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Abstract

In this paper, we consider general convex functions of various type.
We establish some new integral inequalities of Hermite-Hadamard type
for (h, s,m)-convex and (h,m)-convex functions, using generalized in-
tegrals. We also investigate differentiable functions with general con-
vex derivative. The proven results generalize many results previously
known from the literature.
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1. Introduction

A function f : I → R, I := [a, b] is said to be convex on I, if f
�
λx+ (1−

λ)y
�
≤ λf(x) + (1− λ)f(y) holds for all x, y ∈ I and λ ∈ [0, 1]. If the re-

versed inequality holds, then f is said to be concave on I. Convex functions
have been the object of attention in recent decades and the original notion
has been extended and generalized in various directions, such functions are
important in many parts of analysis and geometry and their properties have
been studied in detail. Readers interested in the aforementioned develop-
ment, can consult [33], where a panorama, practically complete, of these
branches is presented.

One of the most important inequalities for convex functions, is the fa-
mous Hermite-Hadamard inequality:

f

�
a+ b

2

�
≤

1

b− a

� b

a
f(x) dx ≤

f(a) + f(b)

2
(1.1)

holds for any function f convex on the interval [a, b]. This inequality was
published by Hermite ([19]) in 1883 and, independently, by Hadamard in
1893 ([18]). It gives an estimation of the mean value of a convex function,
and it is important to note that it also provides a refinement to the Jensen
inequality. Several results can be consulted in [2, 3, 6, 7, 8, 12, 13, 14, 17,
20, 25, 28, 30, 34, 44] and references therein for more information and other
extensions of the Hermite-Hadamard inequality (1.1).

Toader in [50] defined m-convexity in the following way:

Definition 1.1. Function f : [0, b] → R, b > 0, is said to be m-convex,
where m ∈ [0, 1], if

f (tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y)

holds for all x, y ∈ [0, b] and t ∈ [0, 1]. If the above inequality holds in
reverse, then we say that f is m-concave.

The following definitions are successive extensions of the concept of
m-convex functions.

Definition 1.2. [52] Let s ∈ [−1, 1] and m ∈ [0, 1] be real numbers. Func-
tion f : [0, b] → [0,∞) with b > 0 is said to be extended (s,m)-convex
if

f(tx+m(1− t)y) ≤ tsf(x) +m(1− t)sf(y)

holds for all x, y ∈ [0, b] and t ∈ (0, 1).
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In [29], the class of (α,m)-convex functions is presented as follows.

Definition 1.3. The function f : [0, b] → [0,∞) with b > 0 is said to be
(α,m)-convex, where α,m ∈ [0, 1], if, for every x, y ∈ [0, b] and t ∈ [0, 1],

f(tx+m(1− t)y) ≤ tαf(x) +m(1− tα)f(y).

In [32] the authors presented the classes of (α, s,m)-convex functions
as follows (“redefined” in [51]).

Definition 1.4. Function f : [0,∞)→ [0,∞) is said to be (α, s,m)-convex
in the first sense, if for all x, y ∈ [0,∞) and t ∈ [0, 1], we have the following
inequality:

f(tx+m(1− t)y) ≤ tαsf(x) +m(1− tαs)f(y),

where α,m ∈ [0, 1] and s ∈ (0, 1].

Note that the above Definition 1.4 is equivalent to Definition 1.3 that
involves the (α,m)-convex functions, therefore we omit to work with the
concept (α, s,m)-convex in the first sense.

Definition 1.5. Function f : [0,∞)→ [0,∞) is said to be (α, s,m)-convex
in the second sense, or shortly, (α, s,m)-convex, if for all x, y ∈ [0,+∞) and
t ∈ [0, 1], we have the following inequality:

f(tx+m(1− t)y) ≤ (tα)sf(x) +m(1− tα)sf(y),

where α,m ∈ [0, 1] and s ∈ (0, 1].

In [28] the following definition is introduced.

Definition 1.6. Let h : [0, 1] → [0,∞) with h �≡ 0. Function f : [0, b] →
[0,∞) with b > 0 is said to be (h,m)-convex on [0, b], if inequality

f (tx+m(1− t)y) ≤ h(t)f(x) +mh(1− t)f(y)

is fulfilled for m ∈ [0, 1], for all x, y ∈ [0, b] and t ∈ [0, 1].

Note that if the given inequality is reversed in the previous definitions,
then f is said to be extended (s,m)-concave etc., respectively.

On the basis of these definitions, we will present the class of functions
that will be the basis of our work (see also [27]).
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Definition 1.7. Let h : [0, 1]→ [0,∞), h �≡ 0. Function f : I ⊆ [0,∞)→
[0,∞) is said to be (h, s,m)-convex on I if inequality

f (tx+m(1− t)y) ≤ hs(t)f(x) +m(1− h(t))sf(y)

is fulfilled for m ∈ [0, 1], s ∈ [−1, 1], for all x, y ∈ I and t ∈ [0, 1].

Remark 1.8. From Definition 1.7 we can define Ns
h,m[a, b] as the set of

functions (h, s,m)-convex on [a, b], characterized by the triple (h(t), s,m).
Note that if (h(t), s,m) is equal to

1. (h(t), 0, 0), then we have the increasing functions ([9]).

2. (t, s, 0), then we have the s-starshaped functions ([9]).

3. (t, 1, 0), then we have the starshaped functions ([9]).

4. (tα, 1, s), then f is an (α, s,m)-convex function.

5. (t, s,m), then f is an (s,m)-convex function.

6. (t, 1,m), then f is an m-convex function.

7. (t, 1, 1), then f is a convex function.

Note that concept of (h, s,m)-convex functions is not a generalization
of the (h,m)-convex functions, but an extension, therefore we investigate
both type of generalized convex functions.

All through the work we utilize the functions Γ(z) (see [40, 41, 53, 54])
and Γk(z) (see [10]):

Γ(z) =
�
∞

0 tz−1e−t dt, ℜ(z) > 0,

Γk(z) =
�
∞

0 tz−1e−t
k/k dt, ℜ(z) > 0, k > 0.

Unmistakably, if k → 1, then we have Γk(z) → Γ(z), furthermore,
Γk(z) = k

z
k
−1Γ

� z
k

�
and Γk(z + k) = zΓk(z).

To encourage comprehension of the subject, we present the definition
of the Riemann-Liouville fractional integrals ([a, b] ⊆ [0,∞)), see e.g. [38]).

Definition 1.9. Let f ∈ L1[a, b]. Then the Riemann-Liouville fractional
integrals (left and right, respectively) of order α ∈ C, ℜ(α) > 0 are defined
by

Iαa+f(x) = 1
(α)

� x
a (x− t)α−1f(t) dt, x > a,

Iαb−f(x) = 1
(α)

� b
x (t− x)α−1f(t)dt, x < b.
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Next we present the weighted integral operators, which will be the basis
of our work.

Definition 1.10. Let f ∈ L1[a, b] and let w : [0, 1] → [0,∞) be a contin-
uous function with a derivative piecewise continuous on [0, 1]. Then the
weighted fractional integrals (left and right, respectively) are defined by

Iwa+f(x) =
� x
a w′

�
x−t
x−a

�
f(t) dt, x > a,

Iwb−f(x) =
� b
x w

′

�
t−x
b−x

�
f(t)dt, x < b,

where the integrals are considered in Lebesgue’s sense.

Remark 1.11. To have a clearer idea of the amplitude of the previous
definition, let us consider some particular cases:

1. Putting w(t) = t, we obtain the classical Lebesgue integral.

2. If w(t) = (x−a)α−1

Γ(α+1) tα or w(t) = (b−x)α−1

Γ(α+1) tα, then we obtain the Riemann-
Liouville fractional integral, left or right.

3. If w(t) = (x−a)
α
k
−1

Γk(α+k)
t
α
k or w(t) = (b−x)

α
k
−1

Γk(α+k)
t
α
k , then we obtain the k-

Riemann-Liouville fractional integral, left or right (see [31]).

In the following, we obtain different extensions of the Hermite-Hadamard
inequality (1.1) and its variants such as the following inequality given by
Sarikaya and Yildirim in [46].

Theorem 1.12. Let f : [a, b] ⊂ [0,∞) → [0,∞) be a convex function on
[a, b]. If f ∈ L1 [a, b] and α > 0, then we have

f

�
a+ b

2

�
≤

2α−1Γ(α+ 1)

(b− a)α

	
Iαa+b

2
+
f(b) + Iαa+b

2
−
f(a)



≤

f(a) + f(b)

2
.

Throughout the paper, we use the framework of (h, s,m)-convex func-
tions or (h,m)-convex functions, and generalized operators of Definition
1.10.
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2. Inequalities for (h, s,m)-convex and (h,m)-convex functions

Our first extension of the Hermite-Hadamard inequality can be represented
as follows.

Theorem 2.1. Let f : [0,∞)→ [0,∞) be an (h, s,m)-convex function on�
a, bm

�
(0 ≤ a < b < ∞) and n ∈ N0. If f ∈ L1

�
a, bm

�
and h ∈ L1[0, 1],

then we have the following inequality:

f
�
a+b
2

�
(w(1)−w(0))

≤ n+1
b−a

	
hs
�
1
2

�
Iwa+nb
n+1

+
f(b) +m

�
1− h

�
1
2

��s
Iwna+b
(n+1)m

−
f
�
a
m

�


≤ f(a)hs
�
1
2

� � 1
0 w′(t)hs

�
t

n+1

�
dt

+mf
� a
m

� �
1− h

�
1
2

��s � 1
0 w′(t)

�
1− h

�
t

n+1

��s
dt

+f(b)hs
�
1
2

� � 1
0 w′(t)

�
1− h

�
t

n+1

��s
dt

+mf
�
b
m

��
1− h

�
1
2

��s � 1
0 w′(t)hs

�
t

n+1

�
dt.

(2.1)

Proof. For x, y ∈
�
a, bm

�
and t = 1

2 , we have

f

�
x+ y

2

�
≤ hs

�
1

2

�
f(x) +m

�
1− h

�
1

2

��s
f

�
y

m

�
.

If we choose x = t
n+1a+

n+1−t
n+1 b and y = n+1−t

n+1 a+ t
n+1b with t ∈ [0, 1],

we get

f
�
a+b
2

�
≤ hs

�
1
2

�
f
�

t
n+1a+

n+1−t
n+1 b

�

+m
�
1− h

�
1
2

��s
f
�
n+1−t
n+1

a
m + t

n+1
b
m

�
.

(2.2)

Multiplying both members of the previous inequality by w′(t), integrat-
ing with respect to t from 0 to 1, and changing variables we obtain the first
inequality of (2.1), since

� 1
0 w′(t)f

�
t

n+1a+
n+1−t
n+1 b

�
dt = n+1

b−a

� b
a+nb
n+1

w′
�
b−u
b−a
n+1

�
f(u)du

= n+1
b−a I

w
a+nb
n+1

+
f(b)

(2.3)
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and

� 1
0 w′(t)f

�
n+1−t
n+1

a
m + t

n+1
b
m

�
dt = n+1

b−a

� na+b
(n+1)m
a
m

w′
�

u− a
m

b−a
(n+1)m

�
f(u)du

= n+1
b−a I

w
na+b
(n+1)m

−
f
� a
m

�
.

(2.4)

For the right hand side of (2.2), we obtain

hs
�
1
2

�
f
�

t
n+1a+

n+1−t
n+1 b

�

+m
�
1− h

�
1
2

��s
f
�
n+1−t
n+1

a
m + t

n+1
b
m

�

≤ hs
�
1
2

� �
hs
�

t
n+1

�
f(a) +

�
1− h

�
t

n+1

��s
f(b)

�

+m
�
1− h

�
1
2

��s �
hs
�

t
n+1

�
f
�
b
m

�
+
�
1− h

�
t

n+1

��s
f
�
a
m

��
.

Multiplying the members of the previous inequality by w′(t) and in-
tegrating with respect to t, between 0 and 1, allows us to get the right
member of (2.1). In this way the proof is complete. �

Remark 2.2. If in the previous theorem, we consider convex functions, i.e.
s = m = 1 and h(t) = t, moreover we put w(t) = t implying the classical
Lebesgue integral and n = 0, from (2.1), we obtain the Hermite-Hadamard
inequality (1.1).

Remark 2.3. Analogously, working with convex functions (s = m = 1
and h(t) = t), taking w(t) = tα and n = 1, we obtain Theorem 1.12.

Remark 2.4. If we consider w′(t) = t−α, the previous result gives us new
results for non-conformable integral operators, see [34]. It is clear that
we can consider other kernels w(t) for which the results derived from the
previous theorem are new.

An alternative to Theorem 2.1 can be proved analogously.

Theorem 2.5. Let f : [0,∞) → [0,∞) be an (h,m)-convex function on�
a, bm

�
(0 ≤ a < b < ∞) and n ∈ N0. If f ∈ L1

�
a, bm

�
, h ∈ L1[0, 1] and

h
�
1
2

�
�= 0, then we have the following inequality:
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1
h( 12)

f
�
a+b
2

�
(w(1)−w(0))

≤ n+1
b−a

	
Iwa+nb
n+1

+
f(b) +mIwna+b

(n+1)m
−
f
�
a
m

�


≤ f(a)
� 1
0 w′(t)h

�
t

n+1

�
dt+mf

� a
m

� � 1
0 w′(t)h

�
n+1−t
n+1

�
dt

+f(b)
� 1
0 w′(t)h

�
n+1−t
n+1

�
dt+mf

�
b
m

� � 1
0 w′(t)h

�
t

n+1

�
dt.

The following result will be basic from now on.

Lemma 2.6. Let f : [a, b] ⊂ R → R f be differentiable on (a, b) and
n ∈ N0. If f

′ ∈ L1[a, b], then we have the following equality:

b−a
n+1

�
w(0) (f(a) + f(b))−w(1)

�
f
�
a+nb
n+1

�
+ f

�
na+b
n+1

���

+

	
Iwa+nb
n+1

+
f(b) + Iwna+b

n+1
−
f(a)




= (b−a)2

(n+1)2

� 1
0 w(t)

�
f ′
�

t
n+1a+

n+1−t
n+1 b

�
− f ′

�
n+1−t
n+1 a+ t

n+1b
��

dt.

(2.5)

Proof. First note that� 1
0 w(t)

�
f ′
�

t
n+1a+

n+1−t
n+1 b

�
− f ′

�
n+1−t
n+1 a+ t

n+1b
��

dt

=
� 1
0 w(t)f ′

�
t

n+1a+
n+1−t
n+1 b

�
dt−

� 1
0 w(t)f ′

�
n+1−t
n+1 a+ t

n+1b
�
dt

= I1 − I2.

Integrating by parts for I1 yields

I1 = −n+1
b−a

�
w(1)f

�
a+nb
n+1

�
−w(0)f(b)

�

+ (n+1)
(b−a)

� 1
0 w′(t)f

�
t

n+1a+
n+1−t
n+1 b

�
dt

= −n+1
b−a

�
w(1)f

�
a+nb
n+1

�
−w(0)f(b)

�
+ (n+1)2

(b−a)2
Iwa+nb
n+1

+
f(b).

Analogously, for I2, we have

I2 =
n+ 1

b− a

	
w(1)f

�
na+ b

n+ 1

�
−w(0)f(a)



−
(n+ 1)2

(b− a)2
Iwna+b
n+1

−
f(a).

From I1−I2, and grouping appropriately, we obtain the required equal-
ity. �

To realize the scope and generality of our previous result, we will present
several particular cases.
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Remark 2.7. Putting w(t) = tα and considering convex functions and
n = 1, we obtain the Lemma 3 of [46].

Remark 2.8. If w(t) = t, n = 0, we obtain a new result for the classical
Lebesgue integral.

Remark 2.9. Let us consider n = 0. For various choices of the weight w(t)
and taking not the right member of (2.5), but only one of the integrals, we
can obtain without difficulty a variant of Lemma 1 of [4], Lemma 2.1 of [11]
(also see Lemma 2.1 of [22]), Lemma 2.3 of [16], Lemma 2.1 of [21], Lemma
1 of [23], Lemma 2.1 of [24], Lemma 1 of [35], Lemma 1 of [37], Lemma 3.1
of [48], and Lemma 2 of [45] (see also [36]) are obtained.

Remark 2.10. Also, the reader will be able to verify, without much diffi-
culty, that under different variants of the weight w(t) we can obtain Lemma
2 of [38], Lemma 1.1 of [49], Lemma 2.1 of [43], Lemma 2.1 of [56], Lemma
1.6 of [42], Lemma 2.1 of [1], Lemma 1 of [5], Lemma 2.1 of [47].

Theorem 2.11. Let f : [0,∞) → [0,∞) be differentiable on
�
a, bm

�
such

that |f ′| is (h, s,m)-convex on
�
a, bm

�
(0 ≤ a < b < ∞). If f ′ ∈ L1

�
a, bm

�
,

h ∈ L1[0, 1] and n ∈ N0, then we have the following inequality:





A+

	
Iwa+nb
n+1

+
f(b) + Iwna+b

n+1
−
f(a)








≤ (b−a)2

(n+1)2 (|f
′(a)|+ |f ′(b)|)

� 1
0 w(t)hs

�
t

n+1

�
dt

+ (b−a)2

(n+1)2m
�

f ′

�
a
m

�

+



f ′
�
b
m

�



� � 1

0 w(t)
�
1− h

�
t

n+1

��s
dt

(2.6)

with

A =
b− a

n+ 1

	
w(0) (f(a) + f(b))−w(1)

�
f

�
a+ nb

n+ 1

�
+ f

�
na+ b

n+ 1

��

.

Proof. From Lemma 2.6, we obtain




A+

	
Iwa+nb
n+1

+
f(b) + Iwna+b

n+1
−
f(a)








= (b−a)2

(n+1)2





� 1
0 w(t)

�
f ′
�

t
n+1a+

n+1−t
n+1 b

�
− f ′

�
n+1−t
n+1 a+ t

n+1b
��

dt





≤ (b−a)2

(n+1)2

�� 1
0 w(t)




f ′
�

t
n+1a+

n+1−t
n+1 b

�


dt

+
� 1
0 w(t)




f ′
�
n+1−t
n+1 a+ t

n+1b
�


dt

�

= (b−a)2

(n+1)2
(|I1|+ |I2|).

(2.7)
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Using the modified (h, s,m)-convexity of |f ′|, we get

|I1| ≤
� 1
0 w(t)

�
hs
�

t
n+1

�
|f ′(a)|+m

�
1− h

�
t

n+1

��s 


f ′
�
b
m

�



�
dt

= |f ′(a)|
� 1
0 w(t)hs

�
t

n+1

�
dt+m




f ′
�
b
m

�



� 1
0 w(t)

�
1− h

�
t

n+1

��s
dt.

(2.8)

In the same way,

|I2| ≤


f ′(b)




� 1

0
w(t)hs

�
t

n+ 1

�
dt+m





f
′

�
a

m

�





� 1

0
w(t)

�
1− h

�
t

n+ 1

��s
dt.

(2.9)

From (2.8) and (2.9), we easily obtain (2.6). The theorem is proved. �

Remark 2.12. Considering n = 0, the following results can be derived
from the above theorem:

1. Theorem 2.1, case q = 1 from [26], for m-convex functions, h(t) = t

and s = 1.

2. Theorem 2.2 of [11], obtained for convex functions, m = 1, using
w(t) = 1− 2t and using I1 only.

3. Theorem 2.4 of [16] for convex functions, h(t) = t and s = m = 1, a
known result for k-fractional integrals.

4. Theorem 2.3 of [32], with I1, w(t) = 1−2t and (α,m)-convex functions
are considered.

5. Theorem 3 of [45], for convex functions, m = 1, a result for Riemann-
Liouville fractional integrals.

6. Theorem 5 of [55] for s-convex functions, m = 1, and Riemann-
Liouville fractional integrals.

Considering n = 1, Theorem 2.2 of [24] can be obtained for convex
functions.

An alternative to Theorem 2.1, regarding (h,m)-convexity, can be proved
analogously.
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Theorem 2.13. Let f : [0,∞) → [0,∞) be differentiable on
�
a, bm

�
such

that |f ′| is (h,m)-convex on
�
a, bm

�
(0 ≤ a < b < ∞). If f ′ ∈ L1

�
a, bm

�
,

h ∈ L1[0, 1] and n ∈ N0, then we have the following inequality:



A+

	
Iwa+nb
n+1

+
f(b) + Iwna+b

n+1
−
f(a)








≤ (b−a)2

(n+1)2 (|f
′(a)|+ |f ′(b)|)

� 1
0 w(t)h

�
t

n+1

�
dt

+ (b−a)2

(n+1)2m
�

f ′

� a
m

�

+



f ′
�
b
m

�



� � 1

0 w(t)h
�
n+1−t
n+1

�
dt

with A as before.

Refinements of the previous results, can be obtained by imposing new
additional conditions on |f ′|q.

Theorem 2.14. Let f : [0,∞) → [0,∞) be differentiable on
�
a, bm

�
such

that |f ′|q, q > 1 is (h, s,m)-convex on
�
a, bm

�
(0 ≤ a < b < ∞). If

|f ′|q ∈ L1
�
a, bm

�
, h ∈ L1[0, 1] and n ∈ N0, then we have



A+

	
Iwa+nb
n+1

+
f(b) + Iwna+b

n+1
−
f(a)








≤ (b−a)2

(n+1)2Bq

	�
|f ′ (a)|q C1 +m




f ′
�
b
m

�



q
C2

� 1
q

+
�
|f ′ (b)|q C1 +m



f ′
� a
m

�

q C2
� 1
q




with A as before, furthermore, Bq =
�� 1
0 wp(t)dt

� 1
p , C1 =

� 1
0 hs

�
t

n+1

�
dt,

C2 =
� 1
0

�
1− h

�
t

n+1

��s
dt and 1

p +
1
q = 1.

Proof. From Lemma 2.6, we have inequality (2.7). Hölder’s inequality
implies

|I1| ≤

�� 1

0
wp(t) dt

� 1
p
�� 1

0





f
′

�
t

n+ 1
a+

n+ 1− t

n+ 1
b

�




q

dt

� 1
q

(2.10)

and

|I2| ≤

�� 1

0
wp(t) dt

� 1
p
�� 1

0





f
′

�
n+ 1− t

n+ 1
a+

t

n+ 1
b

�




q

dt

� 1
q

.(2.11)
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By the (h, s,m)-convexity of |f ′|q, we obtain

� 1
0




f ′
�

t
n+1a+

n+1−t
n+1 b

�



q
dt

≤ |f ′ (a)|q
� 1
0 hs

�
t

n+1

�
dt+m




f ′
�
b
m

�



q � 1
0

�
1− h

�
t

n+1

��s
dt,

(2.12)

and

� 1
0




f ′
�
n+1−t
n+1 a+ t

n+1b
�



q
dt

≤ |f ′ (b)|q
� 1
0 hs

�
t

n+1

�
dt+m



f ′
� a
m

�

q � 1
0

�
1− h

�
t

n+1

��s
dt.

(2.13)

Substituting (2.12) and (2.13) in (2.10) and (2.11) yields the required
inequality. �

Remark 2.15. Theorem 5 of [46] as particular case of the above result, if
we take n = 1. Other known results from the literature that can be derived
of the above theorem are the following: Theorem 2.2 of [26], Theorem 2.3
[11] and Theorem 1 of [39].

An alternative to Theorem 2.14, regarding (h,m)-convexity, can be
proved analogously.

Theorem 2.16. Let f : [0,∞) → [0,∞) be differentiable on
�
a, bm

�
such

that |f ′|q, q > 1 is (h,m)-convex on
�
a, bm

�
(0 ≤ a < b < ∞). If |f ′|q ∈

L1
�
a, bm

�
, h ∈ L1[0, 1] and n ∈ N0, then we have



A+

	
Iwa+nb
n+1

+
f(b) + Iwna+b

n+1
−
f(a)








≤ (b−a)2

(n+1)2BqC

	�
|f ′ (a)|q +m




f ′
�
b
m

�



q�1

q
+
�
|f ′ (b)|q +m



f ′
�
a
m

�

q�
1
q




with A, Bq as before, C =
�� 1
0 h

�
t

n+1

�
dt
� 1
q .

Remark 2.17. The above theorem complements Theorem 3.2 of [15].

Another variant of Theorem 2.14 is the following.
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Theorem 2.18. Let f : [0,∞) → [0,∞) be differentiable on
�
a, bm

�
such

that |f ′|q, q > 1 is (h, s,m)-convex on
�
a, bm

�
(0 ≤ a < b < ∞). If

|f ′|q ∈ L1
�
a, bm

�
, h ∈ L1[0, 1] and n ∈ N0, then we have



A+

	
Iwa+nb
n+1

+
f(b) + Iwna+b

n+1
−
f(a)








≤ (b−a)2

(n+1)2D

	�
|f ′ (a)|qD1 +m




f ′
�
b
m

�



q
D2

�1
q

+
�
|f ′ (b)|qD1 +m



f ′
� a
m

�

qD2
� 1
q




withA as before, furthermore,D =
�� 1
0 w(t) dt

� 1
p ,D1 =

� 1
0 w(t)hs

�
t

n+1

�
dt,

D2 =
� 1
0 w(t)

�
1− h

�
t

n+1

��s
dt and 1

p +
1
q = 1.

Proof. From Lemma 2.6, we have inequality (2.7). Using well known
power mean inequality, we obtain

|I1| ≤

�� 1

0
w(t) dt

� 1
p
�� 1

0
w(t)





f
′

�
t

n+ 1
a+

n+ 1− t

n+ 1
b

�




q

dt

� 1
q

(2.14)

and

|I2| ≤

�� 1

0
w(t) dt

� 1
p
�� 1

0
w(t)





f
′

�
n+ 1− t

n+ 1
a+

t

n+ 1
b

�




q

dt

� 1
q

.

(2.15)

By the (h, s,m)-convexity of |f ′|q, we obtain

� 1
0 w(t)




f ′
�

t
n+1a+

n+1−t
n+1 b

�



q
dt

≤ |f ′ (a)|q
� 1
0 w(t)hs

�
t

n+1

�
dt+m




f ′
�
b
m

�



q � 1
0 w(t)

�
1− h

�
t

n+1

��s
dt

(2.16)
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and

� 1
0 w(t)




f ′
�
n+1−t
n+1 a+ t

n+1b
�



q
dt

≤ |f ′ (b)|q
� 1
0 w(t)hs

�
t

n+1

�
dt+m



f ′
�
a
m

�

q � 1
0 w(t)

�
1− h

�
t

n+1

��s
dt.

(2.17)

If we put (2.16) and (2.17) in (2.14) and in (2.15), respectively, it allows
us to obtain the required inequality. In this way the proof is complete. �

Remark 2.19. Theorem 2.3 of [26] can be obtained as particular case of
the previous theorem. For n = 1, Theorem 2.18 complements Theorem 6
of [46].

Analogously to Theorem 2.18, for (h,m)-convexity, we can obtain the
following.

Theorem 2.20. Let f : [0,∞) → [0,∞) be differentiable on
�
a, bm

�
such

that |f ′|q, q > 1 is (h,m)-convex on
�
a, bm

�
(0 ≤ a < b < ∞). If |f ′|q ∈

L1
�
a, bm

�
, h ∈ L1[0, 1] and n ∈ N0, then we have



A+

	
Iwa+nb
n+1

+
f(b) + Iwna+b

n+1
−
f(a)








≤ (b−a)2

(n+1)2
D

	�
|f ′ (a)|qD

′

1 +m



f ′
�
b
m

�



q
D

′

2

�1
q

+
�
|f ′ (b)|qD

′

1 +m


f ′
� a
m

�

qD
′

2

�1
q




withA,D as before,D
′

1 =
� 1
0 w(t)h

�
t

n+1

�
dt andD

′

2 =
� 1
0 w(t)h

�
n+1−t
n+1

�
dt.

Remark 2.21. The above theorem complements Theorem 3.6 of [15].

3. Conclusions

In this work we have obtained several integral inequalities, which contain
several results, reported in the literature, including fractional operators.
The scope of our results has been shown throughout the work.

The generality of the results obtained, taking into account the Remark
1.8 and the operators of the Definition 1.10, allow us to derive new results
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for various classes of functions, either convex, h-convex, m-convex and s-
convex functions, defined in a closed interval of non-negative values of real
numbers. It is clear that the problem of extending these results to other
types of general convex functions remains open.
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