, c1, c2 ∈ R.
(1.2)

where CDα denote to the Caputo fractional derivative of order α. f is
assumed to be a sufficiently smooth function on [0, 1]×R, and K is a con-
tinous function on [0, 1]2.
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In this article, we focus on a numerical study for the following fractional
nonlinear Fredholm integro-differential equation:

u(x) = g(x) +

Z 1

0
K(x, s, u(s),Dαu(s))ds

u(0) = 0,
(1.3)

where, 0 < α < 1, u(x), g(x) ∈ H1[0, 1], K, ∂xK ∈ C([0, 1]2 ×R2) and Dα

denote the fractional Caputo Fabrizio derivative of order α described in [5].

This paper is organized as follow: In the second section we introduce
some necessary definitions and theorems which we need. In the third sec-
tion we give the properties of Hermite wavelets. In the fourth section, we
construct the operational matrix of fractional integration. In fifth section,
we describe our suggested method, and in the last section, we check the
validity and efficiency of our method by some illustrative examples.

2. Preliminaries

We introduce some necessary definitions which will be used in the sequel.

Definition 1. Let α ∈ R, such that 0 < α < 1. The Caputo-Fabrizio
fractional derivative of order α of a function u ∈ H1[0, 1] is defined by [5]:

Dαu(x) =
1

1− α

Z x

0
e−

α
1−α (x−s)u0(s)ds.

Definition 2. Let α ∈ R such that 0 < α < 1. The Caputo-Fabrizio
fractional integral of order α of a function u ∈ H1[0, 1] is defined by [17]:

Iαu(x) = (1− α)u(x) + α

Z x

0
u(s)ds.

Lemma 1. Let be α ∈ R, such that 0 < α < 1, and u ∈ H1([0, 1]), then
we have the following equalities:

Dα (Iαu(x)) = u(x)− e−
α

1−α (x−a) · u(0),
Iα (Dαu(x)) = u(x)− u(0).
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Proof. See [17]. 2

From the previous lemma and, there is minor drawback in Caputo-
Fabrizio fractional derivative, the equality Dα (Iαu(x)) = Iα (Dαu(x)) is
not hold true in general cases.

3. Properties of Hermite Wavelets

3.1. Hermite Polynomial

The Hermite polynomials are orthogonal with respect to the weight function
w(x) =

√
1− x2 on R, and satisfy the following recurrence formula:(

Hn+1(x) = 2xHn(x)− 2nHn−1(x),
H1(x) = 2x, H0(x) = 1, for n ≥ 1.

The first few Hermite polynomials are:

H0(x) = 1, H1(x) = 2x, H2(x) = 4x
2 − 2, H3(x) = 8x

3 − 12x

H4(x) = 16x
4 − 48x2 + 12, H5(x) = 32x

5 − 160x3 + 120x

3.2. Hermite Wavelets

The wavelet functions are constructed from a dilation parameter α, and
translation parameter β varies continuously from a single function called the
mother wavelet, then we have the following family of continuous wavelets :

ψα,β(x) =
1p
|α|

H

µ
x− β

α

¶
, α, β ∈ R, α 6= 0.

Hermite wavelets are defined as :

ψi,j(x) =

⎧⎨⎩ 2
k+1
2√
π
Hj(2

kx− 2i+ 1), i−1
2k−1

≤ x ≤ i
2k−1

,

0, otherwise.

where j = 0, 1, 2, . . . , n − 1, and i = 1, 2, . . . , 2k−1. and k is a positive
integer number, and Hj is a Hermite polynomial of degree j, then family
of Hermite wavelets {ψi,j} defines an orthonormal basis for L2w(R).
For any function u(x) in L2w(R) can be written :

u(x) =
∞X
i=1

∞X
j=0

ci,jψi,j(x)(3.1)



Hermite wavelets collocation method for solving a fredholm ... 921

where
ci,j = hu, ψi,ji, such that h., .i is the inner product in L2w(R).

So we approximate the function u(x) by truncated the infinite series (3.1)
as follow:

un(x) =
2k−1X
i=1

n−1X
j=0

ci,jψi,j(x) = CTP (x)(3.2)

where CT and P (x) are 2k−1n× 1 matrices:

CT = [c1,0, c1,1, ..., c1,n−1, c1,0, c2,1, ..., c2,n−1, ..., c2k−1,0, ..., c2k−1,n−1],

and

P (x) = [ψ1,0, ψ1,1, ..., ψ1,n−1, ψ2,0, ψ2,1, ..., ψ2,n−1, ..., ψ2k−1,0, ψ2k−1,1..., ψ2k−1,n−1]
T .

4. Operational Matrix of Fractional Integration

Let k = 1, then both CT and P (x) would be:

CT = [α0, α1, ..., αn−1],

P (x) = [ψ0(x), ψ1(x), ..., ψn−1(x)].

Let Wn be a matrix that contains the coefficients of Hermite wavelets:

Wn =
1√
π

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −4 4 · · ·
Hn−1(−1)
0 8 −32 · · ·
...
0 0 32 · · ·
...
...

...
...

. . .
...
0 0 0 · · ·
22n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

Xn(x) = (1, x, x
2, ..., xn−1) , Pn(x) = [ψ0(x), ψ1(x), ..., ψn−1(x)]
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So, we have:
Pn(x) = Xn(x)Wn.

Let N be an integral matrix in classical basis for polynomial space:

N =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 · · · 0
0 0 1

2 0 · · · 0
0 0 0 1

3 · · · 0
...
...
...

...
. . .

...
0 0 0 0 · · · 1

n

⎞⎟⎟⎟⎟⎟⎟⎠
Then we have the following operational matrix of integration in the

Hermite wavelets basis:Z x

0
CTPn(y)dy = CTMPn+1(x),

where,
M =W−1

n NWn+1.

As well as, and by using the previous definition 2, we can represent the
operational matrix of fractional integration as follow:

Iα
³
CTPn(x)

´
= CT [(1− α)F + αM ]Pn+1(x) = CTQn(x),(4.1)

such that Qn(x) = [(1− α)F + αM ]Pn+1(x), and

F =

⎛⎜⎜⎜⎜⎝
1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0

⎞⎟⎟⎟⎟⎠
5. Description of Method

Let the following Fredholm integro-differential equation:⎧⎨⎩ u(x) = f(x) +

Z 1

0
K(x, s, u(s),Dαu(s))dy,

u(0) = 0,
(5.1)

we derive both of sides of equation (5.1) using the fractional Caputo-
Fabrizio derivative of order α, then we get:
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Dαu(x) = Dαg(x) +

Z 1

0
Dα
xK(x, s, u(s),Dαu(s))ds.(5.2)

We approach the unknown function Dαu(x) by using the formula (3.2):

Dαu(x) ≈ CTPn(x).(5.3)

We integrate (5.3) by using the operational matrix of fractional integra-
tion described above (4.1), in order to obtain an approximation of unknown
function u(x) by:

un(x) ≈ CTQn(x).(5.4)

Now, substitute (5.3) and (5.4) in (5.1), we obtain:

CTPn(x) = Dαg(x) +

Z 1

0
Dα
xK(x, s,C

TQn(s), C
TPn(s))ds.(5.5)

By the following grids points: xi =
2i+1
2(n+1) , i = 0, 1, 2, . . . , n − 1, we

collocate (5.5) to obtain the following nonlinear algebraic system:

CTA = DT(5.6)

such that

A =

⎛⎜⎜⎜⎜⎝
ψ0(x0) ψ0(x1) · · · ψ0(xn−1)
ψ1(x0) ψ1(x1) · · · ψ1(xn−1)
...

...
. . .

...
ψn−1(x0) ψn−1(x1) · · · ψn−1(xn−1)

⎞⎟⎟⎟⎟⎠
and

DT = [d0, d1, · · · , dn−1]

where, for i = 0, · · · , n− 1:

di = Dαg(xi) +

Z 1

0
Dα
xK(xi, s, C

TQn(s), C
TPn(s))ds.

We use the successive approximation method of Picard to solve the
system (5.6), then substitute the coefficients of CT in the formula (5.4) to
get the numerical solution of our equation (5.1).
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6. Examples

In this section, we suggest several examples to show the efficacy of our
proposed method, Let’s define the error function as:

En =
max

i=0,n−1 |un(xi)− u(xi)|

where u(x) is the exact solution, un(x) is the numerical solution, and n
represents the degree of Hermite Wavelets polynomial.

6.1. Example 1

Consider the following equation:⎧⎨⎩ u(x) = g(x) +

Z 1

0
ln

∙
6

5
(cos(s)− xe−3s) +

2

5
u(s)−Dαu(s)

¸
ds, ∀x ∈ [0, 1],

u(0) = 0,

and

g(x) = cos(x) + ln

∙
6

5
(1 + x)

¸
− 3
2
.

The exact solution of this equation is u(x) = sin(x), and the fractional
order of derivation α = 0.5.

6.2. Example 2

Let the Fredholm integro-differential equation:⎧⎨⎩ u(x) = g(x)−
Z 1

0

sin(x+ s)

1 + 2su(s) +Dαu(s)
ds, ∀x ∈ [0, 1],

u(0) = 0,

with g(x) = e−x − 1 + cos(1 + x) − cos(x) such that the exact solution is
u(x) = e−x − 1, and the fractional order of derivation α = 0.75

6.3. Example 3

Consider the following integro-differential equation:⎧⎨⎩ u(x) = −52x2 +
Z 1

0
x2
q
12− 3e−s + 2Dαu(s) + u(s)ds, ∀x ∈ [0, 1],

u(0) = 0,

The exact solution of equation is u(x) = x2, and order of derivation is
α = 2

3 .
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n En

3 6.9888e-05
4 1.4336e-06
5 4.9340e-08
6 6.7237e-10
7 5.4441e-10

Table 6.1: Numerical results
of example 6.1.

n En

3 7.9499e-04
4 2.7590e-05
5 7.6178e-07
6 1.7419e-08
7 8.5031e-09

Table 6.2: Numerical results
of example 6.2.

n En

3 4.4024e-04
4 5.3991e-05
5 5.7305e-06
6 4.6619e-07
7 4.3553e-08

Table 6.3: Numerical results
of example 6.3.

n En

3 1.3017e-05
4 1.7626e-07
5 1.0658e-08
6 7.0663e-11
7 4.7379e-11

Table 6.4: Numerical results
of example 6.4.

6.4. Example 4

Let the following equation:⎧⎪⎪⎨⎪⎪⎩
u(x) = e−

x
3 − cos(x) +

Z 1

0
sin

µ
x− s+

2

9
s2 − 4

3
x+ e

s
3u(s) + e

s
3Dαu(s)

¶
ds,

∀x ∈ [0, 1],
u(0) = 0,

its exact solution is u(x) = e−
x
3 − cos(x), and the fractional order for this

example is α = 0.25.
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Figure 1: u(x) versus un(x) for example 6.1, with n = 7.

Figure 2: u(x) versus un(x) for example 6.2, with n = 7.

pc
f1

pc
f2
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Figure 3: u(x) versus un(x) for example 6.3, with n = 7.

Figure 4: u(x) versus un(x) for example 6.4, with n = 7.

7. Interpretation of results

Tables 6.1, 6.2, 6.3, and 6.4 represent the error function En for various
values of the degree n, which affirm that the present method is better when
the degree n is larger. As well as, the Figures 1, 2, 3, and 4 show graphical
representations of the exact solution and the approximate solution at the
same time, which appear to be nearly identical. So the previous proposed
examples confirm the efficiency and validity of our numerical method.

pc
f3

pc
f4
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8. Conclusion

We have applied the Hermite-Wavelets-Collocation method to approach
the solution of nonlinear Fredholm integro-differential equation with the
fractional Caputo-Fabrizio derivative. The present method has permitted
us to reduce the equation into a nonlinear algebraic system which has been
solved by the Picard iterative method. Moreover, the suggested examples
have proved the accuracy and validity of this method.
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