Resistance distance of generalized wheel and dumbbell graph using symmetric $\{1\}$-inverse of Laplacian matrix

Sakthidevi Kaliyaperumal
Vellore Institute of Technology, Chennai
and
Kalyani Desikan
Vellore Institute of Technology, Chennai
Received: June 2022. Accepted: November 2022

Abstract

A new class of graphs called dumbbell graphs, denoted by $\mathbf{D B}\left(W_{m, n}\right)$ is the graph obtained from two copies of generalized wheel graph $W_{m, n}, m \geq 2, n \geq 3$. It is a graph on $2(m+n)$ vertices obtained by connecting m-vertices in one copy with the corresponding vertices in the other copy. The resistance distance between two vertices v_{i} and v_{j}, denoted by $r_{i j}$, is defined as the effective electrical resistance between them if each edge of G is replaced by 1 ohm resistor. The Kirchhoff index is the sum of the resistance distances between all pairs of vertices in the graph. In this paper, we formulate the resistance distance of $W_{m, n}$ and $\mathbf{D B}\left(W_{m, n}\right)$ using Symmetric $\{1\}$-inverse of Laplacian matrices. We provide examples to illustrate the proposed method and also obtain the Kirchhoff indices for these examples.

Keywords: Dumbbell graph; Resistance distance; Laplacian matrix;
Block matrices; Moore-Penrose inverse; Schur complement

1. Introduction

We consider an undirected and connected graph $G=(V, E)$, where V is the vertex set and E is the edge set, on n vertices. A graph G is regular if every vertex has the same degree. The maximum distance between any two vertices of a graph G is called the diameter of a graph G. The complement of G is the graph whose vertex set is same as that of G and two vertices are adjacent in \bar{G} if only if they are not adjacent in G. The union of two graphs G_{1} and G_{2}, denoted by $G_{1} \cup G_{2}$ is the graph whose vertex set is $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set is $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The join of G_{1} and G_{2}, denoted by $G_{1} \nabla G_{2}$ is the graph obtained from $G_{1} \cup G_{2}$ by adding all possible edges from the vertices of G_{1} to those in G_{2}.

The adjacency matrix $A(G)$ of the graph G is a square matrix of order n, whose (i, j)-entry is equal to 1 if the vertices v_{i} and v_{j} are adjacent and is equal to 0 otherwise. Let $\operatorname{deg}_{G}\left(v_{i}\right)$ be the degree of vertex v_{i} in G. The degree matrix $D(G)$ of the graph G is a diagonal matrix of order n with diagonal entries as the degrees of the vertices. The Laplacian matrix of G is defined as $L(G)=D(G)-A(G)$.

The standard distance between two vertices v_{i} and v_{j}, denoted by $d\left(v_{i}, v_{j}\right)$, is the length of the shortest path between them. In 1993, Klein and Randic [7] introduced a new distance function named resistance distance based on electrical network analysis. The resistance distance between two vertices v_{i} and v_{j}, denoted by $r_{i j}$, is defined as the effective electrical resistance between them if each edge of G is replaced by 1 ohm resistor. The Kirchhoff index is the sum of the resistance distances between all pairs of vertices in the graph. The Kirchhoff index has a wide range of applications in physics, chemistry, and network science.

The resistance distance, unlike the shortest path distance, has the property that two vertices v_{i} and v_{j} that are connected by more than one path are closer than if they are only connected by the shortest path. The resistance distance has certain mathematical implications, which can be described in terms of random walks on graphs [9, 26], the number of spanning trees and spanning bi-trees [21], and the generalized inverse of the Lapla-
cian matrix [7]. Resistance distance has extensive uses in chemistry, in addition to being an intrinsic graph metric and an important component of electrical circuit theory. The resistance distance is better for dealing with network wave-like movements, such as chemical molecule communication [8].

The resistance distance has received a lot of attention in the mathematical, chemical, and physical literature. For a long time, this has been a classic problem in electrical network theory that has been studied by many researchers. Resistance distances have been computed for a variety of interesting classes of graphs so far, with a focus on electrical networks and chemical graphs. Resistance distances have been obtained for some particular classes of graphs, for example, regular graphs [22], circulant graphs [11], distance regular networks [12], wheels and fans [31], Cayley graphs [40], complete graph minus N edges [27], complete n-partite graphs [34], Cayley graphs on symmetric groups [24], some class of graphs [37], pseudo-distance regular [13], almost complete bipartite graphs [23], ring clique network [35], and so on.

It is interesting to note that a good deal of attention has been paid to resistance distances in plane networks, such as fullerene graphs [29], Möbius ladder graphs [28], ladder graphs [44], Apollonian network [41], Sierpinski Gasket Network [43], simple cubic network lattices [30], straight linear 2trees [38], Flower networks [42], Path Network [45], class of plane hexagonal networks [36], linear octogonal networks [16], and linear polyacene graphs [5]. Many formulae, such as combinatorial formulae, algebraic formulae, probabilistic formulae and so forth have been putforth for calculating resistance distance.

The resistance distance for some graph operations was studied in recent years, i.e., the subdivision-vertex join and subdivision-edge join graphs [2], R - vertex join and R - edge join of two graphs [39], the subdivision-vertex and subdivision-edge coronae graphs [14], the H - join of graphs [20], the corona and neighborhood corona graphs [15], the double corona based on R - graphs [18], and Tensor Product of P_{2} and K_{n} graphs [25]. Motivated by these, we have obtained the resistance distance of the Generalized wheel
graph and Dumbbell graph using Symmetric $\{1\}$-inverse of Laplacian matrices in this article. Also, we have provided examples for generalized wheel and dumbbell graph and we have obtained the Kirchhoff indices for these graphs.

2. Preliminaries

For an $m \times m$ matrix P, the $\{1\}$-inverse of P is an $m \times m$ matrix X such that $P X P=P$. If P is singular then it has infinite $\{1\}$-inverses. If X is the unique matrix satisfying $P X P=P, X P X=X$ and $P X=X P$ then $X=P^{\#}$ is the group inverse of P. It is known that $P^{\#}$ exists if only if $\operatorname{rank}(P)=\operatorname{rank}\left(P^{2}\right)$.

If P is real symmetric then $P^{\#}$ exists and $P^{\#}$ is a symmetric $\{1\}$-inverse of P. Exactly, $P^{\#}$ is equal to the Moore-Penrose inverse of $P[2,31]$.

The existence and the representation of the group inverse for block matrices with an invertible subblock were given by the authors Bu, Zhang and Zheng [4].
Lemma 2.1. [4] Let $P=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$
be an $m \times m$ matrix, where A is an invertible $n \times n$ matrix and $S=$ $D-C A^{-1} B$. If $S^{\#}$ exists then

1. $P^{\#}$ exists if only if R is invertible, where $R=A^{2}+B S^{\pi} C$ and $S^{\pi}=I_{m-n}-S S^{\#}$;
2. If $P^{\#}$ exists then
$P^{\#}=\left(\begin{array}{cc}X & Y \\ Z & W\end{array}\right)$,
where
$X=A R^{-1}\left(A+B S^{\#} C\right) R^{-1} A$,
$Y=A R^{-1}\left(A+B S^{\#} C\right) R^{-1} B S^{\pi}-A R^{-1} B S^{\#}$,
$Z=S^{\pi} C R^{-1}\left(A+B S^{\#} C\right) R^{-1} A-S^{\#} C R^{-1} A$,
$W=S^{\pi} C R^{-1}\left(A+B S^{\#} C\right) R^{-1} B S^{\pi}-S^{\#} C R^{-1} B S^{\pi}-S^{\pi} C R^{-1} B S^{\#}+$ $S^{\#}$.

Lemma 2.2. [1, 2, 3] Let $L=\left(\begin{array}{cc}L_{1} & L_{2} \\ L_{2}^{T} & L_{3}\end{array}\right)$
be the Laplacian matrix of a connected graph, where L_{1} is non-singular. Denote $S=L_{3}-L_{2}^{T} L_{1}^{-1} L_{2}$. Then

1. $\left(\begin{array}{ll}L_{1}^{-1}+L_{1}^{-1} L_{2} S^{\#} L_{2}^{T} L_{1}^{-1} & -L_{1}^{-1} L_{2} S^{\#} \\ -S^{\#} L_{2}^{T} L_{1}^{-1} & S^{\#}\end{array}\right)$
is a symmetric $\{1\}$-inverse of L;
2. If each column vector of L_{2} is $\mathbf{- 1}$ or a zero vector,
$\left(\begin{array}{ll}L_{1}^{-1} & 0 \\ 0 & S^{\#}\end{array}\right)$
is a symmetric $\{1\}$-inverse of L.
The next lemma is useful for computing the inverse of non-singular matrices.

Lemma 2.3. [2] Let $P=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$
be a non-singular matrix. If A and D are non-singular then

$$
P^{-1}=\left(\begin{array}{ll}
A^{-1}+A^{-1} B S^{-1} C A^{-1} & -A^{-1} B S^{-1} \\
-S^{-1} C A^{-1} & S^{-1}
\end{array}\right)
$$

where $S=D-C A^{-1} B$ is the Schur complement of A in P.
Lemma 2.4. [33]. If A and $A+B$ are invertible and B has rank 1 then let $g=\operatorname{trace}\left(B A^{-1}\right)$. If $g \neq-1$ then

$$
(A+B)^{-1}=A^{-1}-\frac{1}{1+g} A^{-1} B A^{-1} .
$$

Lemma 2.5. [2]. Let G be a connected graph and $\left(A_{i j}\right)$ be the (i, j)-entry of a matrix A. Then, for all $1 \leq i, j \leq n$,

$$
r_{i j}(G)=\left(L(G)^{\#}\right)_{i i}-2\left(L(G)^{\#}\right)_{i j}+\left(L(G)^{\#}\right)_{j j}
$$

Lemma 2.6. [2, 39]. Let L be the Laplacian matrix of a graph of order n. For any $a, b>0$ satisfying $b \neq n$, we have

1. $\left(L+a I_{n}-\frac{a}{n} J_{n \times n}\right)^{\#}=(L+a I)^{-1}-\frac{1}{a n} J_{n \times n}$
2. $\left(L+a I_{n}-\frac{a}{b} J_{n \times n}\right)^{\#}=(L+a I)^{-1}-\frac{1}{a(b-n)} J_{n \times n}$

3. Resistance distance of generalized wheel graph

In 1988, Fred Buckley and Frank Harary [10] defined the generalized wheel graph $W_{m, n}$ as the join $\overline{K_{m}} \nabla C_{n}, m \geq 2, n \geq 3$, where, $\overline{K_{m}}$ is an empty graph on m vertices and C_{n} is the cycle graph on n vertices.

Now, we give the $\{1\}$-inverse representation of the Laplacian matrix of generalized wheel graph $\overline{K_{m}} \nabla C_{n}, m \geq 2, n \geq 3$.

Theorem 3.1. Let $\overline{K_{m}}$ be an empty graph on $m \geq 2$ vertices and C_{n}, $n \geq 3$ be the cycle graph on n vertices. Then the symmetric $\{1\}$-inverse of $L\left(W_{m, n}\right)$ is

$$
L^{\{1\}}\left(W_{m, n}\right)=\left[\begin{array}{c|c}
\frac{1}{n} I_{m \times m} & 0_{m \times n} \\
\hline 0_{n \times m} & S_{n \times n}^{\#}
\end{array}\right]
$$

where $S_{n \times n}^{\#}=\left[L\left(C_{n}\right)+m I_{n}\right]^{-1}-\frac{1}{m n} J_{n \times n}$.
Proof. Let $\overline{K_{m}}$ be an empty graph of order $m, m \geq 2$ and $C_{n}, n \geq 3$ be the cycle graph (2 -regular) of order n and the generalized wheel graph $W_{m, n}=\overline{K_{m}} \nabla C_{n}, m \geq 2, n \geq 3$. Clearly, the diameter of $W_{m, n}$ is two.

Let $V\left(\overline{K_{m}}\right)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex sets of graphs $\overline{K_{m}}$ and C_{n}, respectively.

Consider the labelled vertices of $W_{m, n}$, such that the first m vertices are from $\overline{K_{m}}, m \geq 2$ and n vertices are from $C_{n}, n \geq 3$

For all $u_{i} \in V\left(\overline{K_{m}}\right), i=1,2, \ldots, m$ in $W_{m, n}$, we have $\operatorname{deg}_{G}\left(u_{i}\right)=n$ and

For all $v_{i} \in V\left(C_{n}\right), i=1,2, \ldots, n$ in $W_{m, n}$, we have $\operatorname{deg}_{G}\left(v_{i}\right)=m+2$

The Laplacian matrix of $W_{m, n}$ is

$$
L\left(W_{m, n}\right)=\left[\begin{array}{c|c}
L_{1} & L_{2} \\
\hline L_{2}^{T} & L_{3}
\end{array}\right]=\left[\begin{array}{c|c}
n I_{m \times m} & -J_{m \times n} \\
\hline-J_{n \times m} & L\left(C_{n}\right)+m I_{n \times n}
\end{array}\right]
$$

where $J_{m \times n}$ is an all ones matrix, I_{n} is the identity matrix of order n, $L\left(C_{n}\right)$ is the Laplacian matrix of C_{n}.

We observe that to obtain the symmetric $\{1\}$-inverse of $L\left(W_{m, n}\right)$, we can use part 2 of Lemma 2.2 and we have

$$
L_{1}^{-1}=\frac{1}{n} I_{m \times m}
$$

Then

$$
\begin{aligned}
S & =L_{3}-L_{2}^{T} L_{1}^{-1} L_{2} \\
& =L\left(C_{n}\right)+m I_{n \times n}-\left(-J_{n \times m}\right) \frac{1}{n} I_{m \times m}\left(-J_{m \times n}\right) \\
& =L\left(C_{n}\right)+m I_{n \times n}-\frac{1}{n} J_{n \times m} I_{m \times m} J_{m \times n} \\
& =L\left(C_{n}\right)+m I_{n \times n}-\frac{1}{n}\left(m J_{n \times n}\right) \\
& =L\left(C_{n}\right)+m I_{n \times n}-\frac{m}{n} J_{n \times n}
\end{aligned}
$$

Using part 1 of Lemma 2.6, for a graph G of order n, where $a=m$, we have

$$
S^{\#}=\left[L\left(C_{n}\right)+m I_{n \times n}\right]^{-1}-\frac{1}{m n} J_{n \times n}
$$

Therefore, the symmetric $\{1\}$-inverse of $L\left(W_{m, n}\right)$ is

$$
L^{\{1\}}\left(W_{m, n}\right)=\left[\begin{array}{c|c}
\frac{1}{n} I_{m \times m} & 0_{m \times n} \\
\hline 0_{n \times m} & S_{n \times n}^{\#}
\end{array}\right]
$$

where $S_{n \times n}^{\#}=\left[L\left(C_{n}\right)+m I_{n \times n}\right]^{-1}-\frac{1}{m n} J_{n \times n}$.
Hence the result.
Corollary 3.2. The symmetric $\{1\}$-inverse of wheel graph $L\left(W_{1, n}\right)$ is

$$
L^{\{1\}}\left(W_{1, n}\right)=\left[\begin{array}{c|c}
\frac{1}{n} I_{1 \times 1} & 0_{1 \times n} \\
\hline 0_{n \times 1} & S_{n \times n}^{\#}
\end{array}\right]
$$

where $S_{n \times n}^{\#}=\left[L\left(C_{n}\right)+I_{n \times n}\right]^{-1}-\frac{1}{n} J_{n \times n}$.

Proof. In Theorem 3.1, substituting $m=1$, we obtain the symmetric $\{1\}$-inverse of wheel graph $L\left(W_{1, n}\right)=L\left(\overline{K_{1}} \nabla C_{n}\right), n \geq 3$. Hence the result.

Using the elements of the symmetric $\{1\}$-inverse of $L\left(W_{m, n}\right)$ and $L\left(W_{1, n}\right)$ in Lemma 2.5, we can obtain the resistance distance between any two vertices of the generalized wheel graph $W_{m, n}$ and wheel graph $W_{1, n}$ respectively.

Example 3.3. Consider the generalized wheel graph $W_{2,3}$. Refer Figure 1.

Figure 1. $W_{2,3}$

The Laplacian matrix of $W_{2,3}$ is

$$
L\left(W_{2,3}\right)=\left[\begin{array}{cc|ccc}
3 & 0 & -1 & -1 & -1 \\
0 & 3 & -1 & -1 & -1 \\
\hline-1 & -1 & 4 & -1 & -1 \\
-1 & -1 & -1 & 4 & -1 \\
-1 & -1 & -1 & -1 & 4
\end{array}\right]
$$

Using Theorem 3.1, we obtain the symmetric $\{1\}$-inverse of $L\left(W_{2,3}\right)$ as

$$
L^{\#}\left(W_{2,3}\right)=\left[\begin{array}{cc|ccc}
\frac{1}{3} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{3} & 0 & 0 & 0 \\
\hline 0 & 0 & \frac{2}{15} & \frac{-1}{15} & \frac{-1}{15} \\
0 & 0 & \frac{-1}{15} & \frac{2}{15} & \frac{1}{15} \\
0 & 0 & \frac{-1}{15} & \frac{-1}{15} & \frac{2}{15}
\end{array}\right]
$$

Using the symmetric $\{1\}$-inverse of $L\left(W_{2,3}\right)$, we can find the resistance distance between any pair of vertices of $W_{2,3}$.
For example, the resistance distance between the vertices 1 and 4 is

$$
r_{14}=\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{3} & 0 \\
0 & \frac{2}{15}
\end{array}\right]\left[\begin{array}{l}
1 \\
-1
\end{array}\right]=\frac{7}{15} .
$$

Similarly, the resistance distances between all pairs of vertices of $W_{2,3}$ can be obtained.

The Kirchhoff index for $W_{2,3}$ is as follows

$$
K_{f}\left(W_{2,3}\right)=\Sigma_{i<j} \quad r_{i j}=4.66
$$

4. Resistance distance of dumbbell graph

We now formulate the resistance distance for the dumbbell graph.
Definition 4.1. Given $m \geq 2$ and $n \geq 3$, the dumbbell graph, $\mathbf{D B}\left(W_{m, n}\right)$, is obtained from two copies of generalized wheel graph $W_{m, n}$ by connecting m vertices in one copy with the corresponding vertices in the other copy.

The diameter of the $\mathbf{D B}\left(W_{m, n}\right)$ graph is three.

In 2017, the name "dumbbell graph" was used by Bojana Borovicanin et al.[18] for another class of graphs. They have defined the dumbbell graph as a graph obtained by connecting two cycles by paths. This is different from the dumbbell graph introduced by us.

Theorem 4.2. Let $\mathbf{D B}\left(W_{m, n}\right)$ on $2(m+n)$ vertices be the dumbbell graph. Then the symmetric $\{1\}$-inverse of $L\left(\mathbf{D B}\left(W_{m, n}\right)\right)$ is

$$
L^{\#}\left[\mathbf{D B}\left(W_{m, n}\right)\right]=\left(\begin{array}{ll}
L_{1}^{-1}+L_{1}^{-1} L_{2} S^{\#} L_{2}^{T} L_{1}^{-1} & -L_{1}^{-1} L_{2} S^{\#} \\
-S^{\#} L_{2}^{T} L_{1}^{-1} & S^{\#}
\end{array}\right)
$$

where

$$
L_{1}^{-1}+L_{1}^{-1} L_{2} S^{\#} L_{2}^{T} L_{1}^{-1}=
$$

$$
\begin{aligned}
& {\left[\begin{array}{c|c}
\frac{n+1}{n(n+2)} I_{m \times m}+\frac{\left(2 m n+m^{2}\right)\left(n^{2}+n-1\right)+n^{2}(n+1)^{2}}{m n(n+2)(n+m)^{2}} J_{m \times m} & \frac{(n+m)^{2}+n}{m(n+m)^{2}} J_{m \times n} \\
\hline \frac{(n+m)^{2}+n}{m(n+m)^{2}} J_{n \times m} & {\left[L\left(C_{n}\right)+m I_{n \times n}\right]^{-1}+\frac{(n+m)^{2}+n}{m(n+m)^{2}} J_{n \times n}}
\end{array}\right]} \\
& -L_{1}^{-1} L_{2} S^{\#}=\left[\begin{array}{c|c}
\frac{1}{n(n+2)} I_{m \times m}-\frac{(2 n+m) m-n^{2}(n+1)}{m n(n+2)(n+m)^{2}} J_{m \times m} & -\frac{1}{(n+m)^{2}} J_{m \times n} \\
\hline \frac{n}{m(n+m)^{2}} J_{n \times m} & -\frac{1}{(n+m)^{2}} J_{n \times n}
\end{array}\right] \\
& -S^{\#} L_{2}^{T} L_{1}^{-1}=\left[\begin{array}{c|c}
\frac{1}{n(n+2)} I_{m \times m}-\frac{(2 n+m) m-n^{2}(n+1)}{m n(n+2)(n+m)^{2}} J_{m \times m} & \frac{n}{m(n+m)^{2}} J_{m \times n} \\
\hline-\frac{1}{(n+m)^{2}} J_{n \times m} & -\frac{1}{(n+m)^{2}} J_{n \times n}
\end{array}\right] \\
& S^{\#}= \\
& {\left[\begin{array}{c|c}
\frac{n+1}{n(n+2)} I_{m \times m}-\frac{\left[\left(2 m n+m^{2}\right)(n+1)\right]-n^{2}}{m n(n+2)(n+m)^{2}} J_{m \times m} & -\frac{1}{(n+m)^{2}} J_{m \times n} \\
\hline-\frac{1}{(n+m)^{2}} J_{n \times m} & {\left[L\left(C_{n}\right)+m I_{n \times n}\right]^{-1}-\frac{2 m+n}{m(n+m)^{2}} J_{n \times n}}
\end{array}\right]}
\end{aligned}
$$

Proof. The Laplacian matrix of dumbbell graph $\mathbf{D B}\left(W_{m, n}\right), m \geq 2, n \geq$ 3 , on $2(m+n)$ vertices is

$$
\begin{gathered}
L\left(\mathbf{D B}\left(W_{m, n}\right)\right)=\left[\begin{array}{c|c}
L_{1} & L_{2} \\
\hline L_{2}^{T} & L_{3}
\end{array}\right]= \\
{\left[\begin{array}{cc|cc}
(n+1) I_{m \times m} & -J_{m \times n} & -I_{m \times m} & 0_{m \times n} \\
-J_{n \times m} & L\left(C_{n}\right)+m I_{n \times n} & 0_{n \times m} & 0_{n \times n} \\
\hline-I_{m \times m} & 0_{m \times n} & (n+1) I_{m \times m} & -J_{m \times n} \\
0_{n \times m} & 0_{n \times n} & -J_{n \times m} & L\left(C_{n}\right)+m I_{n \times n}
\end{array}\right]}
\end{gathered}
$$

Step 1. We start with the calculation of L_{1}^{-1} of $L\left(\mathbf{D B}\left(W_{m, n}\right)\right)$.
Let

$$
L_{1}=\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]=\left[\begin{array}{c|c}
(n+1) I_{m \times m} & -J_{m \times n} \\
\hline-J_{n \times m} & L\left(C_{n}\right)+m I_{n \times n}
\end{array}\right]
$$

Since L_{1} is non-singular, L_{1}^{-1} exists. By applying Lemma 2.3,

$$
L_{1}^{-1}=\left[\begin{array}{c|c}
A^{-1}+A^{-1} B S_{1}^{-1} C A^{-1} & -A^{-1} B S_{1}^{-1} \\
\hline-S_{1}^{-1} C A^{-1} & S_{1}^{-1}
\end{array}\right]
$$

Then

$$
\begin{aligned}
& S_{1}=D-C A^{-1} B \\
& =L\left(C_{n}\right)+m I_{n \times n}-\left(-J_{n \times m}\right) \frac{1}{(n+1)} I_{m \times m}\left(-J_{m \times n}\right) \\
& =L\left(C_{n}\right)+m I_{n \times n}-\frac{1}{(n+1)}\left(J_{n \times m}\right) I_{m \times m}\left(J_{m \times n}\right) \\
& =L\left(C_{n}\right)+m I_{n \times n}-\frac{1}{(n+1)}\left(m J_{n \times n}\right) \\
& =L\left(C_{n}\right)+m I_{n \times n}-\frac{m}{(n+1)} J_{n \times n}
\end{aligned}
$$

Using part 2 of Lemma 2.6, for a graph G of order n, where $a=m$, $b=n+1$, we have

$$
\begin{equation*}
S_{1}^{-1}=\left[L\left(C_{n}\right)+m I_{n \times n}\right]^{-1}+\frac{1}{m} J_{n \times n} \tag{4.1}
\end{equation*}
$$

Next

$$
\begin{aligned}
-A^{-1} B S_{1}^{-1} & =-\left[\frac{1}{(n+1)} I_{m \times m}\right]\left(-J_{m \times n}\right)\left[\left[L\left(C_{n}\right)+m I_{n \times n}\right]^{-1}+\frac{1}{m} J_{n \times n}\right] \\
& =\frac{1}{(n+1)}\left[\left(J_{m \times n}\right)\left[L\left(C_{n}\right)+m I_{n \times n}\right]^{-1}+\frac{1}{m} J_{m \times n} J_{n \times n}\right] \\
& \left.=\frac{1}{(n+1)} \frac{1}{m} J_{m \times n}+\frac{1}{m}\left(n J_{m \times n}\right)\right] \\
& =\frac{1}{(n+1) m}(n+1) J_{m \times n} \\
& =\frac{1}{m} J_{m \times n}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
-A^{-1} B S_{1}^{-1}=\frac{1}{m} J_{m \times n} \tag{4.2}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
-S_{1}^{-1} C A^{-1}=\frac{1}{m} J_{n \times m} \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
A^{-1}+A^{-1} B S_{1}^{-1} C A^{-1}=\frac{1}{n+1} I_{m \times m}+\frac{n}{m(n+1)} J_{m \times m} \tag{4.4}
\end{equation*}
$$

From equations (4.1), (4.2), (4.3), (4.4), we have

$$
L_{1}^{-1}=\left[\begin{array}{ll}
\frac{1}{n+1} I_{m \times m}+\frac{n}{m(n+1)} J_{m \times m} & \frac{1}{m} J_{m \times n} \\
\frac{1}{m} J_{n \times m} & {\left[L\left(C_{n}\right)+m I_{n \times n}\right]^{-1}+\frac{1}{m} J_{n \times n}}
\end{array}\right]
$$

Step 2. Next, we obtain S using L_{1}^{-1}, L_{2} and L_{3} as

$$
\begin{gathered}
S=L_{3}-L_{2}^{T} L_{1}^{-1} L_{2} \\
S=\left[\begin{array}{ll}
-J_{m \times n} & -\frac{n(n+2)}{n+1} I_{m \times m}-\frac{n}{m(n+1)} J_{m \times m} \\
L\left(C_{n}\right)+m I_{n \times n} &
\end{array}\right]
\end{gathered}
$$

Step 3. We calculate $S^{\#}$ using Lemma 2.1.

Let
$S=\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]=\left[\begin{array}{c|c}\frac{n(n+2)}{n+1} I_{m \times m}-\frac{n}{m(n+1)} J_{m \times m} & -J_{m \times n} \\ \hline-J_{n \times m} & L\left(C_{n}\right)+m I_{n \times n}\end{array}\right]$
We get A^{-1} using Lemma 2.4.

$$
A^{-1}=\frac{n+1}{n(n+2)} I_{m \times m}+\frac{1}{n m(n+2)} J_{m \times m}
$$

Then we follow the procedure from Lemma 2.1 to obtain

$$
\begin{aligned}
S_{0} & =D-C A^{-1} B \\
& =\left[L\left(C_{n}\right)+m I_{n \times n}\right]-\left(-J_{n \times m}\right)\left[\frac{n+1}{n(n+2)} I_{m \times m}+\frac{1}{n m(n+2)} J_{m \times m}\right]\left(-J_{m \times n}\right) \\
& =\left[L\left(C_{n}\right)+m I_{n \times n}\right]-\frac{m}{n} J_{n \times n}
\end{aligned}
$$

Using part 1 of Lemma 2.6, for a graph G of order n, where $a=m$ to obtain

$$
S_{0}^{\#}=\left[L\left(C_{n}\right)+m I_{n \times n}\right]^{-1}-\frac{1}{m n} J_{n \times n}
$$

By continuing the procedure using Lemma 2.1, we have S_{0}^{π}.
We know, $S_{0}^{\pi}=I_{n}-S_{0} S_{0}^{\#}$. Then we get,

$$
S_{0}^{\pi}=\frac{1}{n} J_{n \times n}
$$

Next, we calculate $R=A^{2}+B S_{0}^{\pi} C$

$$
R=\frac{n^{2}(n+2)^{2}}{(n+1)^{2}} I_{m \times m}+\frac{m n(n+1)^{2}-n^{2}(2 n+3)}{m(n+1)^{2}} J_{m \times m}
$$

Using Lemma 2.4 we get R^{-1} as

$$
R^{-1}=\frac{(n+1)^{2}}{n^{2}(n+2)^{2}} I_{m \times m}-\frac{m(n+1)^{2}-n(2 n+3)}{m n^{2}(n+2)^{2}(n+m)} J_{m \times m}
$$

We continue the process to obtain

$$
\begin{equation*}
=\frac{n+1}{n(n+2)} I_{m \times m}-\frac{\left(2 m n+m^{2}\right)(n+1)-n^{2}}{m n(n+2)(n+m)^{2}} J_{m \times m} \tag{4.5}
\end{equation*}
$$

Also

$$
Y=A R^{-1}\left(A+B S_{0}^{\#} C\right) R^{-1} B S_{0}^{\pi}-A R^{-1} B S_{0}^{\#}
$$

$$
\begin{equation*}
=-\frac{1}{(n+m)^{2}} J_{m \times n} \tag{4.6}
\end{equation*}
$$

We have

$$
\begin{gather*}
Z=S_{0}^{\pi} C R^{-1}\left(A+B S_{0}^{\#} C\right) R^{-1} A-S_{0}^{\#} C R^{-1} A \\
=-\frac{1}{(n+m)^{2}} J_{n \times m} \tag{4.7}
\end{gather*}
$$

and
$W=S_{0}^{\pi} C R^{-1}\left(A+B S_{0}^{\#} C\right) R^{-1} B S_{0}^{\pi}-S_{0}^{\#} C R^{-1} B S_{0}^{\pi}-S_{0}^{\pi} C R^{-1} B S_{0}^{\#}+S_{0}^{\#}$

$$
\begin{equation*}
=\left[L\left(C_{n}\right)+m I_{n \times n}\right]^{-1}-\frac{2 m+n}{m(n+m)^{2}} J_{n \times n} \tag{4.8}
\end{equation*}
$$

From equations (4.5), (4.6), (4.7), (4.8), we have

$$
\left[\right]
$$

Step 4. Using part 1 of Lemma 2.2, we obtain the symmetric $\{1\}$-inverse of L.

The symmetric $\{1\}$-inverse of $L\left(\mathbf{D B}\left(W_{m, n}\right)\right)$ is

$$
L^{\#}\left[\mathbf{D B}\left(W_{m, n}\right)\right]=\left(\begin{array}{ll}
L_{1}^{-1}+L_{1}^{-1} L_{2} S^{\#} L_{2}^{T} L_{1}^{-1} & -L_{1}^{-1} L_{2} S^{\#} \\
-S^{\#} L_{2}^{T} L_{1}^{-1} & S^{\#}
\end{array}\right)
$$

where

$$
\begin{aligned}
& L_{1}^{-1}+L_{1}^{-1} L_{2} S^{\#} L_{2}^{T} L_{1}^{-1}= \\
& {\left[\begin{array}{ll}
\frac{n+1}{n(n+2)} I_{m \times m}+\frac{\left(2 m n+m^{2}\right)\left(n^{2}+n-1\right)+n^{2}(n+1)^{2}}{m n(n+2)(n+m)^{2}} J_{m \times m} & \frac{(n+m)^{2}+n}{m(n+m)^{2}} J_{m \times n} \\
\frac{(n+m)^{2}+n}{m(n+m)^{2}} J_{n \times m} & {\left[L(C n)+m I_{n}\right]^{-1}+\frac{(n+m)^{2}+n}{m(n+m)^{2}} J_{n \times n}}
\end{array}\right]} \\
& -L_{1}^{-1} L_{2} S^{\#}=\left[\begin{array}{cc}
\frac{1}{n(n+2)} I_{m \times m}-\frac{(2 n+m) m-n^{2}(n+1)}{m n(n+2)(n+m)^{2}} J_{m \times m} & -\frac{1}{(n+m)^{2}} J_{m \times n} \\
\frac{n}{m(n+m)^{2}} J_{n \times m} & -\frac{1}{(n+m)^{2}} J_{n \times n}
\end{array}\right] \\
& -S^{\#} L_{2}^{T} L_{1}^{-1}=\left[\begin{array}{cc}
\frac{1}{n(n+2)} I_{m \times m}-\frac{(2 n+m) m-n^{2}(n+1)}{m n(n+2)(n+m)^{2}} J_{m \times m} & \frac{n}{m(n+m)^{2}} J_{m \times n} \\
-\frac{1}{(n+m)^{2}} J_{n \times m} & -\frac{1}{(n+m)^{2}} J_{n \times n}
\end{array}\right] \\
& S^{\#}=\left[\begin{array}{cc}
\frac{n+1}{n(n+2)} I_{m \times m}-\frac{\left[\left(2 m n+m^{2}\right)(n+1)\right]-n^{2}}{m n(n+2)(n+m)^{2}} J_{m \times m} & -\frac{1}{(n+m)^{2}} J_{m \times n} \\
-\frac{1}{(n+m)^{2}} J_{n \times m} & {\left[L\left(C_{n}\right)+m I_{n}\right]^{-1}-\frac{2 m+n}{m(n+m)^{2}} J_{n \times n}}
\end{array}\right]
\end{aligned}
$$

Hence the result.
Using the elements of the symmetric $\{1\}$-inverse of $L\left(\mathbf{D B}\left(W_{m, n}\right)\right)$, we can obtain the resistance distance between the vertices v_{i} and v_{j} in DB $\left(W_{m, n}\right)$ as

$$
r_{i j}=\left(L^{\#}\left(\mathbf{D B}\left(W_{m, n}\right)\right)\right)_{i i}-2\left(L^{\#}\left(\mathbf{D B}\left(W_{m, n}\right)\right)\right)_{i j}+\left(L^{\#}\left(\mathbf{D B}\left(W_{m, n}\right)\right)\right)_{j j}
$$

Example 4.3. Consider the dumbbell graph DB $\left(W_{2,3}\right)$, given in Figure 2.

The Laplacian matrix of $\mathbf{D B}\left(W_{2,3}\right)$ is

$$
L=\left[\begin{array}{ccccc|ccccc}
4 & 0 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 4 & -1 & -1 & -1 & 0 & -1 & 0 & 0 & 0 \\
-1 & -1 & 4 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & -1 & 4 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & -1 & -1 & 4 & 0 & 0 & 0 & 0 & 0 \\
\hline-1 & 0 & 0 & 0 & 0 & 4 & 0 & -1 & -1 & -1 \\
0 & -1 & 0 & 0 & 0 & 0 & 4 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & -1 & 4 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & 4 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & 4
\end{array}\right]
$$

Using Theorem 4.2, we obtain the symmetric $\{1\}$-inverse of $L\left(\mathbf{D B}\left(W_{2,3}\right)\right)$ as

$$
L^{\#}\left(\mathbf{D B}\left(W_{2,3}\right)\right)=\left[\begin{array}{ccccc|ccccc}
\frac{52}{75} & \frac{32}{75} & \frac{14}{25} & \frac{14}{25} & \frac{14}{25} & \frac{7}{75} & \frac{2}{75} & \frac{-1}{25} & \frac{-1}{25} & \frac{-1}{25} \\
\frac{32}{75} & \frac{52}{75} & \frac{14}{25} & \frac{14}{25} & \frac{14}{25} & \frac{2}{75} & \frac{7}{75} & \frac{-1}{25} & \frac{-1}{25} & \frac{-1}{25} \\
\frac{14}{25} & \frac{14}{25} & \frac{43}{50} & \frac{33}{50} & \frac{33}{50} & \frac{3}{50} & \frac{3}{50} & \frac{-1}{25} & \frac{-1}{25} & \frac{-1}{25} \\
\frac{14}{25} & \frac{14}{25} & \frac{33}{50} & \frac{43}{50} & \frac{33}{50} & \frac{3}{50} & \frac{3}{50} & \frac{-1}{25} & \frac{-1}{25} & \frac{-1}{25} \\
\frac{14}{25} & \frac{14}{25} & \frac{33}{50} & \frac{33}{50} & \frac{43}{50} & \frac{3}{50} & \frac{3}{50} & \frac{-1}{25} & \frac{-1}{25} & \frac{-1}{25} \\
\hline \frac{7}{75} & \frac{2}{75} & \frac{3}{50} & \frac{3}{50} & \frac{3}{50} & \frac{29}{150} & \frac{-11}{150} & \frac{-1}{25} & \frac{-1}{25} & \frac{-1}{25} \\
\frac{2}{75} & \frac{7}{75} & \frac{3}{50} & \frac{3}{50} & \frac{3}{50} & \frac{-11}{150} & \frac{29}{150} & \frac{-1}{25} & \frac{-1}{25} & \frac{-1}{25} \\
\frac{-1}{25} & \frac{-1}{25} & \frac{-1}{25} & \frac{-1}{25} & \frac{-1}{25} & \frac{-1}{25} & \frac{11}{25} & \frac{-1}{25} & \frac{-1}{25} & \frac{-1}{25} \\
\frac{-1}{25} & \frac{-1}{25} \\
\frac{-1}{25} & \frac{-1}{25}
\end{array}\right]
$$

Figure 2. DB $\left(W_{2,3}\right)$

Using the symmetric $\{1\}$-inverse of $L\left(\mathbf{D B}\left(W_{2,3}\right)\right)$, we can find the resistance distance between any pair of vertices of $\mathbf{D B}\left(W_{2,3}\right)$.

For example, the resistance distance between the vertices 1 and 6 is

$$
r_{16}=\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{cc}
\frac{52}{75} & \frac{7}{75} \\
\frac{7}{75} & \frac{29}{150}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\frac{7}{10}
$$

Similarly, the resistance distances between all pairs of vertices of $\mathbf{D B}\left(W_{2,3}\right)$ can be obtained.

The Kirchhoff index for $\mathbf{D B}\left(W_{2,3}\right)$ is as follows

$$
K_{f}\left(\mathbf{D B}\left(W_{2,3}\right)\right)=\Sigma_{i<j} \quad r_{i j}=32.8
$$

5. Conclusion

The resistance distance which is the effective electrical resistance in a network has wide applications. Resistance distance is closely connected with practical applications in electrical circuit theory. For complex networks, resistance distance and Kirchhoff index are very important physical quantities. With these two quantities, the network topology can be optimized. For this reason, it has been widely explored by many authors. As we know, there exists a relationship between resistance distance and symmetric $\{1\}$-inverse of Laplacian matrix. In this paper, we have made use
of the symmetric $\{1\}$-inverse of Laplacian matrix to obtain the resistance distance for two classes of graphs viz the generalized wheel and dumbbell graph. Making use of the resistance distance the Kirchhoff indices for these graphs have been computed.

Acknowledgements

The authors are thankful to the anonymous referee for a careful reading of the article and the encouraging comments made in the report.

References

[1] A. Ben-Israel and T. N. E. Greville, Generalizedinmerses TheoryandApdications. vol. 15. Springer, 2003.
[2] C. Bu, B. Yan, X. Zhou, and J. Zhou, "Resistance distance in subdivision-vertex join and subdivision-edge join of graphs", Linear Algabra anditsApplications, vol. 458, pp. 454-462, 2014. doi: 10.1016/j.Iaa.2014.06.018
[3] C. Bu, L. Sun, J. Zhou, and Y. W ei, "A note on block representations of the group inverse of Laplacian matrices", TheEleetronicJournal of Linear Algbra, vol. 23, 2012. doi: 10.13001/1081-3810.1562
[4] C. Bu, M. Li, K. Zhang, and L. Zheng, "Group inverse for the block matrices with an invertible subblock", Apdied Mathenatics and Computation, vol. 215, no. 1, pp. 132-139, 2009. doi: 10.1016/j.amc.2009.04.054
[5] D. W ang and Y. Yang, "Resistance distances in linear polyacene graphs", FrontiersinPhysics, vol. 8, 2021 doi: 10.3389/fphy.2020.600960
[6] D. J. Klein, "R esistance-distance sum rules", Croatica derica ada, vol. 75, no. 2, pp. 633-649, 2002. [On line]. Available: https://bit.ly/3W 8yS1T
[7] D. J. Klein, and M. Randić, "Resistance distance", Journal of Mathenatical Chenistry,vol. 12, pp. 81-95, 1993.
[8] D. J. Klein, I. Lukovits, and I. Gutman, "On the definition of the hyper-w iener index for cycle-containing structures", Jarral of Cherical Information and Compter Sdiences, vol. 35, no. 1, pp. 50-52, 1995. doi: 10.1021/ci00023a007
[9] P. G. Doyle and J. L. Snell, Randomwelksandeetricneworks,W ashington, DC: The M athematical Association of America, 1984.
[10] F. Buckley and F. Harary, "On the Euclidean dimension of a W heel", Graphs andContbinatorics vol. 4, pp. 23-30, 1988. doi: 10.1007/bf01864150
[11] H. Z hang and Y. Yang, "Resistance distance and Kirchhoff index in Circulant graphs", International Jarmal of QuantumChemistry, vol. 107, pp. 330-339, 2006. doi: 10.1002/qua. 21068
[12] M. A. J afarizadeh, R. Suffiani and S. Jafarizadeh, "Recursive calculation of effective resistance in distance-regular networks based on Bose-M esner algebra and christoffel-Darboux identity", Journal of Mathenatical Physics, vol. 50, 2009. doi: 10.1063/13077145
[13] S. Jafarizadeh, R. Suffiani and M .A.Jafarizadeh, Evaluation of Resistances in pseudo-Distance-R egular resistor netw orks", Jarmal of Statistical Physics, vol. 139, pp. 177-199, 2010. doi: 10.1007/s10955-009-9909-8
[14] J-B. Liu, X-F Pan and F-T Hu, "The \{1\}-inverse of the Laplacian of subdivision-vertex and subdivision-edge coronae with applications", Linerr and Mutilinear Algabra, vol. 65, pp. 178-191, 2016. doi: 10.1080/03081087.2016.1179249
[15] J. Cao, J-B. Liu and S. W ang, "Resistance distances in corona and neighborhood corona networks based on Laplacian generalized inverse approach", Jourmal of Algdra and Its Apdications, vol. 18, 2019. doi: 10.1142/s0219498819500531
[16] J. Zhao, J-B. Liu and A. Zafari, "Complete characterization of resistance distance for Linear octogonal networks", Hindawi compleity, 2020. doi: 10.1155/2020/5917098
[17] J. L. Palacios, "Closed-form formulas for Kirchhoff index", I Iternational Journal of Quartum Cheristry, vol.81, pp. 135-140, 2001 doi: 10.1002/1097-461x (2001) 81:2 435 ::aid-qua4>>.0.co;2-g
[18] B. Borovicanin, K. Ch. Das, B. Furtula and I. Gutman, ZagebIndes Bounds and Extremal Graphs inCherical Graph Theory Basics, I. Gutman, B. Furtula, K. C. Das, E. Milovanovic, and I. Milovanovic, Eds., University Kragujevac, Kragujevac, 2017, pp. 67-153.
[19] L. Zhang, J. Zhao, J-B. Liu, and S. Daoud, "Resistance distance in the double corona based on R-graph", Matheratics, vol. 7, no. 1, p. 92, 2019. doi: 10.3390/math7010092
[20] L. Zhang and J-B. Liu, "Theoretical and computational methods to resistance distances in novel graphs operations", IEEE Access, vol. 7, pp. 107908-107916, 2019. doi: 10.1109/access.2019.2932771
[21] L. Zhang, J. Zhao, J-B. Liu and M. Arockiaraj, "Resistance Distance in H-Join of Graphs G1, G2,...,Gk", Mathematics, vol. 6, 2018. doi: 10.3390/math6120283
[22] L. W . Shapiro, "An Electrical Lemma", Matheratics Magazine, vol.60, pp. 36-38, 1987. doi: 10.1080/0025570x.1987.11977274
[23] I. Lukovits, S. Nikolic and N.Trinajstic, "Resistance distance in regular graphs", International Journal of QuartumCheristry, vol. 71, pp. 217-225, 1999. doi: 10.1002/(sici) 1097-461x (1999) 71:3817::aid-qua1>.0.co;2-c
[24] L. Ye and W. Yan, "Resistance betw een two vertices of almost complete bipartite graphs", DiscredeApdied Mathematics vol. 257, pp. 299-305, 2019. doi: 10.1016/j.dam.2018.08.030
[25] M. Vaskouski and A. Zadorozhnyuk, "Resistance distances in Cayley graphs on symmetric groups", Discree Applied Matheratics vol. 227, pp. 121-135, 2017. doi: 10.1016/j.dam.2017.04.044
[26] M . S. Sardar, M . C ancan, S. Ediz and W. Sajjad, "Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P_{2} and $K_{n}{ }^{\prime \prime}$, Proyecciones (Artofagesta), vol. 39, no. 4, pp. 919-932, 2020. doi: 10.22199/issn.0717-6279-2020-04-0057
[27] C. S. J. A. Nash-W illiams, "R andom walks and electric currents in networks", Matheratical Proceedings of theCantridgePhilosoptical Sociey, vol. 55, no. 2, pp. 181-194, 1959. doi: 10.1017/S0305004100033879
[28] N. Chair, "Exact two-point resistance and the simple random walk on the complete graph minus N edges", Armals of Physics vol. 327, pp. 3116-3129, 2012. doi: 10.1016/j.aop.2012.09.002
[29] N. Chair and E. M . A. Dannoun, "Two-point resistance of the M öbius ladder", PhysicaScripa, vol. 90, 2015. doi: 10.1088/0031-8949/90/3/035206
[30] P. W . F otuler, "R esistance distances in Fullerene graphs", CroaticaChericaAda, vol. 75, pp. 401-408, 2002. [On line]. Available: https://bit.Iy/3XrYW 9m
[31] M. Q. Qwaidat, J.H.Asad and Zhi-Zhong Tan, "Resistance computation of generalized decorated square and simple cubic network lattices", Results in Physics, vol. 12, pp. 1621-1627, 2019. doi: 10.1016/j.rinp.2019.01070
[32] R. B. Bapat and S. Gupta, "Resistance distance in wheels and fans", Indian Jarnal of Pure and Apdied Mathenatics, vol. 41, pp. 1-13, 2010. doi: 10.1007/s13226-010-0004-2
[33] R. B. Bapat, I. Gutman and W. Xiao, "A simple method for computing resistance distance", Zėtschrift für NatưforschungA, vol. 58, pp. 494-498, 2003. doi: 10.1515/zna-2003-9-1003
[34] R. A. Horn and C. R. Johnson, Matrix analysis Cambridge University Press, 2012.
[35] S. V. Gervacio, Resistance distance in Complete n-partite graphs. Discrete ApdiedMatheratics, vol.203, pp. 53-61, 2016. doi: 10.1016/j.dam.2015.09.017
[36] S. Li, and T. Tian, "Resistance betw een two nodes of a ring clique netw ork, Circuits", Systens and Sigmal processing vol. 41, pp. 1287-1298, 2021 doi: 10.1007/s00034-021-01859-7
[37] S. H uang, and S. Li, "On the resistance distance and Kirchhoff index of a linear hexagonal (cyclinder) chain", Physica A: Statistical Mechanics and its Applications, vol. 58, 2020. doi: 10.1016/j.physa.2020.124999
[38] W .J.Yin, Z. F. M ing and Q. Liu, "Resistance distance and Kirchhoff index for a class of graphs", Mathenatical Problens in Enginering pp. 1-8, 2018. doi: 10.1155/2018/1028614
[39] W . Barrett, E. J. Evans, and A. E. Francis, "Resistance distance in straight linear 2-trees", Discrte Applied Mathenatics, vol. 258, pp. 3-34, 2019. doi: 10.1016/j.dam.2018.10.043
[40] X. Liu, J. Zhou, and C. Bu, "Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs", DiscreeApplied Mathematics, vol. 187, pp. 130-139, 2015. doi: 10.1016/j.dam.2015.02.021
[41] X. Gao, Y. Luo and W. Liu, "R esistance distances and the Kirchhoff index in Cayley graphs", DiscreeApplied Matheratics, vol. 159, pp. 2050-2057, 2011 doi: 10.1016/j.dam. 201106.027
[42] Y. Shangguan and H. Chen, "Two-point resistances in an Apollonian netw ork", Physical RevienE, vol.96, 2017. doi: 10.1103/physreve.96.062140
[43] Y. Shangguan and H. Chen, "Two-point resistances in a family of self-similar (x, y) - flower netw orks", Physica A: Statistical Mecharics and its Applications, vol. 523, pp. 382-391, June 2019. doi: 10.1016/j.physa.2019.02.008
[44] Z. Jiang and W . Yan, "Some Tw o-point Resistances of the Sierpinski Gasket N etw ork", Jarral of Statistical Physics, vol. 172, pp. 824-832, 2018. doi: 10.1007/s10955-018-2067-0
[45] Z. Cinkir, "Effective resistances and Kirchhoff index of Ladder graphs", Jarnal of Mathematical Chenistry, vol. 54, pp. 955-966, 2016. doi: 10.1007/s10910-016-0597-8
[46] Z. Jiang, and W. Yan, "Resistance betw een two nodes of a Path netw ork", Applied Mathematics and Computation vol. 361, pp. 42-46, 2019. doi: 10.1016/j.amc.2019.05.006

Sakthidevi Kaliyaperumal
Department of Mathematics
School of Advanced Sciences
Vellore Institute of Technology (VIT)
Chennai,
India
e-mail: sakthidevi.k2019vitstudent.ac.in
and

Kalyani Desikan

Department of Mathematics
School of Advanced Sciences
Vellore Institute of Technology (VIT)
Chennai,
India
e-mail: kalyanidesikan@vit.ac.in
Corresponding author

