A graph product and its applications in generating non-cospectral equienergetic graphs

Subin P. Joseph
Government Engineering College Wayanad, India
Received: May 2022. Accepted: August 2022

Abstract

A new graph product is defined in this paper and several applications of this product are described. The adjacency matrix of the product graph is given and its complete spectrum in terms of the spectrum of constituent graphs is determined. Sequences of cospectral graphs can be generated from the known cospectral graphs using the new product. Several sequences of non-cospectral equienergtic graphs can also be generated as an application of the graph product defined.

Keyword: Graph product Spectrum Cospectral graphs Equienergetic graphs.

MSC [2008]: 05C50, 05C75, 05C76

1. Introduction

Let $G=(V, E)$ be a graph with vertex set V and edge set E. The order of this graph is the positive integer $n=|V|$. The adjacency matrix of the graph is defined to be the $n^{\text {th }}$ order square matrix A_{G} with $(i, j)^{t h}$ entry 1 if the $i^{\text {th }}$ and $j^{\text {th }}$ vertex are adjacent, otherwise the entry is zero. The ordinary energy of a graph $[7] G$ is defined to be the sum of the absolute values of all the eigenvalues of the the adjacency matrix A_{G}. It is denoted by

$$
\begin{equation*}
\mathcal{E}_{G}=\sum_{i=1}^{n}\left|\lambda_{i}\right|, \tag{1.1}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are the eigenvalues of A_{G}.
Graphs are classified according to their energies. A graph G is called hypoenergetic graph [11] if $\mathcal{E}_{G}<n$. An orderenergetic graph [1] is defined to be a graph G with $\mathcal{E}_{G}=n$. Graphs with energy $\mathcal{E}_{G}=2 n-2$ are called borderenergetic graphs [5]. If $\mathcal{E}_{G}>2 n-2$, then G is called a called hyperenergetic graph[8]. If two graphs are having same spectrum for their adjacency matrix, then such graphs are called cospectral graphs. If two graphs with same order are having equal energy, then they are called equienergetic graphs[18]. Clearly cospectral graphs are equienergetic. Generating sequences of equienergetic non-cospectral graphs is an active area in spectral graph theory. Orderenergetic graphs and borderenergetic graphs are clearly equienergetic graphs. Studies and applications of such different types of graphs can be found in $[2,4,9,10,11,13,14,17]$ and references therein.

There are several graph operations defined in the literature and they are applied in different areas of graph theory. Several unary graph operations are used to study the energy of graphs[14]. Recently, a general unary graph operation is constructed $\mathrm{in}[13]$ and it is used to generate orderenergetic graphs and equienergetic graphs. There are several binary graph operations based on cartesian product of vertex sets such as strong graph products and tensor graph products[12] with applications in spectral graph theory. Corona graph product[3] is a binary graph operation with vertex set different from the cartesian product of component graphs. This graph product is having significant applications in several areas of graph theory including spectral graph theory[15].

We define a new graph product and some of its applications are discussed in this paper. It is shown that the new product is entirely different
from the corona product of two graphs. The definition of the graph product is given in the next section. The complete spectrum of the new product graph is determined in the third section. Some applications of the product graphs are discussed in the fourth section. Two different methods for generating sequences of non-cospectral equienergetic graphs using this product are also discussed in this paper.

2. Definition of new graph product

Let G be a graph of order m with vertex set $\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ and H be a graph of order n with vertex set $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. Also let G is having $|E(G)|=e_{1}$ number of edges and H is having $|E(H)|=e_{2}$ number of edges. We define a new graph product $G \otimes H$ of the two graphs G and H as follows.

1. The vertex set of $G \otimes H$ is given by

$$
\begin{align*}
& \left\{a_{11}, a_{12}, \cdots, a_{1 n}, a_{21}, a_{22}, \cdots, a_{2 n}, \cdots, a_{m 1}, a_{m 2}, \cdots, a_{m n},\right. \tag{2.1}\\
& \left.\quad b_{11}, b_{12}, \cdots, b_{1 n}, b_{21}, b_{22}, \cdots, b_{2 n}, \cdots, b_{m 1}, b_{m 2}, \cdots, b_{m n}\right\} .
\end{align*}
$$

2. The edge set of $G \otimes H$ consists of the following three types of edges.

- If the edge $\left\{u_{i}, u_{j}\right\} \in E(G)$, then the edges $\left\{a_{i k}, a_{j l}\right\}$; for $1 \leq$ $k, l \leq n$ belong to $G \otimes H$.
- If the edge $\left\{v_{i}, v_{j}\right\} \in E(H)$, then the edges $\left\{b_{r i}, b_{r j}\right\}$; for $1 \leq$ $r \leq m$ belong to $G \otimes H$.
- For $1 \leq i \leq m$, the edges $\left\{a_{i p}, b_{i q}\right\}$; for $1 \leq p, q \leq n$, belong to $G \otimes H$.

Clearly, the total number vertices in the product graph is $2 m n$. The number of edges of first, second and third types are $n^{2} e_{1}, m e_{2}$ and $m n^{2}$ respectively. So the total number of edges in the product graph is $n^{2}(m+$ $\left.e_{1}\right)+m e_{2}$.

We illustrate the above construction of product graph using simple examples. Let $G=H=K_{2}$, then the product graph $G \otimes H$ is given in Figure 1. For the second example, let $G=K_{2}$ and $H=K_{3}$. Then the corresponding product graphs $G \otimes H$ and $H \otimes G$ are given in Figure 2. From the second example it is clear that this graph product is not commutative. It is also evident that the new operation in general is entirely different form the corona product of two graphs [3] or any other known graph product
available in the literature. It can be easily verified that the new product is same as corona product only when $n=1$.

G H

Figure 1: The product graph $G \otimes H$, where $G=H=K_{2}$.

Figure 2: The product graph $G \otimes H$ and $H \otimes G$, where $G=K_{2}$ and

$$
H=K_{3} .
$$

3. Spectrum of the new graph product

The main result in this paper is the derivation of the adjacency spectrum of the new graph product. So it is necessary to find out the adjacency matrix of the graph $G \otimes H$ in terms of the adjacency matrices of the component graphs G and H. We prescribe the ordering of the vertices of $G \otimes H$ as given in the definition of vertex set (2.1). Then, it is not hard to verify that the adjacency matrix of the graph product $G \otimes H$ is of order $2 m n$ and is given by

$$
A_{G \otimes H}=\left(\begin{array}{ll}
A_{G} \otimes J_{n} & I_{m} \otimes J_{n} \tag{3.1}\\
I_{m} \otimes J_{n} & I_{m} \otimes A_{H}
\end{array}\right)
$$

where A_{G} and A_{H} are the adjacency matrices of the component graphs G and H respectively, I_{m} denotes the identity matrix of order m, J_{n} denotes the all one square matrix of order n and $A \otimes B$ denotes the Kronecker product[6] of two matrices A and B. Our aim is to determine the spectra of $G \otimes H$ using the spectra of the component graphs G and H and using the coronal [15] of the graph H.

Definition 3.1. [15] Let H be a graph with order n. Then the coronal of the graph H is defined to be the sum of the entries in the matrix $\left(\lambda I_{n}-A_{H}\right)^{-1}$. It is denoted by the symbol $\chi_{H}(\lambda)$ and is given by the formula

$$
\begin{equation*}
\chi_{H}(\lambda)=\mathbf{1}_{n}^{T}\left(\lambda I_{n}-A_{H}\right)^{-1} \mathbf{1}_{n} \tag{3.2}
\end{equation*}
$$

where $\mathbf{1}_{n}$ is the length n column vector where all elements are 1 's.

Clearly,

$$
\begin{align*}
\chi_{H}(\lambda) & =\frac{\mathbf{1}_{n}^{T} \operatorname{Adj}\left(\lambda I_{n}-A_{H}\right) \mathbf{1}_{n}}{D e t\left(\lambda I_{n}-A_{H}\right)} \\
& =\frac{\phi_{H}(\lambda)}{f_{H}(\lambda)} \tag{3.3}
\end{align*}
$$

where $\phi_{H}(\lambda)$ is a polynomial of degree $n-1$ in λ and $f_{H}(\lambda)$ is the characteristic polynomial of the adjacency matrix of the graph H. If the greatest common divisor of these two polynomials is not a constant, then the above polynomial ratio can be further simplified. Let the simplified form be

$$
\begin{equation*}
\chi_{H}(\lambda)=\frac{Q_{d-1}(\lambda)}{P_{d}(\lambda)} \tag{3.4}
\end{equation*}
$$

where $Q_{d-1}(\lambda)$ and $P_{d}(\lambda)$ are polynomials of degrees $d-1$ and d respectively and

$$
G C D\left(\phi_{H}(\lambda), f_{H}(\lambda)\right)=R_{n-d}(\lambda)
$$

is of degree $n-d$.
We now state some results from the theory of matrix algebra[6, 16, 19] which is needed in the proof of the main theorem.

Lemma 3.1. If A and D are square matrices(need not be same order) and B and C are matrices with compatible orders, then the determinant of the following block matrix is given by

$$
\operatorname{Det}\left(\begin{array}{cc}
A & B \tag{3.5}\\
C & D
\end{array}\right)=\operatorname{Det}(D) \operatorname{Det}\left(A-B D^{-1} C\right)
$$

provided D^{-1} exists.
Lemma 3.2. Let A is an $r^{t h}$ order square matrix with eigenvalues $\left\{\alpha_{i}\right\}, 1 \leq$ $i \leq r$ and B is an $s^{\text {th }}$ order square matrix with eigenvalues $\left\{\beta_{i}\right\}, 1 \leq i \leq s$, then the eigenvalues of the square matrix $A \otimes B$ of order $r s$ is given by all possible products $\left\{\alpha_{i} \beta_{j}\right\}$, for $1 \leq i \leq r$ and $1 \leq j \leq s$, which is $r s$ in number.

Lemma 3.3. Let A, B and C be matrices with orders m, n, and p respectively, then,

$$
\begin{array}{ll}
\text { i. } & A \otimes(B+C)=A \otimes B+A \otimes C \\
\text { ii. } & \operatorname{Det}(A \otimes B)=\operatorname{Det}(A)^{n} \operatorname{Det}(B)^{m} \\
\text { iii. } & (A \otimes B)^{-1}=A^{-1} \otimes B^{-1} .
\end{array}
$$

Lemma 3.4. If A, B, C and D are matrices, then $(A \otimes B)(C \otimes D)=$ $(A C) \otimes(B D)$, providedthatthematrixproductsgivenabovearepossible.

Lemma 3.5. If $A=\left[a_{i j}\right]$ is a $q^{t h}$ order square matrix, then

$$
\begin{equation*}
J_{p q} A J_{q p}=\left(\sum_{i=1}^{q} \sum_{j=1}^{q} a_{i j}\right) J_{p} \tag{3.6}
\end{equation*}
$$

where $J_{p q}$ denotes the all one matrix of order $p \times q$ and $J_{p}=J_{p p}$.
Lemma 3.6. Eigenvalues of the all one square matrix J_{n} are n and zero with multiplicity one and $(n-1)$ respectively. In other words,

$$
\begin{equation*}
\operatorname{Det}\left(\lambda I_{n}-J_{n}\right)=\lambda^{n-1}(\lambda-n) \tag{3.7}
\end{equation*}
$$

Lemma 3.7. For each $i=1,2,3, \cdots m$, let λ_{i} be the eigenvalues of a matrix A, then for any real number c, the eigenvalues of $A+c I_{m}$ are $\lambda_{i}+c$ for $i=1,2,3, \cdots m . \lambda_{i}+c ; 1 \leq i \leq m$.

The following theorem gives the spectra of the new graph product in terms of the spectra of its component graphs and the coronal of the second graph.

Theorem 3.1. Let G and H be two graphs of order m and n respectively. Then the characteristic polynomial of the graph product $G \otimes H$ is given by

$$
\begin{equation*}
f_{G \otimes H}(\lambda)=\lambda^{m(n-1)} R_{n-d}(\lambda)^{m} \prod_{i=1}^{m}\left(\lambda P_{d}(\lambda)-n\left(\gamma_{i} P_{d}(\lambda)+Q_{d-1}(\lambda)\right)\right) \tag{3.8}
\end{equation*}
$$

where for $i=1,2,3, \cdots m, \gamma_{i}$ are the eigenvalues of the graph G and R_{n-d}, P_{d} and Q_{d-1} are given by equation (3.4).

Proof. Let A_{G} and A_{H} are the adjacency matrices of the graphs G and H respectively. Then, from equation (3.1) the characteristic polynomial of $G \otimes H$ is given by

$$
\begin{align*}
f_{G \otimes H}(\lambda) & =\operatorname{Det}\left(\lambda I_{2 m n}-A_{G \otimes H}\right) \\
& =\operatorname{Det} \begin{array}{ll}
\lambda I_{m n}-A_{G} \otimes J_{n} & -I_{m} \otimes J_{n} \\
-I_{m} \otimes J_{n} & \lambda I_{m n}-I_{m} \otimes A_{H} \\
& =\operatorname{Det}\left(\lambda I_{m n}-I_{m} \otimes A_{H}\right) \operatorname{Det}\left[\left(\lambda I_{m n}-A_{G} \otimes J_{n}\right)\right. \\
& \left.-\left(I_{m} \otimes J_{n}\right)\left(\lambda I_{m n}-I_{m} \otimes A_{H}\right)^{-1}\left(I_{m} \otimes J_{n}\right)\right]
\end{array}, l
\end{align*}
$$

where we have used lemma 3.1 in the last equation.

Now consider,

$$
\begin{aligned}
\left(I_{m} \otimes J_{n}\right)\left(\lambda I_{m n}-I_{m}\right. & \left.\otimes A_{H}\right)^{-1}\left(I_{m} \otimes J_{n}\right) \\
& =\left(I_{m} \otimes J_{n}\right)\left[I_{m} \otimes\left(\lambda I_{n}-A_{H}\right)\right]^{-1}\left(I_{m} \otimes J_{n}\right) \\
& =\left(I_{m} \otimes J_{n}\right)\left[I_{m} \otimes\left(\lambda I_{n}-A_{H}\right)^{-1}\right]\left(I_{m} \otimes J_{n}\right) \\
& =\left[I_{m} \otimes J_{n}\left(\lambda I_{n}-A_{H}\right)^{-1}\right]\left(I_{m} \otimes J_{n}\right) \\
& =\left[I_{m} \otimes J_{n}\left(\lambda I_{n}-A_{H}\right)^{-1} J_{n}\right] \\
& =\left[I_{m} \otimes \chi_{H}(\lambda) J_{n}\right]
\end{aligned}
$$

where we have used lemma 3.3 in the second equation, lemma 3.4 in the third and fourth equations and lemma 3.5 in the fifth equation. Substituting this in equation (3.9) we get,

$$
\begin{aligned}
f_{G \otimes H}(\lambda) & =\operatorname{Det}\left(\lambda I_{m n}-I_{m} \otimes A_{H}\right) \operatorname{Det}\left[\left(\lambda I_{m n}-A_{G} \otimes J_{n}\right)-\left(I_{m} \otimes \chi_{H}(\lambda) J_{n}\right)\right] \\
& =\operatorname{Det}\left(I_{m}\right)^{n} \operatorname{Det}\left(\lambda I_{n}-A_{H}\right)^{m} \operatorname{Det}\left[\lambda I_{m n}-\left(A_{G}+\chi_{H}(\lambda) I_{m}\right) \otimes J_{n}\right] \\
& =f_{H}(\lambda)^{m} \Pi\left(\lambda-\alpha_{i} \beta_{j}\right), \text { where the product is taken over all the } \\
& \text { eigenvalues } \alpha_{i} \text { 's and } \beta_{j} \text { 's of } A_{G}+\chi_{H}(\lambda) I_{m} \text { and } J_{n} \text { respectively } \\
& =\lambda^{m(n-1)} f_{H}(\lambda)^{m} \prod_{i=1}^{m}\left(\lambda-n \alpha_{i}\right) \\
& =\lambda^{m(n-1)} f_{H}(\lambda)^{m} \prod_{i=1}^{m}\left[\lambda-n\left(\gamma_{i}+\chi_{H}(\lambda)\right)\right] \\
& =\lambda^{m(n-1)}\left(R_{n-d}(\lambda) P_{d}(\lambda)\right)^{m} \prod_{i=1}^{m}\left[\lambda-n\left(\gamma_{i}+\frac{Q_{d-1}(\lambda)}{P_{d}(\lambda)}\right)\right] \\
& =\lambda^{m(n-1)} R_{n-d}(\lambda)^{m} \prod_{i=1}^{m}\left[\lambda P_{d}(\lambda)-n\left(\gamma_{i} P_{d}(\lambda)+Q_{d-1}(\lambda)\right)\right]
\end{aligned}
$$

where we have used lemma 3.3 in the second equation, lemma 3.2 in the third equation, lemma 3.6 in the fourth equation, lemma 3.7 in the fifth equation and equation (3.4) in the sixth equation. Here, the first factor is an $m(n-1)$ degree polynomial, second factor is an $m(n-d)$ degree polynomial and each factor in the final product is a $d+1$ degree polynomial. So, the degree of the polynomial $f_{G \otimes H}(\lambda)$ is $m(n-1)+m(n-d)+m(d+1)=2 m n$ and its $2 m n$ roots gives the spectrum of the graph product $G \otimes H$.

4. Applications of the new graph product

In this section we discuss some applications of the graph product $G \otimes H$ and its spectrum given in theorem 3.1. It is possible to generate sequences of cospectral graphs and non-cospectral equienergetic graphs using the new graph product. The following theorem gives methods for generating cospectral graphs from the known cospectral graphs in two different ways.

Theorem 4.1. Let G_{1} and G_{2} be two cospectral graphs, then for any graph H, the graph product $G_{1} \otimes H$ and $G_{2} \otimes H$ are cospectral graphs. Also, let G be any graph and let H_{1} and H_{2} be cospectral graphs with same coronals, then the graphs $G \otimes H_{1}$ and $G \otimes H_{2}$ are cospectral graphs.

Proof. Since the graphs G_{1} and G_{2} are cospectral graphs, both are having same eigenvalues γ_{i} with equal multiplicities for each values. Then, from equations (3.4) and (3.8), it follows that the graphs $G_{1} \otimes H$ and $G_{2} \otimes H$ are also having same eigenvalues and hence they are cospectral graphs.

Now, consider the second method. Suppose H_{1} and H_{2} are cospectral graphs with same coronals. In this case, from equation (3.4) it follows that the polynomials $R_{n-d}(\lambda), P_{d}(\lambda)$ and $Q_{d}(\lambda)$ for both H_{1} and H_{2} are same. Then, from equation (3.8) it follows that $G \otimes H_{1}$ and $G \otimes H_{2}$ are cospectral graphs.

In the next theorem we describe a method for constructing non-cospectral equienergetic graphs using the new graph product.

Theorem 4.2. Let H_{1} and H_{2} be non-cospectral equienergetic graphs with same coronals, then for any arbitrary graph G, the graphs $G \otimes H_{1}$ and $G \otimes H_{2}$ are also non-cospectral equienergetic graphs.

Proof. Since H_{1} and H_{2} are having same coronals, the polynomials $P_{d}(\lambda)$ and $Q_{d}(\lambda)$ for both H_{1} and H_{2} given by equation (3.4) are equal. Let

$$
\begin{equation*}
f_{H_{1}}(\lambda)=R_{n-d}(\lambda) P_{d}(\lambda) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{H_{2}}(\lambda)=R_{n-d}^{\prime}(\lambda) P_{d}(\lambda) \tag{4.2}
\end{equation*}
$$

Clearly $R_{n-d}^{\prime}(\lambda) \neq R_{n-d}(\lambda)$, as the graphs H_{1} and H_{2} are non-cospectral. Then the characteristic polynomial of $G \otimes H_{1}$ is

$$
\begin{equation*}
f_{G \otimes H_{1}}(\lambda)=\lambda^{m(n-1)} R_{n-d}(\lambda)^{m} \prod_{i=1}^{m}\left(\lambda P_{d}(\lambda)-n\left(\gamma_{i} P_{d}(\lambda)+Q_{d-1}(\lambda)\right)\right) \tag{4.3}
\end{equation*}
$$

and the characteristic polynomial of $G \otimes H_{2}$ is

$$
\begin{equation*}
f_{G \otimes H_{2}}(\lambda)=\lambda^{m(n-1)} R_{n-d}^{\prime}(\lambda)^{m} \prod_{i=1}^{m}\left(\lambda P_{d}(\lambda)-n\left(\gamma_{i} P_{d}(\lambda)+Q_{d-1}(\lambda)\right)\right) . \tag{4.4}
\end{equation*}
$$

Let the roots of the polynomial $P_{d}(\lambda)$ be $\delta_{1}, \delta_{2}, \cdots \delta_{d}$ and let the roots of $R_{n-d}(\lambda)$ and $R_{n-d}{ }^{\prime}(\lambda)$ be $\alpha_{1}, \alpha_{2}, \cdots \alpha_{n-d}$ and $\beta_{1}, \beta_{2}, \cdots \beta_{n-d}$ respectively. Since the graphs H_{1} and H_{2} are non-cospectral equienergetic, we have,

$$
\begin{equation*}
\sum_{i=1}^{d}\left|\delta_{i}\right|+\sum_{i=1}^{n-d}\left|\alpha_{i}\right|=\mathcal{E}_{H_{1}}=\mathcal{E}_{H_{2}}=\sum_{i=1}^{d}\left|\delta_{i}\right|+\sum_{i=1}^{n-d}\left|\beta_{i}\right| . \tag{4.5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\sum_{i=1}^{n-d}\left|\alpha_{i}\right|=\sum_{i=1}^{n-d}\left|\beta_{i}\right| . \tag{4.6}
\end{equation*}
$$

The product factor in equations (4.3) and (4.4) are same and it is an $m(d+1)$ degree polynomial. Let its roots be η_{i}, for $i=1,2, \cdots, m(d+1)$. From the characteristic polynomial (4.3), the energy of the graph $G \otimes H_{1}$ is obtained as

$$
\begin{equation*}
\mathcal{E}_{G \otimes H_{1}}=m \sum_{i=1}^{n-d}\left|\alpha_{i}\right|+\sum_{i=1}^{m(d+1)}\left|\eta_{i}\right| \tag{4.7}
\end{equation*}
$$

and from the characteristic polynomial (4.4), the energy of the graph $G \otimes H_{2}$ is obtained as

$$
\begin{equation*}
\mathcal{E}_{G \otimes H_{2}}=m \sum_{i=1}^{n-d}\left|\beta_{i}\right|+\sum_{i=1}^{m(d+1)}\left|\eta_{i}\right| \tag{4.8}
\end{equation*}
$$

Then, from the above two equations and the equation (4.6), we get $\mathcal{E}_{G \otimes H_{1}}=$ $\mathcal{E}_{G \otimes H_{2}}$. Since the graphs H_{1} and H_{2} are non-cospectral graphs, it follows that $G \otimes H_{1}$ and $G \otimes H_{2}$ are non-cospectral equienergetic graphs.

The above theorem can be used to generate families of non-cospectral equienergetic graphs from a given pair of non-cospectral equienergetic graphs with same coronals. The following corollary gives the existence of such non trivial non-cospectral equienergetic graphs with same coronals.

Corollary 4.1. Let H_{1} and H_{2} be non-cospectral equienergetic r-regular graphs, then for any arbitrary graph G, the graphs $G \otimes H_{1}$ and $G \otimes H_{2}$ are also non-cospectral equienergetic graphs.

Proof. Suppose that H_{1} and H_{2} are non-cospectral equienergetic r regular graphs. It is known that the coronal of any two r-regular graphs are equal[15]. Hence, by theorem 4.2, the graphs $G \otimes H_{1}$ and $G \otimes H_{2}$ are non-cospectral equienergetic graphs.

5. Concluding remarks

We have defined a new graph product and its characteristic polynomial is determined in terms of the characteristic polynomials of constituent graphs. As an application of the new product, methods of generating families of non-cospectral equienergetic graphs are discussed in this paper. Future research directions include finding other structural and spectral properties of new graph product and its applications in different areas of science and social sciences.

References

[1] S. Akbari, M. Ghahremani, I. Gutman, and F. Koorepazan-M oftakhar, "Orderenergetic Graphs", MATCH Commurications in Mathenatical and in Compter Chenistry, vol. 84, pp. 325-334, 2020. [On line]. Available: https://bit.ly/3IN InSq
[2] B. Deng, X. Li, and I. Gutman, "M ore on borderenergetic graphs", Linear Algadra and its Apdications, vol. 497, pp. 199-208, 2016. doi: 10.1016/j.laa.2016.02.029
[3] R. Frucht and F. Harary, "On the corona of two graphs", Aequationes Matheraticae vol. 4, pp. 322-325, 1970.
[4] B. Furtula and I. Gutman, "Borderenergetic Graphs of Order 12", Irarian Jarnal of Matheratical Chemitry, vol. 8, no. 4, pp. 339-344, 2017. doi: 10.22052/JJM C.2017.87093.1290
[5] S. Gong, X. Li, G. Xu, I. Gutman and B. Furtula, "Borderenergetic graphs", MATCH Commurcations in Mathenatical and in Compter Chenistry, vol. 74, pp. 321-332, 2015. [On line]. A vailable: https://bit.Iy/3Q AhR w t
[6] A. G raham, Kronecker ProdurtsandMatrixCalalus withApplications N ew York: W iley, 1981
[7] I. Gutman, "The energy of a graph", Beidte de Matheratisch-Statistischen Settioninde ForschungsgesellschaftJoamem no. 103, pp. 1-22, 1978.
[8] I. Gutman, "H yperenergetic molecular graphs", Journal of theSerbianCherical Sociey, vol. 64, pp. 199-205, 1999.
[9] I. Gutman, Hyperenergetic and hypoenergetic graphs in Sedected Topics on Applications of Graph Speetra, D. Cvetković and I. Gutman, Eds. Belgrade: M atematički institut, 2011
[10] I. Gutman, "Open problems for equienergetic graphs", Irarian Jarral of Matheratical Chenistry, vol. 6, pp. 185-187, 2015.
[11] I. Gutman and S. Radenković, "H ypoenergetic molecular graphs", Indian Jarnal of Chenistry,vol. 46A, pp. 1733-1736, 2007.
[12] R. Hammack, W . Imrich and S. Klavzar, Handbook of Produt Graphs. Boca Raton: CRC, 2011
[13] S. P. Joseph, "A graph operation and its applications in generating orderenergetic and equienergetic graphs", MATCH Commrications in Matheratical and in Computer Chemistry, vol. 87, pp. 703-715, 2022. doi: 10.46793/match.87-3.703j
[14] X. Li, Y. Shi and I. Gutman, GraphEnegg. New York: Springer, 2012.
[15] C. M cLeman and E. M cN icholas, "Spectra of coronae", Linear algdra andits apdications, vol. 435, no. 5, pp. 998-1007, 2011
[16] C. D. M eyer, Matrix Analysis and Applied Linear Algdra. Philadelphia: Society for Industrial and Applied M athematics, 2000.
[17] O. Milijkovi, B. Furtula, S. Radenkovi and I. Gutman, "Equienergetic and almost equienergetic trees", MATCH Commurications in Matheratical and in Compter Chemistry, vol. 61, pp. 451-461, 2009.
[18] H. S. Ramane, H. B. W alikar, S. Bhaskara Rao, B. D. Acharya, P. R Hampiholi, S. R. Jog, and I. Gutman, "Equienergetic graphs", Kragjerac jarmal of mathematics, vol. 26, pp. 5-13, 2004. [On line]. Available: https://bit.ly/3Pzn1Ye
[19] C. F. V an Loan, "The ubiquitous K ronecker product", Journal of Computational and Applied Matheratics, vol. 123, pp. 85-100, 2000. doi: 10.1016/S0377-0427(00)00393-9

Subin P. Joseph

Department of Mathematics, Government Engineering College Wayanad, Thalapuzha, Mananthavady, Kerala, India-670644
India
e-mail: subinpj@gecwyd.ac.in

