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Universidad Católica del Norte
Antofagasta - Chile

Abstract

A new class of graphs called dumbbell graphs, denoted byDB(Wm,n)
is the graph obtained from two copies of generalized wheel graph
Wm,n,m ≥ 2, n ≥ 3. It is a graph on 2 (m+ n) vertices obtained by
connecting m-vertices in one copy with the corresponding vertices in
the other copy. The resistance distance between two vertices vi and vj,
denoted by rij, is defined as the effective electrical resistance between
them if each edge of G is replaced by 1 ohm resistor. The Kirchhoff
index is the sum of the resistance distances between all pairs of ver-
tices in the graph. In this paper, we formulate the resistance distance
of Wm,n and DB(Wm,n) using Symmetric {1}-inverse of Laplacian
matrices. We provide examples to illustrate the proposed method and
also obtain the Kirchhoff indices for these examples.
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1. Introduction

We consider an undirected and connected graph G = (V,E), where V is
the vertex set and E is the edge set, on n vertices. A graph G is regular if
every vertex has the same degree. The maximum distance between any two
vertices of a graph G is called the diameter of a graph G. The complement
of G is the graph whose vertex set is same as that of G and two vertices
are adjacent in G if only if they are not adjacent in G. The union of two
graphs G1 and G2, denoted by G1 ∪ G2 is the graph whose vertex set is
V (G1) ∪ V (G2) and the edge set is E (G1) ∪ E (G2). The join of G1 and
G2, denoted by G1∇G2 is the graph obtained from G1 ∪G2 by adding all
possible edges from the vertices of G1 to those in G2.

The adjacency matrix A (G) of the graph G is a square matrix of order
n, whose(i, j)-entry is equal to 1 if the vertices vi and vj are adjacent and
is equal to 0 otherwise. Let degG (vi) be the degree of vertex vi in G. The
degree matrix D (G) of the graph G is a diagonal matrix of order n with
diagonal entries as the degrees of the vertices. The Laplacian matrix of G
is defined as L (G) = D (G)−A (G).

The standard distance between two vertices vi and vj , denoted by
d (vi, vj), is the length of the shortest path between them. In 1993, Klein
and Randic [7] introduced a new distance function named resistance dis-
tance based on electrical network analysis. The resistance distance between
two vertices vi and vj , denoted by rij , is defined as the effective electrical
resistance between them if each edge of G is replaced by 1 ohm resistor.
The Kirchhoff index is the sum of the resistance distances between all pairs
of vertices in the graph. The Kirchhoff index has a wide range of applica-
tions in physics, chemistry, and network science.

The resistance distance, unlike the shortest path distance, has the prop-
erty that two vertices vi and vj that are connected by more than one path
are closer than if they are only connected by the shortest path. The re-
sistance distance has certain mathematical implications, which can be de-
scribed in terms of random walks on graphs [9, 26], the number of spanning
trees and spanning bi-trees [21], and the generalized inverse of the Lapla-
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cian matrix [7]. Resistance distance has extensive uses in chemistry, in
addition to being an intrinsic graph metric and an important component of
electrical circuit theory. The resistance distance is better for dealing with
network wave-like movements, such as chemical molecule communication
[8].

The resistance distance has received a lot of attention in the mathe-
matical, chemical, and physical literature. For a long time, this has been a
classic problem in electrical network theory that has been studied by many
researchers. Resistance distances have been computed for a variety of in-
teresting classes of graphs so far, with a focus on electrical networks and
chemical graphs. Resistance distances have been obtained for some particu-
lar classes of graphs, for example, regular graphs [22], circulant graphs [11],
distance regular networks [12], wheels and fans [31], Cayley graphs [40],
complete graph minus N edges [27], complete n-partite graphs [34], Cayley
graphs on symmetric groups [24], some class of graphs [37], pseudo-distance
regular [13], almost complete bipartite graphs [23], ring clique network [35],
and so on.

It is interesting to note that a good deal of attention has been paid to
resistance distances in plane networks, such as fullerene graphs [29], Möbius
ladder graphs [28], ladder graphs [44], Apollonian network [41], Sierpinski
Gasket Network [43], simple cubic network lattices [30], straight linear 2-
trees [38], Flower networks [42], Path Network [45], class of plane hexagonal
networks [36], linear octogonal networks [16], and linear polyacene graphs
[5]. Many formulae, such as combinatorial formulae, algebraic formulae,
probabilistic formulae and so forth have been putforth for calculating re-
sistance distance.

The resistance distance for some graph operations was studied in recent
years, i.e., the subdivision-vertex join and subdivision-edge join graphs [2],
R− vertex join and R− edge join of two graphs [39], the subdivision-vertex
and subdivision-edge coronae graphs [14], the H− join of graphs [20], the
corona and neighborhood corona graphs [15], the double corona based on
R− graphs [18], and Tensor Product of P2 and Kn graphs [25]. Motivated
by these, we have obtained the resistance distance of the Generalized wheel
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graph and Dumbbell graph using Symmetric {1}-inverse of Laplacian ma-
trices in this article. Also, we have provided examples for generalized wheel
and dumbbell graph and we have obtained the Kirchhoff indices for these
graphs.

2. Preliminaries

For an m×m matrix P , the {1}-inverse of P is an m×m matrix X such
that PXP = P . If P is singular then it has infinite {1}-inverses. If X is
the unique matrix satisfying PXP = P , XPX = X and PX = XP then
X = P# is the group inverse of P . It is known that P# exists if only if
rank (P ) = rank

¡
P 2
¢
.

If P is real symmetric then P# exists and P# is a symmetric {1}-inverse
of P . Exactly, P# is equal to the Moore-Penrose inverse of P [2, 31].

The existence and the representation of the group inverse for block
matrices with an invertible subblock were given by the authors Bu, Zhang
and Zheng [4].

Lemma 2.1. [4] Let P =

Ã
A B
C D

!
be an m × m matrix, where A is an invertible n × n matrix and S =
D − CA−1B. If S# exists then

1. P# exists if only if R is invertible, where R = A2 + BSπC and
Sπ = Im−n − SS#;

2. If P# exists then

P# =

Ã
X Y
Z W

!
,

where

X = AR−1
³
A+BS#C

´
R−1A,

Y = AR−1
³
A+BS#C

´
R−1BSπ −AR−1BS#,

Z = SπCR−1
³
A+BS#C

´
R−1A− S#CR−1A,

W = SπCR−1
³
A+BS#C

´
R−1BSπ−S#CR−1BSπ−SπCR−1BS#+

S#.
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Lemma 2.2. [1, 2, 3] Let L =

Ã
L1 L2
LT
2 L3

!
be the Laplacian matrix of a connected graph, where L1 is non-singular.
Denote S = L3 − LT

2 L
−1
1 L2. Then

1.

Ã
L−11 + L−11 L2S

#LT
2 L

−1
1 −L−11 L2S

#

−S#LT
2 L

−1
1 S#

!
is a symmetric {1}-inverse of L;

2. If each column vector of L2 is -1 or a zero vector,Ã
L−11 0
0 S#

!
is a symmetric {1}-inverse of L.

The next lemma is useful for computing the inverse of non-singular ma-
trices.

Lemma 2.3. [2] Let P =

Ã
A B
C D

!
be a non-singular matrix. If A and D are non-singular then

P−1 =

Ã
A−1 +A−1BS−1CA−1 −A−1BS−1
−S−1CA−1 S−1

!
,

where S = D − CA−1B is the Schur complement of A in P .

Lemma 2.4. [33]. If A and A + B are invertible and B has rank 1 then
let g = trace

¡
BA−1

¢
. If g 6= −1 then

(A+B)−1 = A−1 − 1
1+gA

−1BA−1.

Lemma 2.5. [2]. Let G be a connected graph and (Aij) be the (i, j)-entry
of a matrix A. Then, for all 1 ≤ i, j ≤ n,

rij (G) =
³
L (G)#

´
ii
− 2

³
L (G)#

´
ij
+
³
L (G)#

´
jj

Lemma 2.6. [2, 39]. Let L be the Laplacian matrix of a graph of order n.
For any a, b > 0 satisfying b 6= n, we have

1.
¡
L+ aIn − a

nJn×n
¢#
= (L+ aI)−1 − 1

anJn×n

2.
¡
L+ aIn − a

bJn×n
¢#
= (L+ aI)−1 − 1

a(b−n)Jn×n
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3. Resistance distance of generalized wheel graph

In 1988, Fred Buckley and Frank Harary [10] defined the generalized wheel
graph Wm,n as the join Km∇Cn, m ≥ 2, n ≥ 3, where, Km is an empty
graph on m vertices and Cn is the cycle graph on n vertices.

Now, we give the {1}-inverse representation of the Laplacian matrix of
generalized wheel graph Km∇Cn, m ≥ 2, n ≥ 3.

Theorem 3.1. Let Km be an empty graph on m ≥ 2 vertices and Cn,
n ≥ 3 be the cycle graph on n vertices. Then the symmetric {1}-inverse of
L (Wm,n) is

L{1} (Wm,n) =

"
1
nIm×m 0m×n
0n×m S#n×n

#

where S#n×n = [L (Cn) +mIn]
−1 − 1

mnJn×n.

Proof. Let Km be an empty graph of order m,m ≥ 2 and Cn, n ≥ 3
be the cycle graph (2-regular) of order n and the generalized wheel graph
Wm,n = Km∇Cn, m ≥ 2, n ≥ 3. Clearly, the diameter of Wm,n is two.

Let V
³
Km

´
= {u1, u2, . . . , um} and V (Cn) = {v1, v2, . . . , vn} be the

vertex sets of graphs Km and Cn, respectively.

Consider the labelled vertices of Wm,n, such that the first m vertices
are from Km,m ≥ 2 and n vertices are from Cn, n ≥ 3

For all ui ∈ V
³
Km

´
, i = 1, 2, . . . ,m in Wm,n, we have degG (ui) = n

and

For all vi ∈ V (Cn), i = 1, 2, . . . , n in Wm,n, we have degG (vi) = m+ 2
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The Laplacian matrix of Wm,n is

L(Wm,n) =

"
L1 L2
LT
2 L3

#
=

"
nIm×m −Jm×n
−Jn×m L (Cn) +mIn×n

#

where Jm×n is an all ones matrix, In is the identity matrix of order n,
L (Cn) is the Laplacian matrix of Cn.

We observe that to obtain the symmetric {1}-inverse of L (Wm,n), we
can use part 2 of Lemma 2.2 and we have

L−11 = 1
nIm×m

Then
S = L3 − LT

2 L
−1
1 L2

= L (Cn) +mIn×n − (−Jn×m) 1nIm×m (−Jm×n)
= L (Cn) +mIn×n − 1

nJn×mIm×mJm×n
= L (Cn) +mIn×n − 1

n (mJn×n)
= L (Cn) +mIn×n − m

n Jn×n

Using part 1 of Lemma 2.6, for a graph G of order n, where a = m, we
have

S# = [L (Cn) +mIn×n]
−1 − 1

mnJn×n

Therefore, the symmetric {1}-inverse of L (Wm,n) is

L{1} (Wm,n) =

"
1
nIm×m 0m×n
0n×m S#n×n

#

where S#n×n = [L (Cn) +mIn×n]
−1 − 1

mnJn×n.

Hence the result. 2

Corollary 3.2. The symmetric {1}-inverse of wheel graph L (W1,n) is

L{1} (W1,n) =

"
1
nI1×1 01×n
0n×1 S#n×n

#

where S#n×n = [L (Cn) + In×n]
−1 − 1

nJn×n.
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Proof. In Theorem 3.1, substituting m = 1, we obtain the symmetric

{1}-inverse of wheel graph L (W1,n) = L
³
K1∇Cn

´
, n ≥ 3. Hence the

result. 2

Using the elements of the symmetric {1}-inverse of L (Wm,n) and L (W1,n)
in Lemma 2.5, we can obtain the resistance distance between any two ver-
tices of the generalized wheel graph Wm,n and wheel graph W1,n respec-
tively.

Example 3.3. Consider the generalized wheel graph W2,3. Refer Figure
1.

Figure 1. W2,3

The Laplacian matrix of W2,3 is

L (W2,3) =

⎡⎢⎢⎢⎢⎢⎣
3 0 −1 −1 −1
0 3 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

⎤⎥⎥⎥⎥⎥⎦

Using Theorem 3.1, we obtain the symmetric {1}-inverse of L (W2,3) as

L# (W2,3) =

⎡⎢⎢⎢⎢⎢⎣
1
3 0 0 0 0
0 1

3 0 0 0

0 0 2
15

−1
15

−1
15

0 0 −1
15

2
15

−1
15

0 0 −1
15

−1
15

2
15

⎤⎥⎥⎥⎥⎥⎦

pc
fug-1
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Using the symmetric {1}-inverse of L (W2,3), we can find the resistance
distance between any pair of vertices of W2,3.
For example, the resistance distance between the vertices 1 and 4 is

r14 =
h
1 −1

i⎡⎢⎣ 1
3 0

0 2
15

⎤⎥⎦ " 1−1
#
= 7

15 .

Similarly, the resistance distances between all pairs of vertices of W2,3

can be obtained.

The Kirchhoff index for W2,3 is as follows

Kf (W2,3) = Σi<j rij = 4.66

4. Resistance distance of dumbbell graph

We now formulate the resistance distance for the dumbbell graph.

Definition 4.1. Given m ≥ 2 and n ≥ 3, the dumbbell graph, DB(Wm,n),
is obtained from two copies of generalized wheel graphWm,n by connecting
m vertices in one copy with the corresponding vertices in the other copy.

The diameter of the DB(Wm,n) graph is three.

In 2017, the name “dumbbell graph” was used by Bojana Borovicanin
et al.[18] for another class of graphs. They have defined the dumbbell graph
as a graph obtained by connecting two cycles by paths. This is different
from the dumbbell graph introduced by us.

Theorem 4.2. LetDB(Wm,n) on 2(m+n) vertices be the dumbbell graph.
Then the symmetric {1}-inverse of L (DB (Wm,n)) is

L# [DB (Wm,n)] =

Ã
L−11 + L−11 L2S

#LT
2 L

−1
1 −L−11 L2S

#

−S#LT
2 L

−1
1 S#

!

where

L−11 + L−11 L2S
#LT

2 L
−1
1 =
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⎡⎢⎣ n+1
n(n+2)

Im×m +

¡
2mn+m2

¢¡
n2+n−1

¢
+n2(n+1)2

mn(n+2)(n+m)2
Jm×m

(n+m)2+n

m(n+m)2
Jm×n

(n+m)2+n

m(n+m)2
Jn×m

£
L (Cn) +mIn×n

¤−1
+
(n+m)2+n

m(n+m)2
Jn×n

⎤⎥⎦

−L−11 L2S
# =

⎡⎢⎢⎣
1

n(n+2)Im×m −
(2n+m)m−n2(n+1)
mn(n+2)(n+m)2

Jm×m − 1
(n+m)2

Jm×n

n
m(n+m)2

Jn×m − 1
(n+m)2

Jn×n

⎤⎥⎥⎦

−S#LT
2 L

−1
1 =

⎡⎣ 1
n(n+2)Im×m −

(2n+m)m−n2(n+1)
mn(n+2)(n+m)2

Jm×m
n

m(n+m)2
Jm×n

− 1
(n+m)2

Jn×m − 1
(n+m)2

Jn×n

⎤⎦

S#=⎡⎣ n+1
n(n+2)Im×m −

[(2mn+m2)(n+1)]−n2

mn(n+2)(n+m)2
Jm×m − 1

(n+m)2
Jm×n

− 1
(n+m)2

Jn×m [L (Cn) +mIn×n]
−1 − 2m+n

m(n+m)2
Jn×n

⎤⎦

Proof. The Laplacian matrix of dumbbell graphDB(Wm,n) ,m ≥ 2, n ≥
3, on 2 (m+ n) vertices is

L (DB (Wm,n)) =

"
L1 L2
LT
2 L3

#
=⎡⎢⎢⎢⎣

(n+ 1) Im×m −Jm×n −Im×m 0m×n
−Jn×m L (Cn) +mIn×n 0n×m 0n×n
−Im×m 0m×n (n+ 1) Im×m −Jm×n
0n×m 0n×n −Jn×m L (Cn) +mIn×n

⎤⎥⎥⎥⎦

Step 1. We start with the calculation of L−11 of L (DB (Wm,n)).

Let
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L1 =

"
A B

C D

#
=

"
(n+ 1) Im×m −Jm×n
−Jn×m L (Cn) +mIn×n

#

Since L1 is non-singular, L
−1
1 exists. By applying Lemma 2.3,

L−11 =

"
A−1 +A−1BS−11 CA−1 −A−1BS−11

−S−11 CA−1 S−11

#

Then
S1 = D − CA−1B
= L (Cn) +mIn×n − (−Jn×m) 1

(n+1)Im×m (−Jm×n)
= L (Cn) +mIn×n − 1

(n+1) (Jn×m) Im×m (Jm×n)

= L (Cn) +mIn×n − 1
(n+1) (mJn×n)

= L (Cn) +mIn×n − m
(n+1)Jn×n

Using part 2 of Lemma 2.6, for a graph G of order n, where a = m,
b = n+ 1, we have

S−11 = [L (Cn) +mIn×n]
−1 +

1

m
Jn×n(4.1)

Next
−A−1BS−11 = −

h
1

(n+1)Im×m
i
(−Jm×n)

h
[L (Cn) +mIn×n]

−1 + 1
mJn×n

i
= 1

(n+1)

h
(Jm×n) [L (Cn) +mIn×n]

−1 + 1
mJm×nJn×n

i
= 1

(n+1)

h
1
mJm×n +

1
m (nJm×n)

i
= 1

(n+1)m (n+ 1)Jm×n
= 1

mJm×n
Therefore

−A−1BS−11 =
1

m
Jm×n(4.2)

Similarly,

− S−11 CA−1 =
1

m
Jn×m(4.3)

A−1 +A−1BS−11 CA−1 =
1

n+ 1
Im×m +

n

m (n+ 1)
Jm×m(4.4)

From equations (4.1), (4.2), (4.3), (4.4), we have
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L−11 =

"
1

n+1Im×m +
n

m(n+1)Jm×m
1
mJm×n

1
mJn×m [L (Cn) +mIn×n]

−1 + 1
mJn×n

#

Step 2. Next, we obtain S using L−11 , L2 and L3 as

S = L3 − LT
2 L

−1
1 L2

S =

⎡⎢⎢⎢⎣
n(n+2)
n+1 Im×m − n

m(n+1)Jm×m
−Jm×n

−Jn×m
L (Cn) +mIn×n

⎤⎥⎥⎥⎦

Step 3. We calculate S# using Lemma 2.1.

Let

S =

"
A B

C D

#
=

"
n(n+2)
n+1 Im×m − n

m(n+1)Jm×m −Jm×n
−Jn×m L (Cn) +mIn×n

#

We get A−1 using Lemma 2.4.

A−1 = n+1
n(n+2)Im×m +

1
nm(n+2)Jm×m

Then we follow the procedure from Lemma 2.1 to obtain
S0 = D −CA−1B

= [L (Cn) +mIn×n]− (−Jn×m)
h

n+1
n(n+2)Im×m +

1
nm(n+2)Jm×m

i
(−Jm×n)

= [L (Cn) +mIn×n]− m
n Jn×n

Using part 1 of Lemma 2.6, for a graph G of order n, where a = m to
obtain

S#0 = [L (Cn) +mIn×n]
−1 − 1

mnJn×n

By continuing the procedure using Lemma 2.1, we have Sπ
0 .

We know, Sπ
0 = In − S0S

#
0 . Then we get,

Sπ
0 =

1
nJn×n
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Next, we calculate R = A2 +BSπ
0C

R = n2(n+2)2

(n+1)2
Im×m +

mn(n+1)2−n2(2n+3)
m(n+1)2

Jm×m

Using Lemma 2.4 we get R−1 as

R−1 = (n+1)2

n2(n+2)2
Im×m − m(n+1)2−n(2n+3)

mn2(n+2)2(n+m)
Jm×m

We continue the process to obtain

X = AR−1
³
A+BS#0 C

´
R−1A

=
n+ 1

n (n+ 2)
Im×m −

¡
2mn+m2

¢
(n+ 1)− n2

mn (n+ 2) (n+m)2
Jm×m(4.5)

Also
Y = AR−1

³
A+BS#0 C

´
R−1BSπ

0 −AR−1BS#0

= − 1

(n+m)2
Jm×n(4.6)

We have

Z = Sπ
0CR

−1
³
A+BS#0 C

´
R−1A− S#0 CR

−1A

= − 1

(n+m)2
Jn×m(4.7)

and

W = Sπ
0CR

−1
³
A+BS#0 C

´
R−1BSπ

0 −S
#
0 CR

−1BSπ
0 −Sπ

0CR
−1BS#0 +S#0

= [L (Cn) +mIn×n]
−1 − 2m+ n

m (n+m)2
Jn×n(4.8)

From equations (4.5), (4.6), (4.7), (4.8), we have

S# =⎡⎣ n+1
n(n+2)Im×m −

(2mn+m2)(n+1)−n2

mn(n+2)(n+m)2
Jm×m − 1

(n+m)2
Jm×n

− 1
(n+m)2

Jn×m [L (Cn) +mIn]
−1 − 2m+n

m(n+m)2
Jn×n

⎤⎦
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Step 4. Using part 1 of Lemma 2.2, we obtain the symmetric {1}-inverse
of L.

The symmetric {1}-inverse of L (DB (Wm,n)) is

L# [DB (Wm,n)] =

Ã
L−11 + L−11 L2S

#LT
2 L

−1
1 −L−11 L2S

#

−S#LT
2 L

−1
1 S#

!

where

L−11 + L−11 L2S
#LT

2 L
−1
1 =⎡⎣ n+1

n(n+2)
Im×m +

¡
2mn+m2

¢¡
n2+n−1

¢
+n2(n+1)2

mn(n+2)(n+m)2
Jm×m

(n+m)2+n

m(n+m)2
Jm×n

(n+m)2+n

m(n+m)2
Jn×m [L (Cn) +mIn]

−1 + (n+m)2+n

m(n+m)2
Jn×n

⎤⎦

−L−11 L2S
# =

⎡⎣ 1
n(n+2)Im×m −

(2n+m)m−n2(n+1)
mn(n+2)(n+m)2

Jm×m − 1
(n+m)2

Jm×n
n

m(n+m)2
Jn×m − 1

(n+m)2
Jn×n

⎤⎦

−S#LT
2 L

−1
1 =

⎡⎣ 1
n(n+2)Im×m −

(2n+m)m−n2(n+1)
mn(n+2)(n+m)2

Jm×m
n

m(n+m)2
Jm×n

− 1
(n+m)2

Jn×m − 1
(n+m)2

Jn×n

⎤⎦

S# =

⎡⎣ n+1
n(n+2)Im×m −

[(2mn+m2)(n+1)]−n2

mn(n+2)(n+m)2
Jm×m − 1

(n+m)2
Jm×n

− 1
(n+m)2

Jn×m [L (Cn) +mIn]
−1 − 2m+n

m(n+m)2
Jn×n

⎤⎦

Hence the result. 2

Using the elements of the symmetric {1}-inverse of L (DB (Wm,n)),
we can obtain the resistance distance between the vertices vi and vj in
DB (Wm,n) as
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rij =
³
L# (DB (Wm,n))

´
ii
−2

³
L# (DB (Wm,n))

´
ij
+
³
L# (DB (Wm,n))

´
jj
.

Example 4.3. Consider the dumbbell graph DB (W2,3), given in Figure
2.

The Laplacian matrix of DB (W2,3) is

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 −1 −1 −1 −1 0 0 0 0
0 4 −1 −1 −1 0 −1 0 0 0
−1 −1 4 −1 −1 0 0 0 0 0
−1 −1 −1 4 −1 0 0 0 0 0
−1 −1 −1 −1 4 0 0 0 0 0

−1 0 0 0 0 4 0 −1 −1 −1
0 −1 0 0 0 0 4 −1 −1 −1
0 0 0 0 0 −1 −1 4 −1 −1
0 0 0 0 0 −1 −1 −1 4 −1
0 0 0 0 0 −1 −1 −1 −1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using Theorem 4.2, we obtain the symmetric {1}-inverse of L (DB (W2,3))
as

L# (DB (W2,3)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 2. DB (W2,3)

Using the symmetric {1}-inverse of L (DB (W2,3)), we can find the re-
sistance distance between any pair of vertices of DB (W2,3).

For example, the resistance distance between the vertices 1 and 6 is

r16 =
h
1 −1

i⎡⎢⎣ 52
75

7
75

7
75

29
150

⎤⎥⎦ " 1
−1

#
= 7

10 .

Similarly, the resistance distances between all pairs of vertices ofDB (W2,3)
can be obtained.

The Kirchhoff index for DB (W2,3) is as follows

Kf (DB (W2,3)) = Σi<j rij = 32.8

5. Conclusion

The resistance distance which is the effective electrical resistance in a
network has wide applications. Resistance distance is closely connected
with practical applications in electrical circuit theory. For complex net-
works, resistance distance and Kirchhoff index are very important physical
quantities. With these two quantities, the network topology can be opti-
mized. For this reason, it has been widely explored by many authors. As
we know, there exists a relationship between resistance distance and sym-
metric {1}-inverse of Laplacian matrix. In this paper, we have made use

pc
fug-2
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of the symmetric {1}-inverse of Laplacian matrix to obtain the resistance
distance for two classes of graphs viz the generalized wheel and dumbbell
graph. Making use of the resistance distance the Kirchhoff indices for these
graphs have been computed.
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