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Abstract

A new graph product is defined in this paper and several applica-
tions of this product are described. The adjacency matrix of the prod-
uct graph is given and its complete spectrum in terms of the spectrum
of constituent graphs is determined. Sequences of cospectral graphs
can be generated from the known cospectral graphs using the new prod-
uct. Several sequences of non-cospectral equienergtic graphs can also
be generated as an application of the graph product defined.
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1. Introduction

Let G = (V,E) be a graph with vertex set V and edge set E. The order
of this graph is the positive integer n = |V |. The adjacency matrix of the
graph is defined to be the nth order square matrix AG with (i, j)

th entry
1 if the ith and jth vertex are adjacent, otherwise the entry is zero. The
ordinary energy of a graph[7] G is defined to be the sum of the absolute
values of all the eigenvalues of the the adjacency matrix AG. It is denoted
by

EG =
nX
i=1

|λi| ,(1.1)

where λ1, λ2, · · · , λn are the eigenvalues of AG.

Graphs are classified according to their energies. A graph G is called
hypoenergetic graph [11] if EG < n. An orderenergetic graph [1] is de-
fined to be a graph G with EG = n. Graphs with energy EG = 2n − 2
are called borderenergetic graphs [5]. If EG > 2n − 2, then G is called a
called hyperenergetic graph[8]. If two graphs are having same spectrum for
their adjacency matrix, then such graphs are called cospectral graphs. If
two graphs with same order are having equal energy, then they are called
equienergetic graphs[18]. Clearly cospectral graphs are equienergetic. Gen-
erating sequences of equienergetic non-cospectral graphs is an active area in
spectral graph theory. Orderenergetic graphs and borderenergetic graphs
are clearly equienergetic graphs. Studies and applications of such different
types of graphs can be found in [2, 4, 9, 10, 11, 13, 14, 17] and references
therein.

There are several graph operations defined in the literature and they
are applied in different areas of graph theory. Several unary graph opera-
tions are used to study the energy of graphs[14]. Recently, a general unary
graph operation is constructed in[13] and it is used to generate orderen-
ergetic graphs and equienergetic graphs. There are several binary graph
operations based on cartesian product of vertex sets such as strong graph
products and tensor graph products[12] with applications in spectral graph
theory. Corona graph product[3] is a binary graph operation with vertex
set different from the cartesian product of component graphs. This graph
product is having significant applications in several areas of graph theory
including spectral graph theory[15].

We define a new graph product and some of its applications are dis-
cussed in this paper. It is shown that the new product is entirely different
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from the corona product of two graphs. The definition of the graph product
is given in the next section. The complete spectrum of the new product
graph is determined in the third section. Some applications of the product
graphs are discussed in the fourth section. Two different methods for gen-
erating sequences of non-cospectral equienergetic graphs using this product
are also discussed in this paper.

2. Definition of new graph product

Let G be a graph of order m with vertex set {u1, u2, · · · , um} and H be
a graph of order n with vertex set {v1, v2, · · · , vn}. Also let G is having
|E(G)| = e1 number of edges and H is having |E(H)| = e2 number of
edges. We define a new graph product G⊗H of the two graphs G and H
as follows.

1. The vertex set of G⊗H is given by

{a11, a12, · · · , a1n, a21, a22, · · · , a2n, · · · , am1, am2, · · · , amn,
b11, b12, · · · , b1n, b21, b22, · · · , b2n, · · · , bm1, bm2, · · · , bmn}.

(2.1)

2. The edge set of G⊗H consists of the following three types of edges.

• If the edge {ui, uj} ∈ E(G), then the edges {aik, ajl}; for 1 ≤
k, l ≤ n belong to G⊗H.

• If the edge {vi, vj} ∈ E(H), then the edges {bri, brj}; for 1 ≤
r ≤ m belong to G⊗H.

• For 1 ≤ i ≤ m, the edges {aip, biq}; for 1 ≤ p, q ≤ n, belong to
G⊗H.

Clearly, the total number vertices in the product graph is 2mn. The
number of edges of first, second and third types are n2e1, me2 and mn2

respectively. So the total number of edges in the product graph is n2(m+
e1) +me2.

We illustrate the above construction of product graph using simple ex-
amples. Let G = H = K2, then the product graph G⊗H is given in Figure
1. For the second example, let G = K2 and H = K3. Then the correspond-
ing product graphs G ⊗ H and H ⊗ G are given in Figure 2. From the
second example it is clear that this graph product is not commutative. It
is also evident that the new operation in general is entirely different form
the corona product of two graphs [3] or any other known graph product
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available in the literature. It can be easily verified that the new product is
same as corona product only when n = 1.

Figure 1: The product graph G⊗H, where G = H = K2.

Figure 2: The product graph G⊗H and H ⊗G, where G = K2 and
H = K3.
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3. Spectrum of the new graph product

The main result in this paper is the derivation of the adjacency spectrum of
the new graph product. So it is necessary to find out the adjacency matrix
of the graph G ⊗H in terms of the adjacency matrices of the component
graphs G and H. We prescribe the ordering of the vertices of G ⊗ H as
given in the definition of vertex set (2.1). Then, it is not hard to verify
that the adjacency matrix of the graph product G⊗H is of order 2mn and
is given by

AG⊗H =

Ã
AG ⊗ Jn Im ⊗ Jn
Im ⊗ Jn Im ⊗AH

!
,(3.1)

where AG and AH are the adjacency matrices of the component graphs G
and H respectively, Im denotes the identity matrix of order m, Jn denotes
the all one square matrix of order n and A ⊗ B denotes the Kronecker
product[6] of two matrices A and B. Our aim is to determine the spectra
of G ⊗H using the spectra of the component graphs G and H and using
the coronal [15] of the graph H.

Definition 3.1. [15] Let H be a graph with order n. Then the coro-
nal of the graph H is defined to be the sum of the entries in the matrix
(λIn −AH)

−1. It is denoted by the symbol χH(λ) and is given by the
formula

χH(λ) = 1
T
n (λIn −AH)

−1 1n,(3.2)

where 1n is the length n column vector where all elements are 1’s.

Clearly,

χH(λ) = 1TnAdj(λIn−AH)1n
Det(λIn−AH)

= φH(λ)
fH(λ)

,
(3.3)

where φH (λ) is a polynomial of degree n− 1 in λ and fH (λ) is the charac-
teristic polynomial of the adjacency matrix of the graph H. If the greatest
common divisor of these two polynomials is not a constant, then the above
polynomial ratio can be further simplified. Let the simplified form be

χH(λ) =
Qd−1(λ)

Pd(λ)
,(3.4)
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whereQd−1(λ) and Pd(λ) are polynomials of degrees d−1 and d respectively
and

GCD (φH (λ) , fH (λ)) = Rn−d (λ)

is of degree n− d.
We now state some results from the theory of matrix algebra[6, 16, 19]

which is needed in the proof of the main theorem.

Lemma 3.1. If A and D are square matrices(need not be same order) and
B and C are matrices with compatible orders, then the determinant of the
following block matrix is given by

Det

Ã
A B
C D

!
= Det (D)Det

³
A−BD−1C

´
,(3.5)

provided D−1 exists.

Lemma 3.2. LetA is an rth order square matrix with eigenvalues {αi}, 1 ≤
i ≤ r and B is an sth order square matrix with eigenvalues {βi}, 1 ≤ i ≤ s,
then the eigenvalues of the square matrix A ⊗ B of order rs is given by
all possible products {αiβj}, for 1 ≤ i ≤ r and 1 ≤ j ≤ s, which is rs in
number.

Lemma 3.3. Let A, B and C be matrices with orders m, n, and p respec-
tively, then,

i. A⊗ (B + C) = A⊗B +A⊗ C
ii. Det (A⊗B) = Det(A)nDet(B)m

iii. (A⊗B)−1 = A−1 ⊗B−1.

Lemma 3.4. If A,B,C and D are matrices, then (A⊗B) (C ⊗D) =
(AC)⊗ (BD) , providedthatthematrixproductsgivenabovearepossible.

Lemma 3.5. If A = [aij ] is a q
th order square matrix, then

JpqAJqp =

⎛⎝ qX
i=1

qX
j=1

aij

⎞⎠Jp,(3.6)

where Jpq denotes the all one matrix of order p× q and Jp = Jpp.

Lemma 3.6. Eigenvalues of the all one square matrix Jn are n and zero
with multiplicity one and (n− 1) respectively. In other words,

Det (λIn − Jn) = λn−1 (λ− n) .(3.7)
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Lemma 3.7. For each i = 1, 2, 3, · · ·m, let λi be the eigenvalues of a matrix
A, then for any real number c, the eigenvalues of A + cIm are λi + c for
i = 1, 2, 3, · · ·m. λi + c; 1 ≤ i ≤ m.

The following theorem gives the spectra of the new graph product in
terms of the spectra of its component graphs and the coronal of the second
graph.

Theorem 3.1. Let G and H be two graphs of order m and n respectively.
Then the characteristic polynomial of the graph product G⊗H is given by

fG⊗H (λ) = λm(n−1)Rn−d (λ)
m

mY
i=1

(λPd (λ)− n (γiPd (λ) +Qd−1 (λ))) ,(3.8)

where for i = 1, 2, 3, · · ·m, γi are the eigenvalues of the graph G and
Rn−d, Pd and Qd−1 are given by equation (3.4).

Proof. Let AG and AH are the adjacency matrices of the graphs G and
H respectively. Then, from equation (3.1) the characteristic polynomial of
G⊗H is given by

fG⊗H (λ) = Det (λI2mn −AG⊗H)

= Det
λImn −AG ⊗ Jn −Im ⊗ Jn
−Im ⊗ Jn λImn − Im ⊗AH

= Det (λImn − Im ⊗AH)Det

∙
(λImn −AG ⊗ Jn)

− (Im ⊗ Jn) (λImn − Im ⊗AH)
−1 (Im ⊗ Jn)

¸
,

(3.9)

where we have used lemma 3.1 in the last equation.

Now consider,
(Im ⊗ Jn) (λImn − Im ⊗AH)

−1 (Im ⊗ Jn)

= (Im ⊗ Jn) [Im ⊗ (λIn −AH)]
−1 (Im ⊗ Jn)

= (Im ⊗ Jn)
h
Im ⊗ (λIn −AH)

−1
i
(Im ⊗ Jn)

=
h
Im ⊗ Jn (λIn −AH)

−1
i
(Im ⊗ Jn)

=
h
Im ⊗ Jn (λIn −AH)

−1 Jn
i

= [Im ⊗ χH (λ)Jn] ,
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where we have used lemma 3.3 in the second equation, lemma 3.4 in the
third and fourth equations and lemma 3.5 in the fifth equation. Substituting
this in equation (3.9) we get,

fG⊗H (λ) = Det (λImn − Im ⊗AH)Det

∙
(λImn −AG ⊗ Jn)− (Im ⊗ χH (λ)Jn)

¸
= Det(Im)

nDet (λIn −AH)
mDet

h
λImn − (AG + χH (λ) Im)⊗ Jn

¸
= fH (λ)

mQ (λ− αiβj) ,where the product is taken over all the
eigenvalues αi’s and βj ’s of AG + χH (λ) Im and Jn respectively

= λm(n−1)fH (λ)
mQm

i=1 (λ− nαi)

= λm(n−1)fH (λ)
mQm

i=1 [λ− n (γi + χH (λ))]

= λm(n−1) (Rn−d (λ)Pd (λ))
mQm

i=1

h
λ− n

³
γi +

Qd−1(λ)
Pd(λ)

´i
= λm(n−1)Rn−d (λ)

mQm
i=1

∙
λPd (λ)− n

³
γiPd (λ) +Qd−1 (λ)

´¸
,

where we have used lemma 3.3 in the second equation, lemma 3.2 in the
third equation, lemma 3.6 in the fourth equation, lemma 3.7 in the fifth
equation and equation (3.4) in the sixth equation. Here, the first factor is an
m(n−1) degree polynomial, second factor is anm(n−d) degree polynomial
and each factor in the final product is a d + 1 degree polynomial. So, the
degree of the polynomial fG⊗H (λ) is m(n−1)+m(n−d)+m(d+1) = 2mn
and its 2mn roots gives the spectrum of the graph product G⊗H. 2

4. Applications of the new graph product

In this section we discuss some applications of the graph product G ⊗ H
and its spectrum given in theorem 3.1. It is possible to generate sequences
of cospectral graphs and non-cospectral equienergetic graphs using the new
graph product. The following theorem gives methods for generating cospec-
tral graphs from the known cospectral graphs in two different ways.

Theorem 4.1. Let G1 and G2 be two cospectral graphs, then for any
graph H, the graph product G1 ⊗ H and G2 ⊗ H are cospectral graphs.
Also, let G be any graph and let H1 and H2 be cospectral graphs with same
coronals, then the graphs G⊗H1 and G⊗H2 are cospectral graphs.

Proof. Since the graphs G1 and G2 are cospectral graphs, both are
having same eigenvalues γi with equal multiplicities for each values. Then,
from equations (3.4) and (3.8), it follows that the graphs G1⊗H and G2⊗H
are also having same eigenvalues and hence they are cospectral graphs.
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Now, consider the second method. Suppose H1 and H2 are cospectral
graphs with same coronals. In this case, from equation (3.4) it follows that
the polynomials Rn−d (λ), Pd (λ) and Qd (λ) for both H1 and H2 are same.
Then, from equation (3.8) it follows that G⊗H1 and G⊗H2 are cospectral
graphs. 2

In the next theorem we describe a method for constructing non-cospectral
equienergetic graphs using the new graph product.

Theorem 4.2. LetH1 andH2 be non-cospectral equienergetic graphs with
same coronals, then for any arbitrary graph G, the graphs G ⊗ H1 and
G⊗H2 are also non-cospectral equienergetic graphs.

Proof. Since H1 and H2 are having same coronals, the polynomials
Pd (λ) and Qd (λ) for both H1 and H2 given by equation (3.4) are equal.
Let

fH1 (λ) = Rn−d (λ)Pd (λ)(4.1)

and
fH2 (λ) = R

0
n−d (λ)Pd (λ)(4.2)

Clearly R
0
n−d (λ) 6= Rn−d (λ), as the graphs H1 and H2 are non-cospectral.

Then the characteristic polynomial of G⊗H1 is

fG⊗H1 (λ) = λm(n−1)Rn−d (λ)
m

mY
i=1

(λPd (λ)− n (γiPd (λ) +Qd−1 (λ)))(4.3)

and the characteristic polynomial of G⊗H2 is

fG⊗H2 (λ) = λm(n−1)R
0
n−d (λ)

m
mY
i=1

(λPd (λ)− n (γiPd (λ) +Qd−1 (λ))) .(4.4)

Let the roots of the polynomial Pd (λ) be δ1, δ2, · · · δd and let the roots of
Rn−d (λ) and Rn−d0 (λ) be α1, α2, · · ·αn−d and β1, β2, · · ·βn−d respectively.
Since the graphs H1 and H2 are non-cospectral equienergetic, we have,

dX
i=1

|δi|+
n−dX
i=1

|αi| = EH1 = EH2 =
dX

i=1

|δi|+
n−dX
i=1

|βi| .(4.5)

Hence
n−dX
i=1

|αi| =
n−dX
i=1

|βi| .(4.6)
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The product factor in equations (4.3) and (4.4) are same and it is anm(d+1)
degree polynomial. Let its roots be ηi, for i = 1, 2, · · · ,m(d+1). From the
characteristic polynomial (4.3), the energy of the graph G⊗H1 is obtained
as

EG⊗H1 = m
n−dX
i=1

|αi|+
m(d+1)X
i=1

|ηi|(4.7)

and from the characteristic polynomial (4.4), the energy of the graphG⊗H2

is obtained as

EG⊗H2 = m
n−dX
i=1

|βi|+
m(d+1)X
i=1

|ηi| .(4.8)

Then, from the above two equations and the equation (4.6), we get EG⊗H1 =
EG⊗H2 . Since the graphs H1 and H2 are non-cospectral graphs, it follows
that G⊗H1 and G⊗H2 are non-cospectral equienergetic graphs. 2

The above theorem can be used to generate families of non-cospectral
equienergetic graphs from a given pair of non-cospectral equienergetic graphs
with same coronals. The following corollary gives the existence of such non
trivial non-cospectral equienergetic graphs with same coronals.

Corollary 4.1. Let H1 and H2 be non-cospectral equienergetic r-regular
graphs, then for any arbitrary graph G, the graphs G⊗H1 and G⊗H2 are
also non-cospectral equienergetic graphs.

Proof. Suppose that H1 and H2 are non-cospectral equienergetic r-
regular graphs. It is known that the coronal of any two r-regular graphs
are equal[15]. Hence, by theorem 4.2, the graphs G ⊗H1 and G⊗H2 are
non-cospectral equienergetic graphs. 2

5. Concluding remarks

We have defined a new graph product and its characteristic polynomial is
determined in terms of the characteristic polynomials of constituent graphs.
As an application of the new product, methods of generating families of
non-cospectral equienergetic graphs are discussed in this paper. Future
research directions include finding other structural and spectral properties
of new graph product and its applications in different areas of science and
social sciences.
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